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Abstract

Cardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis.
To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory
networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes
of interest were input into the algorithm to generate putative network topologies that are capable of explaining the
experimental data via model simulation. To cull specious network interactions, thousands of putative networks are merged
and filtered to generate scale-free, hierarchical networks that are statistically significant and biologically relevant. The
networks are validated with known gene interactions and used to predict regulatory pathways important for the developing
mammalian heart. Area under the precision-recall curve and receiver operator characteristic curve are 9% and 58%,
respectively. Of the top 10 ranked predicted interactions, 4 have already been validated. The algorithm is further tested
using a network enriched with known interactions and another depleted of them. The inferred networks contained more
interactions for the enriched network versus the depleted network. In all test cases, maximum performance of the algorithm
was achieved when the purely data-driven method of network inference was combined with a data-independent,
functional-based association method. Lastly, the network generated from the list of approximately 200 genes of interest was
expanded using gene-profile uniqueness metrics to include approximately 900 additional known mouse genes and to form
the most likely cardiogenic gene regulatory network. The resultant network supports known regulatory interactions and
contains several novel cardiogenic regulatory interactions. The method outlined herein provides an informative approach to
network inference and leads to clear testable hypotheses related to gene regulation.
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Introduction

Reverse engineering of a gene regulatory network (GRN) is an

inverse problem that remains a significant challenge [1–5]. Despite

high-throughput gene expression data obtained from methods

such as some modified real-time PCR assays [6], high-density

DNA microarrays [7,8] and RNA Seq [9], complex interactions

embedded in GRNs often overwhelm current methods of network

inference [10,11]. Thus, there exists a need for new systematic

tools to aid in the identification of the underlying architecture in

regulatory networks [12,13].

A general approach to reverse engineering of GRNs involves

clustering genes into hierarchical functional units based on

correlations in expression profiles [14]. To infer the causal

relationships between these functional units, time-lagged correla-

tion analysis is often employed [15,16]. Other identification

methods include genetic algorithms [17], neural networks [18],

Bayesian models [19], and meta-analysis approaches [20]. Several

additional methods have been suggested to infer GRNs from

expression data using prior knowledge of the GRN, perturbation

responses, and other techniques (for details, see [4,10,21–24]).

Most of these methods rely on linear relationships to reconstruct

the network without considering any combinatorial effects, noise

or time delays; therefore, these approaches fail to capture any

nonlinear interactions and interdependencies within the network

[25]. General measures of dependency based on mutual informa-

tion have been used to capture these interactions in gene

expression patterns [26–30]; however, mutual information does

not give interaction directions and requires a significant amount of

initial data. To circumvent these issues, a new approach that relies

on a combination of linear and nonlinear relationships to account

for the dynamic nature of biology was developed [31]. Though the

approach was validated with in silico data, the present study

represents the first large-scale application to a dataset derived from

a biological process such as cardiogenesis.
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Cardiogenesis is the process in which the mesoderm of the

embryonic blastocysts forms the fetal heart through a series of

transformations (for review, see [32,33]). Morphology of heart

development is well documented, but it is unclear how gene

products regulate this process in vivo. With high-throughput

technologies in genome-wide expression profiling, recent work

has begun to address this complex transformation and identify key

cardiopoietic factors that commit embryonic stems cells towards

the cardiac-lineage genetic program [34,35]. Gene dosage drives

protein expression and normal development as evidenced by

knockdown experiments. A survey of copy-number variable

cardiac developmental genes has shown an enrichment of

perturbed gene dosage in human children with congenital heart

defects [36], emphasizing the role of molecular expression levels in

dynamical networks. Going beyond curated candidate genes and

identifying novel gene-gene interactions is a complimentary

strategy to prioritize high value targets that may be overlooked

with strategies relying on a priori annotations. The challenge is to

determine how those key molecules come together in systems level

analyses to create a fully functional organ.

We detail an approach to reverse engineer the cardiogenic gene

regulatory network using a unique network inference algorithm

[31]. Time-course microarray data from developing mouse hearts

described in Li et al. [37] were input into the inference algorithm

to obtain cardiogenic gene regulatory networks. The networks

were tested against an independent, professionally curated dataset.

In all test cases, maximum performance of the algorithm was

achieved when the purely data-driven method of network

inference was combined with data-independent, functional-based

association method. The approach is performed in two phases.

First, a purely data-driven network inference algorithm is used on

a subset of genes to construct an informative network that is then

pruned to reveal the most likely GRN that best characterizes the

input data. Second, this network is used as a scaffold to include

additional genes from the entire dataset. A final filtering step yields

a reduced network of maximum confidence. This expanded

network best characterizes the cardiogenic gene regulatory

network as inferred by our algorithm.

Materials and Methods

Generalized Network Inference Method
A flowchart of general network inference method employed is

depicted in Figure 1. The overall approach consists of two phases.

