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Globally more than two billion people suffer from micronutrient malnutrition (also known as
“hidden hunger”). Further, the pregnant women and children in developing nations are
mainly affected by micronutrient deficiencies. One of the most important factors is food
insecurity which can be mitigated by improving the nutritional values through
biofortification using selective breeding and genetic enhancement techniques.
Chickpea is the second most important legume with numerous economic and
nutraceutical properties. Therefore, chickpea production needs to be increased from
the current level. However, various kind of biotic and abiotic stresses hamper global
chickpea production. The emerging popular targets for biofortification in agronomic crops
include targeting cytokinin dehydrogenase (CKX). The CKXs play essential roles in both
physiological and developmental processes and directly impact several agronomic
parameters i.e., growth, development, and yield. Manipulation of CKX genes using
genome editing tools in several crop plants reveal that CKXs are involved in regulation
yield, shoot and root growth, and minerals nutrition. Therefore, CKXs have become
popular targets for yield improvement, their overexpression and mutants can be
directly correlated with the increased yield and tolerance to various stresses. Here, we
provide detailed information on the different roles of CKX genes in chickpea. In the end, we
discuss the utilization of genome editing tool clustered regularly interspaced short
palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) to engineer CKX
genes that can facilitate trait improvement. Overall, recent advancements in CKX and
their role in plant growth, stresses and nutrient accumulation are highlighted, which could
be used for chickpea improvement.
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INTRODUCTION

Micronutrient malnutrition, often known as “hidden hunger”
affects more than half of the world’s population, with pregnant
women and children in developing nations bearing the brunt of
the burden. According to the World Health Organisation
(WHO), more than 2 billion people are suffering from hidden
hunger and one of the most important responsible factors for
malnutrition is food insecurity which affects almost a billion
people worldwide (FAO, 2013). Food security is defined as when
all people, at all times, have physical, social and economic access
to sufficient, safe and nutritious food that meets their dietary
needs and food preferences for active and healthy life (FAO,
2016). This is particularly an issue in developing countries where
families cannot afford or get access to sufficient and nutritious
food. Each year twenty million infants are born with low body
weight. As per the malnutrition report around 150.8 million
stunted, 50.5 million wasted, and 38.3 million overweight
children under five years of age are found (WHO, 2018;
Kumar and Pandey, 2020; Ahmed et al., 2022). The reason for
malnutrition is due to the insufficient or poor-quality supply or
uptake of nutrition. The consumption of legumes in daily diets,
especially in developing countries (Afro-Asian countries), could
majorly eradicate protein malnutrition. Legumes could act as a
base for the development of many functional foods to promote
health benefits in humans (Maphosa and Jideani, 2017; Kumar
and Pandey, 2020; Ahmed et al., 2022).

Chickpea (Cicer arietinum L.) is the world’s second largest,
cool season food legume. It is in high demand owing to its high
nutritional value. Chickpea is considered invaluable because it
provides food for human consumption and feed to livestock.
Owing to these astounding properties of chickpea, its production
needs to be enhanced to feed and ensure nutritional health and
well-being of world’s population. It is also essential to involve the
screening techniques, which is useful to promote the breeding
program for increasing the growth of chickpea (Talip et al., 2018).
However, various factors hamper the yield of this crop. Climate
variability has altered plant physiology in a variety of ways.
Multiple stressors on plants are increased as a result of
environmental extremes and climate unpredictability
(Thornton et al., 2014). Heat stress reduces grain yield and
productivity, cold stress causes sterility, and drought stress has
a deleterious impact on plant morpho-physiology (Barlow et al.,
2015). The generation of reactive oxygen species (ROS) such as
hydrogen peroxide (H2O2), superoxide (.O2), and hydroxyl
radicals (.OH−) are accelerated in plant tissues due to harsh
circumstances. In addition to other stress hormones like abscisic
acid (ABA), jasmonate, and salicylic acid, cytokinins (CKs) also
play a significant role in increasing plant stress tolerance and
regulate the action of plants defensive mechanisms. Thus,
understanding the roles of cytokinin in plant responses to
abiotic stressors is very critical imperative.

The cytokinins have been largely involved in the regulation of
plant yield, particularly by influencing the grain related traits
i.e., number, size and growth of the root (Yamburenko et al.,
2017). Moreover, they are found to be involved in stress
regulations (Cortleven et al., 2019) and plant mineral