Phase 1 constructs a network scaffold based on a set of genes that is

assumed to capture the cardiogenesis process. The microarray

data for a chosen set of genes is processed by extracting the profile

data and gene lists. Independently, the expression profiles are

clustered using self-organizing maps, the profiles are input into the

model-based network inference algorithm [31], and the gene list is

scoring using an ontology-based method [38]. When the network

reconstruction algorithm returns the raw network, it is filtered

using the two independent metrics called the confidence metric

and the semantic similarity metric. The confidence metric is

derived from the interaction frequencies determined from the

model-inferred network topology. (Network topology is defined as

the structure in which nodes, or genes, are connected with each

other to form a network.) The semantic similarity score is obtained

from the ontology scoring using GO terms that describe gene

function. The two metrics form a weighted sum called the fidelity

score. Phase 2 expands this scaffold network by using the clustered

profiles to include other genes that were not included in the

Figure 1. Network inference method flowchart. Phase 1 consists of constructing a scaffold network using a set of chosen genes thought to
sufficiently represent the cardiogenesis process. Two independent metrics based on the interaction frequencies generated by the inference
algorithm, the confidence metric, and gene ontology, the semantic similarity metric, are used to filter the network and remove spurious interactions.
Phase 2 involves expansion of this scaffold network using a cluster expansion technique to produce a more complete network that best characterizes
the regulatory interactions during cardiogenesis as inferred from the data. The gene interactions are further prioritized using a gene-profile
uniqueness metric, the cluster product, to generate an experimentally realizable set of predictions.
doi:10.1371/journal.pone.0100842.g001
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original analysis. The network is filtered again using the fidelity

score. This results in an expanded cardiogenesis network that

contains many more genes and interactions and is expected to

capture more of the gene regulatory interactions during cardio-

genesis. Predictions are prioritized using a cluster product metric,

obtained from the expression profile clustering. More details about

these three metrics are given below.

Cardiogenesis Data
We used data obtained elsewhere that consist of gene expression

at sequential heart developmental stages in mouse measured with

Affymetrix Mouse Genome 430 2.0 microarrays (GSE51483). For

details, see Li et al. [37]. The data are published as raw and

processed formats. Gene expression data were calculated using the

RMA algorithm [39] at nine developmental stages consisting of

embryonic stem cells (ESCs as starting point), early and late

embryonic stages until the adult stage. At embryonic day nine

(E9.5) and later, the left and right ventricles were separated, and

gene expression was assayed for each side. The data used in this

study were only from the left side. This microarray contains

45,000 probesets representing known genes in the mouse genome.

This large number prohibits the use of methods of inference that

rely on model simulation with current computational capabilities

and algorithms. Therefore, in order to complete the network

inference, a list of genes of interest was generated from the entire

mouse genome expression data based on the following selection

criteria: i) the top 50 differentially expressed genes ii) the top 50

differentially expressed transcription factors and iii) a list of cardiac

specific genes that are believed to be involved with a variety of

congenital heart diseases [40]. The final list consisted of 171 genes

(herein, the cardiogenesis list, or CG list). The expression data for

these genes are used in Phase 1 network generation. The raw data

are located in Table S1. Figure 2 shows a heat map of the

expression for the CG list across all nine time points. For modeling

purposes, probeset yielding the highest dynamic range was chosen,

and the nonnegative RMA-normalized data are scaled between

zero (minimum expression) and one (maximum).

Network Inference
Our previously described algorithm [31] was used to model the

expression levels of the genes in the CG list during the

development of the heart. In brief, the network inference

algorithm splits an N-dimensional problem into N 1-dimensional

problems, one for each observed state variable (gene). Putative

regulatory networks associated with each of the individual state

variables are independently identified. Network identification for

each variable/gene is based on a generalized model of gene

expression dynamics accounting for competition between activa-

tion and inhibition from all other genes in the dataset. Since this

problem is typically under-determined, ensembles of putative

subnetworks are developed for each gene. A subnetwork is a type

of subgraph that only contains the target node and the

neighboring regulatory nodes. Each ensemble contains anywhere

from 50 to 2,000 subnetworks that support data-consistent

simulations. A data-consistent simulation is defined as one that

leads to a variance-weighted least squares error function less than

0.75. (See Figure 3 for examples.) Putative regulatory networks for

the full 171-gene list were generated by randomly sampling and

combining the subnetworks. In total, 1,000 putative networks were

generated and statistical information of the gene interaction pairs,

or edges, regarding frequency of occurrence, directionality, and

regulatory strength (activating versus inhibiting) was collected. The

full set of statistical metrics on all predicted gene pairs is given in

Tables S2 and S3. (See Doc S1 for details about Tables S2 and

S3.) Subnetwork generation and network analysis was done using

MATLAB R2013b (The Mathworks, Inc.). Network analysis was

done using the toolbox published by MIT’s Strategic Engineering

Research Group [41]. For network visualization, Cytoscape 3.0.2

was used [42]. Gene ontology (GO) annotations for mouse were

obtained and analyzed using the GO biological process terms

(download on 1/15/14) using ClueGO [43] with GO term fusion

turned on and the rest of the options at the default settings.

IPA Validation
To benchmark the network inference algorithm, a database of

accepted gene regulatory interactions is required. Ingenuity

Pathway Analysis (IPA) was utilized (Ingenuity Systems, www.

ingenuity.com) as an expert-curated gene interaction database that

is regularly updated and maintained. While the regulatory

interactions in IPA are not complete, it provides a database to

verify results from our inferred networks. It is important to note

that a putative interaction cannot be ruled out because it does not

appear in the IPA database as many have yet to be discovered.

Exported regulatory interactions from IPA lack directionality, so

analysis was done treating the network as an undirected graph.

Network enrichment was calculated as hypergeometric using the

hygecdf function in MATLAB. We use a hypergeometric model

with N = (171*170)/2 possible edges, 396 of which were found in

IPA. The interaction list for each gene in the CG list was

downloaded from the IPA servers no later than 07/24/2012.

Gene Ontology Semantic Similarity
A scoring of each predicted gene-gene interaction is computed

to enable pruning our predictions by estimating the pair’s

biological relevance. Semantic similarity scores were calculated

using pre-propagated GO terms for the mouse genome obtained

from Gemma [44] using the method described in Mistry and

Pavlidis [38]. Gene Ontology is a hierarchically-structured,

controlled vocabulary, and most genes have multiple GO

annotations. The pre-propagated annotations give a single path

from the GO Biological Process root to the gene’s most specific

leaf node allowing the exact term set to become a proxy for the

gene’s biological role. A GO term set-intersection for any pair of

genes quickly yields a biological similarity metric (between 0 and

100%). These are used during the filtering steps to choose those

pairs believed to share a common biological process.

Expression Profile Clustering
As the network inference uses only numerical profiles and is

agnostic to each gene’s true identity, common profiles will

confound results. Stochastic clustering using self-organizing maps

(SOM) is used to cluster gene profiles [45,46]. As the clustering is

sensitive to initial parameters, many iterations are performed and

a count of gene-gene co-clustering is collected. The SOM forces all

genes into a grid layout, varied randomly in size from 363 through

50650 to achieve a balance of precision and smoothing. A total of

10,008 genes with stable, non-dynamic expression (defined as

dispersion, or standard deviation over the mean less than 20%) are

considered too common and are excluded from the SOM

evaluation. This leaves 11,307 genes with sufficient dynamical

expression to include in the analysis. A total of 2,240 SOMs were

computed and pooled together to determine a given gene pair’s

coincidence frequency. Gene profiles with similar time-course

dynamics will often cluster together and have high co-incidence

scores. A threshold of 70% was used to partition the 21,315 gene

set, resulting in 4,099 clusters. There were 2,808 singletons, so the

number of clusters was further reduced to 1,291 clusters with more

Inferring the Cardiogenic Gene Regulatory Network
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than one gene. The number of genes in each cluster is

approximately exponentially distributed.

Fidelity Score
A metric to gauge the fidelity of a predicted interaction is

constructed to maximize biological relevance (Equation 1). The

confidence metric is derived from the topological frequency

distributions obtained from the network algorithm. The GO term

overlap semantic similarity metric is represented by the Jaccard

index [47]. Both measures are orthogonal metrics and log-

normally distributed. As such, the fidelity score for kth gene pair,

Zk(w), is the weighted sum of the z-scores of the log of the

confidence metric, Zck and the Jaccard index, Zjk. Only the non-

zero Jaccard indices are z-scored. The z-scores for the zero Jaccard

indices are set to min Zj - 1. This ensures that the Jaccard index z-

scores are centered at zero while still giving semantically dissimilar

interactions a low score. The equation to compute the fidelity

score is:

Z(w)
��!

~ Zc
�!

zw| Zj
�! ð1Þ

where the arrow represents vector notation defined for the set of

all edges. The weight for the Jaccard indices was optimized by

maximizing the performance metrics. By maximizing Zk(w), the kth

Figure 2. Hierarchical clustering of the mouse heart gene expression input dataset. After E8, the data are representative of gene
expression in the left ventricle. The cardiogenic program is seen to propagate through the network yielding elevated expression of the typical
cardiomyocyte markers by the Adult stage. The CG list profiles were clustered using the MATLAB clustering algorithm using the Pearson correlation
and complete linkage metrics. The rows corresponding to the example genes for the known early stage transcription factors, Oct4, Nanog, Sox2 and T,
developmental genes, Nkx2–5, Myl7, Notch1 and Myog, and ventricular cardiac specific markers, Ttn, Myh6, Myh7 and Ckm, are highlighted in yellow
on the right.
doi:10.1371/journal.pone.0100842.g002
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gene pair is more likely to reflect a true interaction and shares a

high degree of semantic similarity. In other words, gene pairs that

possess large fidelity scores are the most relevant predictions.

The Cardiogenic Network
The network constructed from the initial dataset was expanded

from 171 to include additional genes (Phase 2). We first

constructed an eigengene network analogous to the method by

Langfelder and Horvath [48]. An eigengene network consists of a

network of unique gene modules that best characterize the

network in a reduced, non-redundant form. A gene module is a set

of genes with highly similar expression profiles. Our gene modules

are derived from the clusters inferred by the SOM co-clustering

frequencies. Each predicted interaction from Phase 1 is expanded

to include all combinations of genes with common expression

profile. For example, if gene A is predicted to interact with gene B,

but gene A has four additional genes with matching profile and

gene B has six, a total of five times seven gene pairs could be

represented by the numerical prediction. This expanded set is

ranked and filtered using Equation 1 at the optimal filter setting

(w = 1).