concentration status (Gao et al., 2019). It has also been
reported that cytokines negatively affect micronutrient uptake
regulations (Gao et al., 2019). Cytokinin dehydrogenase (CKXs) is
a key enzyme that regulates the cytokinin hormone level in plants
(Sakakibara, 2006). It is a small gene family, for instance in
Arabidopsis only seven CKX genes were reported (Werner et al.,
2003). Several studies in Arabidopsis showed that CKX genes
regulate plant growth and developmental processes including
shoot and root development, reproductive meristem activity
(Werner et al., 2006; Bartrina et al., 2011), and mineral
[phosphorus (P), calcium (Ca), sulfur (S) and microelements
like copper (Cu), manganese (Mn), iron (Fe), and zinc (Zn)]
accumulations (Werner et al., 2010; Bartrina et al., 2011; Chang
et al., 2015). However, related information and functional studies
about CKX genes in chickpea and their utilization to improve
agronomic traits are lacking. Various techniques are being
employed to develop a sustainable agriculture system to
decrease food insecurity. One such method is Genome editing
(GE) for crop improvement that has the potential to create a
climate-resilient agriculture system on a global scale (Liu et al.,
2013). GE technologies have had a significant impact on plant
breeding techniques including new strategies for making rapid
and precise changes in crop genomes to protect plants from
various challenges and enhance crop outputs (Taranto et al.,
2018). In genome editing methods, site-specific endonucleases
such as zinc-finger nucleases (ZFNs), transcription activator like
effector nucleases (TALENs), and CRISPR-Cas9 are used (Zhu
et al., 2017). Unlike the ZENs and TALENs genome editing tools,
the CRISPR/Cas9 system is proving to be the most effective GE
technology since it is cost-efficient, rapid, accurate, and allows for
various site-specific genome editing (Abdelrahman et al., 2018a).
In comparison to other genome editing methods like TALENs/
ZFNs, CRISPR-based techniques have been intensively
investigated in plant genomes. It also offers a lot of potential
for assisting crop breeders in developing high-yielding, stress-
resistant varieties (Abdelrahman et al., 2018b). Most importantly,
CRISPR/Cas9 is coming up as a straight forward,
environmentally benign strategy for making genome-edited
non-transgenic plants to combat environmental extremes and
maintain food security (Haque et al., 2018).

Apart from genome editing tools like CRISPR-Cas9 which are
being increasingly used nowadays to develop stress tolerant
varieties in different crops, there are some alternative strategies
as well. Selection from landraces, hybridization to develop novel
variety followed by pedigree selection, mutation breeding, and
exploitation of hybrid vigour are examples of traditional breeding
procedures that have resulted in considerable improvements in
stress tolerance and nutritional quality. Applications of PGPRs
are being used to alleviate abiotic stresses and increase
productivity in economically important crops including rice,
soybean, lettuce, tomato, maize and wheat. Nano-
biotechnology has also proven to be a promising tool for
sustainable agriculture, seed treatment and germination, plant
growth and development, disease diagnostics, and detection of
harmful agrochemicals (Nuruzzaman et al., 2016).

In this comprehensive review article, we emphasize the
importance of legumes with reference to chickpea,
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malnutrition and food security, biotic and abiotic stresses, and the
role of cytokinin.We also discuss how recently developed genome
editing technologies such as CRISPR/Cas9 are being utilized to
engineer CKX genes to improve agricultural traits and
biofortification in chickpea.

LEGUMES AS BOON TO MANKIND

Legumes are plants of the Leguminosae/Fabaceae family that bear
seeds in pods (Staniak et al., 2014; Kouris-Blazos and Belski,
2016) and as a distinguishing feature fix atmospheric N2 in
symbiosis with suitable rhizobia. Agriculturally significant
legumes fix 40–60 million metric tonnes N2, along with an
additional 3–5 million tonnes by wild legumes, annually (Smil,
1999). The principal edible legumes are bean, broad bean,
chickpea, cowpea, pea, pigeon peaand lentil (National
Academy of Science, 1994). However, peas, broad beans,
lentils, soybeans, lupins, sprouts, mung bean, green beans, and
peanuts are common legumes utilized for human consumption
and are known as grain or grain food legumes (Yorgancilar and
Bilgicli, 2014). Food legumes are classified into two types: oilseeds
and pulses. The oilseeds are high-oil-content legumes such as
soybeans and peanuts, whereas the pulses are all dry seeds of
cultivated legumes eaten as traditional food. These seeds are
recognized globally as a low-cost meat substitute and regarded
as the secondmost important dietary source after cereals (Kouris-
Blazos and Belski, 2016). Legumes are high inprotein, essential
amino acids, complex carbohydrates, dietary fibre, unsaturated
fats, vitamins, and critical minerals, all of which are important in
the human diet (Bouchenak and Lamri-Senhadji, 2013; Clark
et al., 2014; Rebello et al., 2014). Due to the abundance of useful
bioactive chemicals, legumes also have been assigned economic,
cultural, physiological, and therapeutic functions in addition to
their nutritional excellence.

Legumes are an excellent source of high-quality protein,
including 20–45% protein and particularly high in the
important amino acid lysine (Philips, 1993). Peas and beans
contain 17–20% protein, whilst lupins and soybeans contain
38–45% protein (Mlyneková et al., 2014; Kouris-Blazos and
Belski, 2016). Legumes contain twice the protein level of
cereals and are richer in protein than most of the other plant
diets (Leonard, 2012; FAO, 2016; Kouris-Blazos and Belski,
2016). Leguminous proteins, with the exception of soybean
protein, are poor in the important sulphur-containing amino
acids namely methionine, cysteine, and cysteine, as well as
tryptophan, and are thus regarded as an inadequate source of
protein (Kouris-Blazos and Belski, 2016). The primary
components of leguminous protein are albumins and
globulins, which are further subdivided into vialin and
legumin. Vialin is the primary protein group in most of the
legumes and is defined by a low quantity of sulphur-containing
amino acids, which reflects those legumes have small amounts of
sulphur-containing amino acids (FAO, 2016). In terms of protein,
legumes and cereals complement each other because cereals are
high in sulphur-containing amino acids (poor in legumes) and
low in lysine (high in legumes) (Staniak et al., 2014). As a result,

when beans are combined with grains, the protein quality
improves dramatically (FAO, 2016).

Legumes contain up to 60% carbohydrates by dry weight and
are source of complex energy-giving carbohydrates (Leonard,
2012). Leguminous starch digests more slowly than cereal and
tuber starch. As a result, beans have a low glycemic index (GI)
rating for blood glucose control (Philips, 1993; Khalid and
Elharadallou, 2013) making them ideal for diabetic patients
and those at greater risk of acquiring diabetes. In general,
legumes are beneficial for people who want to live a healthy,
disease-free lifestyle (Bouchenak and Lamri-Senhadji, 2013).
Legumes are also a rich source of dietary fiber (5–37%), with
large levels of both soluble and insoluble fibers (Philips, 1993;
Leonard, 2012; Kouris-Blazos and Belski, 2016). Diets high in
dietary fiber have been linked to plenty of health advantages.
Constipation, obesity, diabetes, heart issues, piles, and various
malignancies are among the various diseases and ailments that
can be prevented and treated (Maphosa and Jideani, 2016;
Tamang et al., 2016).

Except for peanuts (45%) and soybeans (47%), legumes have
no cholesterol and are generally low in fat, with 5% calories from
fat (Messina, 2016). Legumes have a high concentration of mono-
and polyunsaturated fatty acids (PUFA) and almost no saturated
fatty acids (Kouris-Blazos and Belski, 2016). Kidney beans and
chickpeas have the highest levels of PUFA (71.1%) and MUFA
(34%), respectively (Kouris-Blazos and Belski, 2016). Because the
human body cannot synthesize these PUFAs, they must be
consumed through the diet (FAO, 2016). Legumes are high in
B-complex vitamins like foliate, thiamin, and riboflavin, but low
in fat-soluble vitamins and vitamin C. (Kouris-Blazos and Belski,
2016). Folate is an important nutrient shown to minimize the
likelihood of neural tube abnormalities such as spina bifida in
newborns (FAO, 2016; Messina, 2016). Zinc, iron, calcium,
selenium, phosphorus, copper, potassium, magnesium, and
chromium are also found in legumes (Brigide et al., 2014;
Kouris-Blazos and Belski, 2016). These micronutrients serve
critical physiological functions in bone health (calcium),
enzyme activity and iron metabolism (copper), carbohydrate
and lipid metabolism (chromium, zinc), hemoglobin
production (iron), antioxidative action, protein synthesis, and
plasma membrane stability (zinc) (Mogobe et al., 2015). Legumes
are often low in sodium, which is ideal given current
developments advocating sodium reduction (Leonard, 2012).

CHICKPEA AS A WONDER LEGUME

Chickpea has been identified as the second most important
legume and it has numerous economic facilities. According to
Chen et al. (2020), India has been identified as the largest
chickpea producer with nearly 65% of total global chickpea
production. It is being cultivated on about 12 million hectares
and its annual production rate is 9 million tonnes. Chickpea
contains high protein content, and is also rich in dietary fibres,
calcium, zinc, phosphorus and magnesium. Due to a heavy
breeding programme, the production rate of chickpea is
gradually increasing in the last thirty years. Determination of
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the effectiveness and importance of yield components have been
identified as the main target. According to Coyne et al. (2020), it
has been reported that there is a positive relationship between
plant height, seed mass, number of pods per plant and number of
branches. The grain yield of chickpea is dependent on different
quantitative characteristics, such as environmental location and
genetic factors.

Chickpea is a true self-pollinated diploid (2 n = 2 x = 16) with
an estimated genome size of 738 Mb having 28,269 genes
(Varshney et al., 2013). It is the second most economically
important pulse crop with the production of 14.24 million
metric tons (FAOSTAT, 2019). Chickpea is valuable because it
provides both human food and livestock feed and there is a
growing demand for chickpea due to its nutritional value. It is an
effective source of protein, carbohydrates, minerals and vitamins,
dietary fiber, folate, β-carotene, anti-oxidants, micronutrients
(phosphorus, calcium, magnesium, iron and zinc) and health-
promoting fatty acids (Sharma et al., 2013a; 2013b). It is rich in
carbohydrates and proteins, which altogether account for 80% of
the total mass of dry seed (Chibbar et al., 2012). Chickpea’s
protein content trends vary considerably by17–22% as a % of the
total dry seed mass before dehulling and 25.3–28.9% after
dehulling (Hulse, 1989; Misra et al., 2016) and is about 2-3
folds more than cereals. The composition of amino acid in
chickpea is well balanced having minimal amino acid
containing sulphur i.e., methionine, cysteine and a
considerable amount of lysine making it an excellent
combination with cereals, which are good source of sulfur-
containing amino acids. It is rich in carotenoids responsible
for the yellow color of the cotyledon. The prominent and
widely distributed carotenoid in chickpea is β-carotene and is
more efficiently transformed to vitamin A than any other
carotenoids. Chickpea has a higher amount of β-carotene on a
dry seed weight basis than “golden rice” endosperm or red wheat.
It has a higher dietary fiber content (~18–22 g), particularly in
comparison to wheat (~12.7 g) and a higher fat content, especially
in comparison to other pulses or cereals and two polyunsaturated
fatty acids (PUFAs) namely, linoleic and oleic acids that
constitute approximately ~50–60% of chickpea fat, therefore
works as cholesterol reducer food.