Results

Subnetwork Ensembles Predict Regulatory Interactions
The gene profiles in the CG list were organized using

hierarchical clustering. Figure 2 shows the clustered expression

levels for the 171 genes for the nine time points from the beginning

Figure 3. Example results from the subnetwork analysis. The algorithm returns data-consistent, simulated gene expression profiles that often
show some degree of dynamical uncertainty between the data. Each line represents a separate model simulation with varied network topology. The
corresponding regulation bar plots show gene-gene interaction frequencies. The height of each bar represents the fraction a given regulator appears
in the subnetwork ensemble and reflects a measure of confidence for the gene interaction. Stars labeled with a gene name represent IPA validated
interactions. Top panels are for Nppa, the middle are for Myl2 and the bottom are for Aldh1a2.
doi:10.1371/journal.pone.0100842.g003
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of development in the embryonic stem cell stage (R1) to the adult

stage (A). The data show that the known pluripotent transcription

factors (e.g. Oct4, Nanog, Sox2 and T) peak at the early stages of

heart development. During development, known cardiogenic

genes activate (e.g. Nkx2–5, Myl7, Notch1 and Myog). At the adult

stage, ventricular cardiac specific markers (e.g. Ttn, Myh6, Myh7

and Ckm) are significantly expressed. This dataset provides a

natural roadmap of the dynamic gene expression patterns that

synchronize cardiac maturation and is used to predict genes

previously unrecognized as cardiogenic contributors.

All 171 gene profiles for the CG list were input into the network

inference algorithm to produce 171 subnetwork ensembles (one for

each gene) capable of explaining the expression data as interpreted

by the model. (See the Network Inference subsection in the

Methods for details.) Figure 3 highlights a few typical examples of

the model simulations and topological frequency distributions

produced by the network inference algorithm. These results

demonstrate some common features of the subnetwork ensembles.

First, all model trajectories pass through or near the experimental

data. Without additional data, each model simulation presented is

equally valid. Second, in some instances, the model simulations do

not significantly vary (e.g. Myl2, where each simulated expression

profile is overlapping). Third, the predicted dynamics can vary

considerably between time points as shown by the Nppa and

Aldh1a2 examples. This is dynamical uncertainty is a result of the

model parameter estimation and introduces a unique opportunity

for the design of optimal experiments (for details, see [49,50]).

Typically each subnetwork ensemble contains hundreds simula-

tions that are data-consistent. However, some subnetwork

ensembles contain less than 100 that are considered acceptable

(e.g. Aldh1a2). In this case, the algorithm had trouble finding

combinations of regulatory interactions capable of fitting the data.

There are only approximately 50 different model simulations

presented for this example. While each subnetwork ensemble

varies in the population size and dynamical uncertainty, they all

support data-consistent simulations. Thus, they all represent the

possible regulatory interactions for the true cardiogenesis GRN.

The regulation bar plots in Figure 3 (right) reflect the

topological frequency distributions for the Nppa, Myl2 and Aldh1a2

subnetwork ensembles. Genes are on the x-axis and labeled with

their index. The height of each bar represents how often the

network inference algorithm found that particular interaction

sufficient to support a data-consistent simulation. For example,

Gata4 appeared as an activator 45 times per 100 putative

subnetworks for Nppa, and the height of the bar for Gata4 is

0.45. In other words, the height reflects how confident the

algorithm is at calling a particular interaction as real given the

input expression profiles. These heights are defined as the

confidence metric and are used for filtering. For the Nppa and

Aldh1a2 examples, the dynamical uncertainty shown in the

simulated expression profiles is associated with the many low

frequency potential regulators seen in their corresponding

regulation bar plots and arises from many unique topologies that

could explain the data.

The labeled stars signify regulatory interactions found in the

IPA database. For 11% of the genes, the highest ranking regulator

identified by the algorithm is reported in the IPA database. Among

the population of all regulators identified by the algorithm, 6% are

reported. In some cases, the highest ranked regulators returned by

the algorithm are not previously reported and are thus targets for

experimental validation. For Nppa and Myl2, the network inference

algorithm identified a likely regulator, Gata4, and other possible

regulatory interactions. Many of these additional interactions may

be interpreted as being noise; however, among this noise are 14

(for Nppa) and 5 (for Myl2) regulatory interactions found in IPA.

The case of Aldh1a2 shows a slightly different scenario. The

number of interaction detected is lower than for Nppa and Myl2,

and the algorithm did not detect any dominant regulatory

interactions.

Algorithm Performance Measures
The likelihood that a given regulatory interaction is represented

in the true cardiogenesis GRN is assumed to be proportional to i)

the frequency that that interaction appears in the subnetwork

ensembles and ii) the degree of overlap or similarity in the GO

term annotations. These two metrics combine to form a weighted

sum called the fidelity score (Equation 1). When the weight, w, is

zero, the score consists of only the confidence metric. For w .. 1,

the score is dominated by the semantic similarity metric. For 0.

w.10, the score reflects a mixture of these two metrics. Removing

edges with a low fidelity score makes it possible to explore the

algorithm’s performance measures using the IPA network as a

comparison. Based on optimizing the performance of the

algorithm, w = 1. This indicates that both the confidence metric

and the semantic similarity metric are of equal importance. For

these tests, only genes that were sufficiently annotated in IPA were

included in the analysis to avoid any offset bias. The performance

measures examined are shown in Figure 4. It must be noted that

due to the incomplete nature of IPA, this approach only

determines a lower bound of performance.

The typical performance measures reported with network

inference algorithms are the precision recall (PR) curve and the

receiver operating characteristic (ROC) curve [51]. These

measures reflect the overall performance of the algorithms with

the PR curve being the most unbiased. The average performance

for each measure is given by the area under the curve (AUC). It is

evident that the fidelity score that combines the confidence and

semantic similarity metrics produces the best results. In Figure 4A,

the PR curve is shown with an AUC score of 9% with both metrics

but 6.6% when only the confidence metric is used. As the

predicted network interactions are pruned via the filtering process,

a higher fraction of true interactions are retained giving higher

precision values at lower recall levels. In Figure 4B, the ROC

curve is shown with an AUC score of 58% with both metrics but

55% when just the confidence metric defines the fidelity score.

This indicates that the algorithm does an acceptable job when

comparing the recall (sensitivity) versus the rate of identifying a

negative as a false negative (1 – specificity). Overall, these types of

behavior are expected as the algorithm is purposefully biased

towards minimizing false negatives at the expense of false positives.

The justification behind this design is that it is easier for the

experimentalist to remove a false positive via experimentation

using the predicted topology versus searching in an unknown

topological space for false negatives. Although, it is not possible to

directly compare the algorithms’ performance metrics with other

published algorithms, it is possible to make a rough comparison

with the inference algorithms that participated in the DREAM5

challenge [11]. The AUPR and AUROC scores are better than

those published in the DREAM5 challenge for the S. cerevisae

network. (See the YEASTTRACT row in Figure S2 and the S.

cerevisiae column in Figure S3, in Supplementary Notes 3 and 4,

respectively, of Marbach et al. for comparison [11]). Note that the

dataset used in the challenge contained much more data than

available in this study’s mouse heart gestational time-course.

Additional performance measures such as the network signifi-

cance and true positive enrichment of the highest ranked

interactions are presented in Figure 4C and 4D, respectively.

The fidelity scores are linearly scaled to facilitate comparison

Inferring the Cardiogenic Gene Regulatory Network
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between the two filters, Z(0) and Z(1). Recall that Z(0) are the

fidelity scores computing with only the confidence metrics and Z(1)

are the fidelity scores computing using both the confidence metrics

and the semantic similarity metrics with a weight, w = 1. For either

filter, significant networks are recovered as the fidelity cutoff is

increased as shown in Figure 4C. With no fidelity filtering, the

initial network has 12,084 edges (323 found in IPA). Although

81.6% are found, this is not significant due to ‘calling’ 83% of all

possible edges. At extremely high fidelity cutoff values, fewer

interactions are retained and correspondingly few edges found in

IPA. With the semantic similarity metric included in the fidelity

score, many false positives are removed from the network.

However, 146 out of 396 true positives have a zero semantic

similarity. This hinders the filtering process at low fidelity scores,

but the concomitant removal of false positives at higher fidelity

scores compensates and results in a superior filter. Filtering the

networks with both metrics also increases the percent of true

positives in the top ranked edge lists as shown in Figure 4D. With

either filter, the percentage of true positives in the list of edges with

the highest fidelity scores asymptotically approaches 20%. The

combined filter yields much higher enrichment for the smaller

ranked lists up to the top 20 ranked edges.

Further Testing of the Algorithm
The algorithm was also tested using two networks constructed

from the IPA database. The semantic similarity metric was used to

choose 50 genes that were expected to interact with one another

and 50 genes that were not. Herein, these two networks will be

referred to as the IPA enriched and IPA depleted networks. The

IPA enriched network consists of 283 validated interactions while

the IPA depleted network consists of only 3. In general, the

algorithm returned denser and more significant networks for the

IPA enriched network versus the IPA depleted network. When

comparing the two inferred networks, the confidence metric is

used since it is an absolute measure. Fidelity scores are derived

from z-scores and cannot be used to compare networks.

Performance measures for the networks inferred from the IPA

depleted network are not shown as only three edges are true in the

reference network. The AUPR and AUROC for the inferred IPA

depleted networks are 3.2% and 55%, respectively. The corre-

sponding values assigned to random chance are 2.9% and 50%,

respectively. Therefore, the algorithm returns better results

compared to random chance. Figure 5A and 5B show that when

the optimal filter settings were used, the AUPR and the AUROC

scores for the networks inferred from the IPA enriched network

were also superior to random chance. All possible IPA validated

interactions are all present in the unfiltered networks. Applying the

filter produces statistically significant networks as shown in

Figure 5C. But only at the optimal filter settings and high fidelity

score cutoffs are statistically significant networks returned by the

algorithm. Also, when the fidelity score cutoff was high, the

algorithm also returned statistically significant networks for the

IPA depleted network. The percent IPA interactions in the top

ranked list are significantly increased when the optimal filter

settings are used as shown in Figure 5D. By exploiting the

semantic similarity metric, many false positives are pruned from

the network and IPA validated edges are enriched in the highest

ranked predicted interactions.