ABIOTIC AND BIOTIC STRESSES IN
CHICKPEA

External factors that negatively affect plant growth, development,
or productivity are referred to as stress in plants (Verma et al.,
2013). Plants face abiotic and biotic the two main types of stresses
and as sessile organisms are continually confronted with a variety
of biotic and abiotic stressors. They require continual alterations
at the molecular level in order to adapt to changing conditions.
Epigenetic regulators provide efficient and effective controls to
promote plant survival by increasing their tolerance to stresses
(Richards, 2006; Hirayama and Shinozaki, 2010). Different
chemical alterations at the molecular level that regulate gene
expression are involved in epigenetic control. Today, epigenetics
refers primarily to alterations that are related to chemical

modifications not to changes in DNA sequence and can be
passed on through generations (Feng et al., 2010; Fujimoto
et al., 2012). Plants use three types of epigenetic regulatory
systems to resist severe conditions caused due to stress
conditions: DNA methylation, histone modification, and RNA
interference (RNAi). Plants respond to stresses in a variety of
ways, including changes in gene expression, cellular metabolism,
growth rates, crop yields, and so on. Severe stresses cause crop
plants to die by inhibiting flowering, seed development, and
inducing senescence (Verma et al., 2013). Abiotic stress is the
adverse effect on biological organisms in a particular
environment caused by non-living elements. Toxic abiotic
stressors, such as hyper drought and salinity, low or high
temperatures, depleted or surplus water, high salt levels, heavy
metals, and UV radiation are examples of abiotic stress which
pose a threat to plant development and growth, resulting in a
significant agricultural production penalty throughout the globe.
These stresses also adversely affect plant nutrition, for instance
when water availability is limited due to drought, total nutrient
intake is lowered, and mineral nutrient concentrations in
agricultural plants are frequently reduced. Water shortages
have the most significant impact on nutrient transport to the
root, root growth and extension. The interference of nutrient
uptake and unloading mechanisms as well as lower transpiration
flow results in reduced nutritional absorption (Marschner 1995;
Baligar et al., 2001). Due to lower tissue nutrient concentrations,
root development is inhibited when the soil temperature is too
low. Nutrient insufficiency may lead to stunted or dying of plant
tissue as well as yellowing of leaves. A reduction in crop output or
a decline in plant quality growth might be the outcome of
nutrients shortage. Traditional and contemporary methods of
plant breeding that aim to improve stress tolerance would benefit
from a better knowledge of how plants respond to abiotic stresses.

Apart from the abiotic stress, there are many other biotic
stresses, such as insect pests, plant-parasitic nematodes and
chickpea diseases. Identification of these diseases is
accountable for reducing the risk of chickpea cultivation.
According to Kumar and Naik (2020), the major disease of
chickpeas, such as ascochyta blight (Ascochyta rabie),
phytophthora root rot (Phytophthora medicaginis) and Botrytis
cinerea is accountable for decreasing the growth of chickpea.
There are some major insect pests, such asHelicoverpa punctigera
andHelicoverpa armigera,which are accountable for reducing the
nutritive value of chickpea (Abdelrahman et al., 2018a).
Moreover, the plant-parasitic nematodes, such as root-lesion
nematodes and Crystormin nematodes are accountable for
decreasing the 14% growth of chickpea.

The pod borer (Helicoverpa armigera) is the most dangerous,
followed by the pod fly. Nematodes, which have been efficiently
managed by bio-agents, are another key pest impacting chickpea.
Wilt and root-knot nematodes are crucial in terms of distribution
and chickpea yield damage. Chickpeas are typically grown as
rainfed crops since they require less irrigation than competitive
crops such as cereal. Post-harvest losses are responsible for 9.5%
of total chickpea production. Among post-harvest processes,
storage accounts for the greatest amount of loss (7.5%).
Processing, threshing, and transportation all result in 1%,
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0.50%, and 0.50% losses, respectively. Chickpeas are likewise the
most vulnerable to insect damage (5%) among storage losses,
compared to wheat (2.5%), rice (2%), and maize (3.5%)
(Deshpande and Singh, 2001). Unfortunately, improvements in
legumes yield have lagged as those of cereals.

Worldwide, plant productivity is hampered by a lack of water
and high salinity. Plants have evolved sophisticated and sensitive
defense systems that allow them to signal immediately, respond
to, and adapt to a variety of challenges, including drought and
excessive salt (Yamaguchi-Shinozaki and Shinozaki, 2006; Tran
L. S. P. et al., 2007; Tran L.-S. P. et al., 2007). Plant’s defensive
responses to abiotic and biotic stress factors are regulated by
various phytohormones.

ROLE OF CYTOKININ IN PLANT GROWTH,
STRESSES AND BIOFORTIFICATION IN
CHICKPEA
Cytokinins appear to be implicated in stress reactions, according
to growing evidence (Tran L.-S. P. et al., 2007; Argueso et al.,
2009) and regulate various aspects of root growth, architecture,
and function and plays a crucial regulatory role in a variety of
developmental and physiological plant processes (Werner and
Schmulling, 2009; Hwang et al., 2012). Cytokinins have been
identified as a key signal that passes from roots to shoots (Letham,
1994). According to recent research, the abscisic acid (ABA) and
cytokinin ratios in xylem sap are critical for stress signaling
(Alvarez et al., 2008; Schachtman and Goodger, 2008).
Drought, for example, reduces the generation and distribution
of cytokinins from roots. The major enzymes involved in
cytokinin metabolism in plants such as Arabidopsis thaliana
are adenosine phosphate-isopentenyltransferases (IPTs) and
cytokinin oxidases/dehydrogenases (CKX) (Hirose et al., 2008;
Werner and Schmulling, 2009). Cytokinin oxidases/
dehydrogenases accelerate irreversible cytokinin breakdown by
selectively cleaving unsaturated isoprenoid side chains,
culminating in the synthesis of adenine/adenosine and the
associated side-chain aldehyde (Sakakibara, 2006; Werner
et al., 2006).