Initially, both inferred networks contained nearly the maximum

amount of total possible edges. This is by design so as to minimize

Figure 4. Performance metrics of the algorithm using a network created using the IPA database. The precision-recall curve (A), receiver
operating characteristic curve (B), the significance level of filtered networks (C), and the degree of IPA enrichment in the top ranked set of genes (D)
are shown for two different types of filters. The fidelity scores were linearly scaled to facilitate comparison between the two filters. The red line
represents the results obtained when filtering the networks with only the confidence metric defined by Z(0). The blue line shows the results obtained
when the networks are filtered with both the confidence score and the semantic similarity score using Z(1). In all cases, the networks filtered with
both metrics (blue) produced superior networks relative to those filtered with only the confidence score (red) or the semantic similarity score (not
shown). The dotted lines represent random prediction for (A) and (B) and the 0.05 significance level for (C).
doi:10.1371/journal.pone.0100842.g004
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false negatives. (See Algorithm Performance Measures section for

details.) They begin to take on dramatically different topologies as

they are filtered. As shown in Figure 5E, the IPA enriched inferred

network contains more edges with higher confidence metrics. As

such, the network retains more edges relative to the IPA depleted

inferred network as the networks are filtered. This leads to denser,

reconstructed networks and is confirmed by observing the

connectivity distributions as shown in Figure 5F. For a given

confidence metric cutoff, the node degree distribution for the IPA

enriched inferred networks is almost always to the right than the

networks inferred from the IPA depleted networks. This demon-

strates that the networks inferred from the IPA enriched networks

were highly interconnected.

Filtering Network Using Confidence Metrics Reveals
Scale-free, Hierarchical Networks

Constructing a network from all the regulatory interactions

identified by the network inference algorithm generates a highly

connected ‘hairball’ network that closely mimics an exponential

network [52]. However, by removing edges with low fidelity

scores, the topology drastically changes. This is demonstrated in

Figures 6 and 7. Figure 6 shows several example networks

generated using fidelity score thresholds; while, Figure 7 shows the

corresponding topological measures. Initially, the network con-

tains all 171 genes linked together with 12,084 edges (83% of all

possible connections). The node degree distribution follows a

Poisson distribution with l , 150. The clustering coefficient

distribution is flat and independent of the node degree, k. More

informative networks are deduced from this hairball by pruning

Figure 5. Performance on networks known to be enriched with true interactions a priori and depleted of true interactions. The
precision-recall curve (A), receiver operating characteristic curve (B), the significance level of filtered networks (C), the degree of IPA enrichment in the
top ranked set of genes (D), number of edges inferred (E), and the connectivity distributions at varying confidence score thresholds are shown for two
different types of filters for the IPA enriched and IPA depleted networks. The fidelity score cutoff was normalized to facilitate comparison between the
two filters. The black line represents the results obtained when filtering the networks with only the confidence metric for the IPA enriched networks.
The blue line shows the results obtained when the networks are filtered with both the confidence metric and the semantic similarity metric using the
optimal filter settings for the IPA enriched networks. The red line, when present, signifies the results obtained when using the networks filtered with
the optimal filter settings. All genes in the IPA depleted network had semantic similarity metrics of 0, so this metric cannot be used to filter the
network. For (C), the missing segments after the vertical dotted line correspond to p-values = 0. For the (A) and (B), the results obtained for the IPA
depleted networks are not shown due to the sparse IPA validated interactions. The dotted lines represent random prediction for (A) and (B) and the
0.05 significance level for (C).
doi:10.1371/journal.pone.0100842.g005
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away the low fidelity scoring edges. As the score threshold is

increased, a more familiar topology is revealed. With a moderate

threshold enforced (Z.2), the node degree distribution follows a

power law distribution with c equal to 1.02. The clustering

coefficient distribution is a function of the inverse of the node

degree with an R2 value of 0.47. This network consists of 118 genes

linked together with 346 edges. With a stricter threshold placed on

the fidelity score (Z.2.5), the node degree distribution still follows

a power law distribution, but c increases to 1.19. Similarly, the

clustering coefficient distribution remains a function of the inverse

of the node degree, except that the R2 improves to 0.73. The

resulting network has 99 genes connected together with 169 edges.

At an even stricter threshold (Z.3), the network is scale-free with

c equal to 1.16, and it becomes even more hierarchical in structure

with an R2 value of 0.96. In this network, there are only 31 genes

linked together with 89 edges. Thus, as the confidence score cutoff

is increased, the inferred networks possess a scale-free topology

and hierarchical structure [52]. If the threshold is set too high, the

network becomes disjoint and topological measures are inapplica-

ble. These networks are available as a Cytoscape file, Network S1

(see Supporting Information).

Highest Scoring Interacting Genes are Enriched with
Known Interactions

Of the high scoring networks presented in Figure 6, the single

most important gene based on regulatory interactions is Gata4.

This gene is involved in a wide variety of processes involving

embryogenesis, cardiogenesis, and muscle development [53]. It is

critical for the proliferation and maintenance of cardiac tissue

[54,55]. And many of the genes downstream of Gata4 were

successfully predicted by the algorithm. Moreover, a few genes

further downstream that are recovered from the algorithm and

shown in the Z.2.5 filtered network are also in the IPA database.

These include Nkx2–5, Wnt11, and Fhl2. Nkx2–5 is a gene involved

with cardiac hypertrophy and embryonic stem cell pluripotency

[56]. It is linked to Gata4 via Tbx20, a gene associated with the

maintenance of functional and structural phenotypes for the heart

[57]. Wnt11 is connected to Gata4 via Sox2. Both of these genes are

important for embryonic development [58]. Fhl2 is involved with

cell adhesion, mobility and survival [59] and is connected to Gata4

via Nanog, Lbh and Fli1. Nanog is a known pluripotent transcription

factor [60] and may be involved with the preservation of pre-

Figure 6. Predicted gene regulatory network of 171 nodes at filter cutoff values of -‘, 2, 2.5, and 3. The complete network shows the
‘hairball’ characteristic of an exponential network. Interactions also found by Ingenuity Pathway Analysis are marked with ‘IPA.’ Edge thickness
represents the confidence score. Edge color is red for inhibiting, green for activating, and yellow for unclear relationships. Node edges are colored
according to their ontological ID. See Figure 7 for the GO term legend. Node sizes and labels are scaled with the node degree. As the cutoff metric is
raised, scale-free, hierarchical networks emerge.
doi:10.1371/journal.pone.0100842.g006
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committed lineages for proliferation during organogenesis facili-

tated by Lbh [61] and Fli1 [62,63]. The examples presented

corroborate the interactions identified by the algorithm and

suggest that the predictions made by the algorithm are worth

experimentally pursuing. Four of the top ten gene interactions

identified here have already been validated as shown in Table 1.

Fli1 is of particular interest because when the secondary filter

(cluster product filter) is applied, it is enriched in the top ranked

predictions in Table S2, as well as, in the expanded network as

shown in Table S3.

Network Expansion Reveals Novel Regulatory Modes
Although the input data (CG list) consist of less than 200 cardiac

related genes, Figure 2 shows that the expression of early

transcription factors in the embryonic stem cell stage and heart

tube activates a wave of gene expression that leads to the sustained

expression of adult cardiomyocyte related genes. Assuming this

dataset captures this phenomenon reasonably well, it is possible to

reach into the entire mouse dataset [37] and identify a

representative cardiogenic GRN in the mammalian heart. The

initial network returned by the algorithm was used as a scaffold

and the entire mouse heart dataset (consisting of more than 20,000

genes) was utilized to expand the network. The expanded network

consists of 1,080 genes and 63,558 edges as given in Table S3. The

corresponding networks are included as a Cytoscape file, Network

S2 (see the Supporting Information).

The highest ranked edges of this network are shown in Figure 8.

This network is filtered down to 740 genes and 2,942 edges by

Figure 7. Node degree and clustering coefficient distributions. When the filtering cutoff is set to -‘, all edges returned by the inference
network are retained and form a hairball which is characteristic of an exponential network. The connectivity distribution (top) follows a Poisson
distribution with l equal to 150, while the clustering coefficient distribution (bottom) is flat and independent of the node degree. As the cutoff metric
is applied to the network, scale-free, hierarchical networks emerge. At a cutoff of 2, the connectivity distribution follows a power law with c equal to
1.02, and the clustering coefficients begin to scale with the reciprocal of the node degree with an R2 value of 0.47. At an even more stringent cutoff
value of 2.5, the network further represents a scale-free, hierarchical network where c equal to 1.19 and R2 equal to 0.73. At a cutoff value of 3, the
network becomes even more hierarchical with an R2 value of 0.96.
doi:10.1371/journal.pone.0100842.g007

Table 1. Top 10 Gene Interactions from the CG List.

Gene-Gene Interaction Fidelity Score Validation

Myom1 interacts with Myom2 via activation 5.65 -

Hbb-bh1 strongly regulates Hbb-y via activation 5.19 IPA

Hba-x is strongly regulated by Hbb-bh1 via activation 4.84 IPA

Hba-a1///Hba-a2 strongly regulates Hbb-b2 via activation 4.80 IPA

Foxa3 strongly regulates Nr6a1 via activation 4.77 -

Foxa1 is strongly regulated by Foxa3 via activation 4.34 IPA

Lama3 regulates Lama4 via inhibition 4.18 -

Fli1 is strongly regulated by Sox7 via activation 4.16 -

Sox18 interacts with Sox7 via activation 4.15 -

Foxa3 strongly regulates Foxh1 via activation 4.11 -

Fidelity scores were computed using Equation 1 with w = 1.
doi:10.1371/journal.pone.0100842.t001
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removing edges with Z,2.5. It best characterizes the cardiogenic

gene regulatory network as inferred by the network inference

algorithm. Gene annotations reveal a majority of genes are

involved with embryogensis, the development of the cardiovascu-

lar system, heart morphogenesis, muscle energetics and epigenet-

ics. The p-values for all the go terms selected using ClueGO in

Table S4. Approximately 90% of the genes had representative GO

annotations.

Many of the representative GO terms for this network are

developmental pertaining to organogenesis, the cardiovascular

system, and morphogenesis. There is a heavy cluster of genes with

these annotations that consist of many transcription factors (e.g.

the Fox, Gata, Tbx, Sox and Zic families) among sparsely

interwoven genes involved in cell signaling, cell migration and

metabolism located in the upper part of Figure 8. This cluster

serves as the central network hub that connects the rest of the

network and coordinates gene expression for a variety of biological

processes. A small cluster of cell adhesion related genes (e.g. the

Hapln family along with Ntm and Pcdh7) near the middle-right of

the network. This cluster appears to be interacting with the

Laminin family (proteins involved with cell adhesion, differenti-

ation, migration and signaling) and additional proteins involved

with angiogenesis, cell-cell recognition, and extracellular signaling

via Srpx2, Pcdh7 and Spp1, respectively. These form an

interconnected network that lead back to Lbh in the central hub

via the extracellular matrix proteins Dpt and Col13a1.

In another example, a large cluster of genes heavily involved in

metabolic processes is found in the bottom-left part of Figure 8.