Plant cytokinin levels have been altered in genetic experiments
assuming usually a negative participant in stress response
(Nishiyama et al., 2011). For example, in transgenic tobacco
plants, overexpression of the cytokinin degrading enzyme
cytokininoxidase/dehydrogenase improved drought and heat
stress tolerance (Macková et al., 2013). However, recent
research suggests that cytokinins (CK) are N6-substituted
adenine derivatives that were first identified as a major
regulator in plant developmental processes such as organ
formation, apical dominance, leaf senescence (El-Showk et al.,
2013) andmay play a significant role in drought stress adaption as
a positive regulator (Hai et al., 2020). For example, in transgenic
cotton (Kuppu et al., 2013), creeping bentgrass (Xu et al., 2016),
eggplant (Xiao et al., 2017), and tropical maize (Leta et al., 2016),
ectopic expression of the isopentenyltransferase gene (IPT),
which encodes a rate-limiting enzyme in cytokinin
biosynthesis, increases endogenous cytokinin levels. According

to a new rice cytokinin-responsive transcriptome analysis, a
substantial number of genes are implicated in both biotic and
abiotic stressors (Raines et al., 2016). Temperature, drought,
osmotic stress, salinity, nutritional stress, plant diseases, and
herbivores are among the environmental conditions where
cytokinin is said to be essential for responses (Raines et al.,
2016; Cortleven et al., 2019).

Accordingly, multiple functional studies were undertaken to
determine the CKX-mutant derived tolerance mechanisms. For
example, partial root-zone drying resulted in lower cytokinin
concentrations in leaves, buds, and shoot tips. This increased
apical dominance and aided in overcoming drought stress,
particularly when combined with ABA modulation of stomatal
apertures. In plants exposed to drought stress, tolerance responses
may be induced by manipulating endogenous cytokinin levels,
either by deletion of the biosynthesis genes isopentyltransferase or
by overexpression of cytokinin oxidase (CKK)-encoding
degradation genes. Meanwhile, heat stress is known to lower
cytokinin levels, and thus exogenous cytokinin application has
generally been shown to improve plant heat stress responses,
combating the negative effects of heat stress on photosynthesis
and chloroplast growth. Additionally, N6-(D2-isopentenyl)
adenine (iP) and trans-zeatin (tZ), the biologically active free-
base forms of cytokinins, were found to play a key role in tolerance
mechanisms, thought to be via yielding higher relative abundances
and affinities for cytokinin receptors. Thus, CKX enzymes play a
key role in controlling cytokinin concentrations, which influences
plant growth and development. Plants evolve through structural
and metabolic adaptations to cope with stress, such as increased
root area and leaf curling when subjected to dryness, and increased
production of antioxidant chemicals like carotenoids, proline, and
ascorbic acid. Plants with bigger root systems have a higher chance
of competing for nutrients and surviving in low-nutrient
environments (Passioura, 1981; Brown et al., 1989; Saxena
et al., 1993; Morita and Nemoto, 1995; Kondo et al., 1999;
Steele et al., 2006; Henry, 2013). Root biomass and the
availability of soil resources like water and minerals have a big
impact on seed output and quality. W31:CaCKX6 expressions in
chickpea roots have shown to boost root biomass, shoot biomass
and yield (Khandal et al., 2020). The broader root network,
obtaining more nutrients from the soil and enhancing the
plant’s lifetime, are ascribed to the increased vegetative and
reproductive growth of shoots in chickpea lines with W31:
CaCKX6.

Chickpea lines expressing W31:CaCKX6 had higher relative
water content (RWC) in their leaves, indicating that they were
more drought tolerant. Better leaf RWC mixed with lower ABA
levels may have contributed to higher carbon assimilation under
long-term drought conditions. Chickpea plant introgressed with
W31:CaCKX6 in chickpea root produced the seeds having better
concentrations of zinc, iron, copper, phosphorus, magnesium,
and potassium (Khandal et al., 2020). Thus, increasing the root
network through local biofortification of cytokinin and lowering
the ABA content employing genome editing in combination
with classical breeding may be an effective approach for
maintaining the balance for enhanced yield, grain quality and
stress tolerance.
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Potentials of Cytokinin Dehydrogenase
A search of the annotatedMedicago truncatula genome assembly
turned up nine CKX-encoding genes (Young et al., 2011). A
comparable search of publicly available annotated chickpea
genome and transcriptome sequences (Garg et al., 2011;
Varshney et al., 2013) revealed the presence of 10 non-
redundant genes that encode proteins with sequence
similarities to seven Arabidopsis CKX proteins (Schmulling
et al., 2003). They were annotated as C. arietinum cytokinin
oxidases/dehydrogenases (CaCKX) and as a result, the chickpea
genome has ten CaCKX genes. Climate change and population
growth have put pressure on the agriculture industry to enhance
productivity, resulting in the development of new, improved
technologies aimed at improving crop’s ability to remain
productive in conditions such as high temperatures and low
moisture availability.

Current Status of CKX in Chickpea
The current review highlights the effectiveness of the spatio-
temporal regulation of cytokinin, which is significant for nodule
development. Investigating the root manipulation for cytokinin is
essential for managing the growth of chickpea. Promoter-driven
CaWRKY31 in chickpeas, CaCKX6 expression resulted in a larger
root system, increased CKX activity in the root, and increased
seed yield. With the help of W31:CaCKX6 construct and the
chickpea cultivar Pusa 362, T4 transgenic chickpea plants were
created (IC296139). Root nodulation and nitrogen fixation were
not affected while increasing the CKX activity. When grown in
soil rite pots in a controlled growth environment, chickpea
transgenic plants showed up to 1.8-fold increase in root length
and lateral root numbers in the 10 days post germination (dpg)
stage. In soil-grown 30 dpg plants, CKX activity was measured,
and only the root showed a 2.1–3.7 fold increase over the
untransformed plant, whereas CKX activity in the shoot tissue
remained unchanged. The total length of the roots rose by
1.5–1.85 times. The average amount of biomass in the shoots
increased by up to 20%. In transgenic chickpea lines, the root-to-
shoot biomass ratio was raised by up to 1.7 times. According to
two-year growth statistics, average seed number per plant
increased by 20%–25%, with no significant variance in 100
seed weight. Statistical significance was often poor due to
variance in seed counts between individual plants of a line.
CaCKX6 expression in the roots also increased mineral
content in seeds like the concentrations of Zn (27 %–62%), Cu
(26 %–61%), Fe (22 %–48%) etc. were all greater in transgenic
lines’ seeds (Khandal et al., 2020).

Due to the presence of effective nutrients, the global economic
demand and importance of chickpea are gradually increasing. It
has been detected that chickpea is one of the good sources of
multivitamins, such as niacin, riboflavin, thiamin, vitamin A (β
carotene) and folate for the fulfilment of nutritional
requirements. There are three primary components, such as
inadequate supply, food accessibility and inappropriate food,
which are accountable for food insecurity. Maintenance of
sustainability in the cultivation of chickpea to fulfil nutritional
requirements and increase economic values has enhanced food
security. However, it has been identified that the production of

chickpea is dependent on several challenging situations, different
abiotic stresses, such as high and low temperature and drought.

BIOFORTIFICATION STRATEGIES

Agronomic practices and plant breeding is accountable for
providing sufficient nutrients to people. However, one
approach towards achieving greater food security is through
improving the nutrient value of the food that is consumed.
This may be achieved through biofortification approaches via
breeding for enhanced concentrations of bioavailable nutrients
within staple food crops. Several efficacy studies have
demonstrated that the biofortification of staple crops can
effectively alleviate micronutrient malnutrition or “hidden
hunger” among vulnerable populations across the world.
Biofortification is one of the innovative techniques, which is
used to increase the level of nutrients such as minerals,
vitamins and minerals for the enhancement of product’s
demand. The nutritional value of legumes including other
crops can be increased with the help of various methods such
as traditional breeding, molecular technologies, transgenic
approaches or genome editing approaches, thereby preventing
malnutrition. The former is a well-established, albeit is a labor-
intensive and long-term operation.

Molecular Technology-Assisted
Biofortification
The efforts have mainly focused on cereal grain staple species,
whereas the application of this approach to grain legume/pulse
crops has been largely overlooked. The process of biofortification
in agronomic crops includes targeting the cytokinin gene family.
The cytokinins are one of the phyto hormones that play essential
roles in both physiological and developmental processes and
directly impact several agronomic parameters, including
growth, development and yield, including root extension and
branching during post-embryonic advancement. The root-
specific degradation of cytokinin was used to engineer maize
genetically (Zea mays L.) plants to have a larger root system.
Root-specific expression of a cytokinin oxidase (CKK)/
dehydrogenase (CKX) gene of Arabidopsis caused the
formation of up to 46% more root dry weight while shoot
growth of the same transgenic lines was similar to the control
plants. Meanwhile, the concentrations of K, P, Mo and Zn were
significantly increased in the leaves of the transgenic plants.
Subsequently, fine-tuning of cytokinin metabolism by root-
specific expression of a cytokinin degradation enzyme was
undertaken to improve both Zn nutrient level and yield traits.

Biofortification in Chickpea
Chickpea has been identified as one of the effective nutritious
crops, for decreasing the negative impact of nutritional
deficiencies. According to Yadav et al. (2019), there are nearly
40–60% of low digestible carbohydrates, 4–8% of essential fats,
15–22% of proteins and a sufficient range of vitamins and
minerals (Wang et al., 2020). The presence of these nutrients
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is essential for increasing the nutritional value of chickpeas.
Henceforth, the fatty acid composition is accountable for
increasing the value of the seed. It has been identified that fat
is essential for governing the texture, flavour, shelf life, nutritional
composition and aroma. Therefore, the involvement of the
biofortification of essential fatty acids is significant for the
fulfilment of the nutritive value of crops including chickpea
(Abdelrahman et al., 2018b). Some potential area for
biofortification in chickpea is given in Figure 1.

Malnutrition has been considered as the cause of global
calamity in Asia and Africa. According to Ninan et al. (2019),
the current biofortification efforts focus on the enrichment of
significant micronutrients and decreasing the anti-nutrient
factors. Implementation of the Agronomic approaches, such as
fertilizer application is essential for the enrichment of different
minerals, such as Zn, Se and Fe. The combined application of Zn,
Fe and urea is accountable for increasing the Zn and Fe
concentration in the chickpea. It has been detected that the
implementation of the transgenic approaches is one of the
most efficient for iron biofortification in chickpea. According
to Lastochkina, (2019), over expression of the nicotinamide
synthesis, such as ferritin (GmFER) and 2 (CaNAS2) is
essential for increasing the Fe concentration rate in chickpea
(Toğay et al., 2019). The biofortification process focused on the
macro nutritional traits. Linoleic acid (LA; ω-6) has been
identified as the essential fatty acid to facilitate human health.
Whereas (α-linolenic acid) ALA is the other most essential fatty
acid for managing human health benefits (Talip et al., 2018). It
has been identified that there are about 3.8–10.2% of general facts
in chickpeas. Enhancement of the nutritional values in chickpea is
essential for managing the growth of chickpeas, simultaneously
its quality and economic value.

Conversely, developments in molecular technologies based
biofortification and the availability of improved species-specific
genomic resources have led to the evolution of gene editing
methods with targeted precision and validated outcomes
within a relatively short time frame. Emerging popular
genomic targets for the focus of biofortification efforts in food

crop species are members of the cytokinin gene family expression
pathway, phytohormones essential for many varied physiological
and developmental processes.

GENETIC ENGINEERING OF CKX GENES

Genomic editing or genetic engineering is an important aspect of
today’s world, in which the DNA is inserted, modified or deleted.
First genome editing technologies were developed in the 1900s

FIGURE 1 | Diagram showing the various approaches to biofortified chickpea.

FIGURE 2 | Schematic presentation of mechanism of CRISPR/Cas-9
gene editing technology.
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(Kiran and Chimmad, 2018). These technologies act like scissors and
cut the DNA at specific sites. The most efficient tool for genome
editing is the CRISPR/cas9 system. This system is mainly used in the
production of genetically modified organisms (GMOs) and genomic
engineering. CRISPR/cas9 has extended the scope of agricultural
research allowing for new potentials to generate novel plant types
with undesirable features removed or significant characters added
such as acrylamide-free potatoes (Halterman et al., 2015); non-
browning apples, mushrooms and potatoes; low phytic acid maize
(Liang et al., 2014); blast disease resistant rice (Wang et al., 2016) and
powdery mildew resistant wheat (Wang et al., 2014). CRISPR
technology is continually improving, allowing for more genetic
manipulations such as creating knockouts, precise changes,
multiplex genome engineering, and target gene activation and
repression. With more precision and simplicity, CRISPR targets
endogenous genes that are unable to target specifically using RNAi
technology the mechanism of which can beseen in Figure 2.
CRISPR/Cas9 uses a 100 nucleotide (nt) guide RNA (gRNA)
sequence to target specific genomic loci. Using Watson and Crick
base pairing through 17–20 nt at the gRNA 5′-end, sgRNA binds to
the protospacer adjacent motif (PAM) on targeted DNA and guides
Cas9 for selective cleavage. Cas9 accelerates DNA repair by causing
DSBs (Double Stranded Breaks) in the target DNA. To induce
genomic changes, gene knockouts, and gene insertions, the repair
mechanism uses error-prone non-homologous end joining (NHEJ)
or homologous recombination (HR). NHEJ makes random
insertions or deletions in the coding area, resulting in frame shift
mutations and gene knockouts. Thus, loss-of-function, gain-of-
function, and gene expression analysis are possible with CRISPR
technology enabling it as one of the effective plant breeding tool,
which focuses on different gene action by acquiring knowledge on
gene family members (GFMs) and is desperately needed.

According to Kumar et al. (2017),CRISPR/Cas9is known as one
of the effective gene-editing tools, which is accountable for
manipulating cytokinin dehydrogenase (Kumar et al., 2017; Jha
et al., 2018). The GFMs expression is essential for cytokine
biosynthesis and destruction for managing the gene factors.
According to Ninan et al. (2019), cytokines have been identified
as the enhancement of sink activities in chickpea leaves. The primary
steps in cytokine biosynthesis can be controlled by
isopentenyltransferase (IPT). Henceforth, the cytokinin
dehydrogenase or oxidase is accountable to control the process
of cytokinin degradation. Involvement of the DNA sequencing
technology is essential for gathering delta knowledge in the gene
concept. Cytokinin is identified as one of the effective plant
hormones, which is accountable for regulating plant
development. The PsCKX7 (Pisum sativum cytokinin
dehydrogenase) gene when down-regulated, cytokinin levels
increased in roots, shoots and leaves also involves delaying of
senescence. It is noteworthy that PsCKX5 and PsCKX7 express in
the sink and mature leaves respectively (Ninan et al., 2019). In rice,
Zhang et al. (2021) performed CRISPR/Cas9 editing to target serval
CKX genes. They found that OsCKX11 (Oryza sativa cytokinin
dehydrogenase) have simultaneously regulates cytokinin-mediated
leaf senescence and grain number (Figure 3).

The cytokine dehydrogenase (CKXs) is known as an essential
protein for an irreversible breakdown of cytokinin’s. It is

significant for the molecular evolution for the determination
of the homologous protein. Uses of these gene-editing tools
are essential for detecting the presence of CKX in prokaryotic
and eukaryotic. Apart from this, it has been identified that CKX
plays a significant role in the improvement of plant life.
Controlling the plant development process is beneficial for
managing the abiotic and biotic stress for influencing the
nutritive value of chickpea (Abdelrahman et al., 2018a).
Cytokinin dehydrogenase is an essential plant hormone for
promoting cell division. Promotion of primary cell growth and
differentiation is essential for increasing the growth of this
hormone. The involvement of the gene-editing tools helped in
gene formation for improving the growth of its products. Apart
from cytokinin, ethylene exhibition is equally important for
managing the growth of plants. Involvement of the
photosynthetic machinery process is essential for stimulating
the growth of chickpea (Jyothi et al., 2018). Cytokinin is
accountable for increasing the grain size and grain numbers
for yielding the components of this plant.

In recent years, the Clustered Regularly Interspaced Short
Palindromic Repeats Cas9 (CRISPR/Cas9) genome editing
method has revolutionized targeted gene editing in plants
(Woo et al., 2015; Baek et al., 2016; Malnoy et al., 2016; Liang
et al., 2017; Kim et al., 2018; Lin et al., 2018; Murovec et al., 2018;
Osakabe et al., 2018; Johansen et al., 2019; Petersen et al., 2019).
CRISPR/Cas9 genome editing has a wide range of applications in
agricultural improvement, including the development of designer
genetically modified non-GM crops. The application of this
strategy to plant breeding for the production of new crop
varieties with greater tolerance to environmental challenges is
a major focus of agricultural scientists (Khatodia et al., 2016;

FIGURE 3 | Schematic presentation showing the role of OsCKX11 in
cytokinin-mediated leaf senescence and grain number in rice (Modified from
Zhang et al., 2021)
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Noman et al., 2016). CRISPR/Cas9 gene-editing tools have been
utilized for gene activation, repression, knockout, knockdown,
repression, and for altering epigenetic modifications in several
plants crops such as Arabidopsis (Feng et al., 2014), apple
(Osakabe et al., 2018), citrus, carrot (Klimek-Chodacka et al.,
2018), grape (Nakajima et al., 2017), tomato (Wang et al., 2019),
rice (Zhang et al., 2014), sorghum (Liu et al., 2019), maize and
soybean (Chilcoat et al., 2017), and wheat (Zhang et al., 2016).
CRISPR/Cas9 genome editing was utilized to discover abiotic
stress response in Arabidopsis plants; the findings revealed that
OST2 (proton pump), a mutant allele produced through editing,
changed stomatal closure under environmental stress (Osakabe
et al., 2018). Another recent maize work employed the CRISPR/
Cas9 method to create unique allelic variants that could be
exploited to engineer drought-tolerant crops. This system
genetically modified ARGOS8, whose over expression can
result in lower ethylene sensitivity. Field investigations
demonstrated that ARGOS8 variants had higher grain yield
under drought stress; further, no yield loss was documented
under well-watered conditions (Shi et al., 2017).

CONCLUSION AND FUTURE PROSPECTS

This present review highlights the role of CKX genes in chickpea
growth and development traits, biotic and abiotic stress
regulation, and biofortification. Chickpea is the most
economically important product all over the world. There are
various types of stress like heat, cold, drought and so on those are
faced by the crop plant. Due to global warming, a temperature rise
is a frequent event in today’s world that causes the drought
condition. Heat stress causes severe damage to the leaves and also
ruptures the membrane. All these factors adversely affect the
agronomic traits of chickpea. CKs play many crucial roles in
plants when they experience any kind of stress. Phytohormones
in the cytokinin family control root length and branching in the
post-embryonic stages. Cytokinin oxidases or dehydrogenases
(CKXs) are enzymes that degrade cytokinin in order to study its
biological functions and engineer root development. A chickpea
root-specific promoter of CaWRKY31 may be used to explore
how cytokinin depletion affects root development and drought
tolerance in Arabidopsis thaliana and chickpea with definite and
indeterminate growth patterns, respectively. In Arabidopsis and
chickpea, root specific expressions of CaCKX6 increased lateral
root number and plant biomass without affecting shoot vegetative
and reproductive development. Root CKX activity was elevated in
transgenic chickpea lines. The root-to-shoot biomass ratio was
greater in soil-grown advanced chickpea transgenic lines, and the
plants had improved long-term drought resistance. Nutrient
fixation in the roots and leaves of these chickpea varieties was
unaffected. In certain transgenic lines, the seed output was up to
25% greater with enhanced concentrations of zinc, iron,
potassium, and copper without corresponding decrease in
protein content. Apart from this other phytohormones also
play an important role in alleviating stress condition in
chickpea. ABA plays an important role to reduce oxidative
damage in chickpeas. It interacts with the various types of

antioxidants to reduce stress and reduces the ROS
production in the plant body which harms the plants. It has
also introduced some heat shock protein to provide tolerance
against the heat. Salicylic acid also plays an important role
against abiotic and biotic stress as well as against pathogens
and herbivores. However, in chickpea, functional
characterization studies of CKX genes have just started.
Gene editing tools such as TALENs or CRISPR/Cas9 can
play crucial role in this context. Still, less functional studies
exist in the case of stress regulation and biofortification. This is
a potential area for research to unravel the CK signaling
networks and their cross talk elucidating its biochemical
pathways which will draw a detailed picture and pave the
road towards developing tolerant crops, and in the long-term,
more sustainable agriculture. Similarly, many more such genes
are hidden in the plant genome, which are required to be
explored and investigated to harness and develop cultivars
with a higher yield, better abiotic stress resistance and
biofortification.
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