Figure 8. Network Expansion. The inferred network using the CG list was used as a scaffold and extended to include genes from the entire mouse
genome by expression profile similarity. Representative annotations using the Gene Ontology database are shown by node color. All annotations are
relevant to cardiogenesis with some more specific than others. Edge color and thickness are as in Figure 3. Directional arrows are omitted for clarity.
The gene interactions shown are the edges with fidelity scores greater than 2.5. GO term acronyms: MCO, multicellular organismal development; HD,
heart development; ASM, anatomical structure morphogenesis; TD, tissue development; NRGE, negative regulation of gene expression; SMTD,
striated muscle tissue development; CD, cell differentiation; ESO, extracellular structure organization; SMMP, small molecule metabolic process; OD,
organ development; SD, system development; CDP, cellular developmental process; MTD, muscle tissue development; CSD, cardiovascular system
development; O, other. White nodes have no annotation ascribed. See also Tables S2 and S3.
doi:10.1371/journal.pone.0100842.g008
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These genes mainly code for metabolic related proteins involved

with CoA-mediated metabolic processes (e.g. Acad10 and Acadm),

mitochondrial energetics (e.g. Cox8b and Cox6a2), redox-mediated

signaling (e.g. Dhrs family), oxidases (e.g. Aox1, P4htm, and Maob)

and other metabolic processes (e.g. Dlat, Ldhd, and so on). This

cluster is connected to the central hub by Alkbh8, a gene important

for angiogenesis [64], via Azi1, a cell cycle related gene.

Table S3 consists of many well-characterized interactions that

are important for cardiogenesis. Among them is a particularly

important interaction involving Nkx2–5 activation by Gata4.

Durocher et al. demonstrate Gata4 binds to the C-terminus

autorepressive domain of Nkx2–5 and activates this transcription

factor [65]. Another interaction identified in the table is between

Sox18 and Sox7. These two transcription factors have been

described to act concomitantly during cardiac and vascular

development [66,67] which suggests the existence of a mutual

feedback type of regulation. Also, Fog2 (Zfpm2), a cofactor of Gata4,

is recognized as an inhibitor of Gata4 activity [68,69], although not

necessarily of Gata4 expression. The functional result of this

interaction was also identified by the predictive network as Zfpm2-

mediated inhibition of Gata4. Finally, some directionally undefined

interactions such as that between Tbx20 and Gata4 [70,71] are

resolved in the networks, indicating a Tbx20 activation by Gata4.

Among the list of genes in Tables S2 and S3, Fli1 is the most

promising candidate gene predicted to be involved in cardiogen-

esis targeted for experimental validation. Fli1 is over-represented

in many high confidence edges, shares a high degree of semantic

similarity and shares a profile with relatively few other genes. This

gene encodes a transcription factor containing an ETS DNA-

binding domain and may be involved with a variety of biological

processes such as cellular differentiation, proliferation, migration,

apoptosis and angiogenesis [62,63]. Although there is no direct

evidence of its role in cardiogenesis that we are aware of, it is

essential for embryogenesis and endothelial gene expression [72].

Furthermore, Fli1 increased expression has been linked to

decreased cardiac fibrosis in a physiological model system of

cardiac damage and may imply a regulatory role not previously

recognized [73]. Another interesting prediction in Tables S2 and

S3 is Tbx18 inhibiting Sox7; both of these genes are important early

transcription factors. Tbx18 has been shown to convert cardio-

myocytes into pacemaker cells, and plays a role in tissue

engineering [74]. This could be used to model cardiac pathologies

such as atrial arrhythmias or ventricular arrhythmias [75] and

provides in silico prioritization of gene therapies.

Discussion

The approach presented herein relies on a purely data-driven

inference algorithm coupled to an informative association and

filtering method. In doing so, the most likely predictable gene

interactions obtained from the algorithm are those appear often in

the subnetwork ensembles and those that share many GO terms.

Of the top 10 gene pairs identified using the CG list, four are

previously known. This is a significant achievement considering

that the approach is data-driven, relies on a computational model

to approximate gene expression, and supplemented with an

ontology library. Including the GO terms in the selection process,

dramatically improved the information retrieval tests. But the

optimal filter settings were when there were equal contributions

from the confidence metric and the semantic similarity metric to

the fidelity score.

The network generated from the CG list was expanded using

gene profile similarity metrics to include approximately 900

additional genes in the mouse genome. The expanded network

consists of 1,080 genes and 63,558 edges. After filtering the

network using the fidelity scores, a scale-free, hierarchical network

forms that represents the cardiogenic gene regulatory network as

predicted by the algorithm. The network predictions are too

numerous to check with rigor, and the examples shown herein that

corroborate the network are just a few of the many possible

plausible interactions present in the network. That said, many of

the predictions are either already known or are worth experimen-

tally validating.

The substantial boost in performance by including both the

confidence metric and semantic similarity metric in the fidelity

score is consistent with what others have found. Nazri and Lio

found that combining their meta-analysis approach with Rele-

vance Network [26], significantly enhanced predictive capabilities

[20]. And Marbach et al. concluded that a community-based

inference strategy was superior to any single method [11]. The

approach presented herein applies a similar strategy by combining

a purely data-driven method with a functional-based association

method. The end result is superior performance. Combination of

additional, independent methods would only increase perfor-

mance even further.

In addition to testing the algorithm on the CG list, it was tested

on two additional networks of vastly different qualities. One was

enriched with known connections from IPA while the other was

depleted of them. The algorithm inferred denser networks for the

IPA enriched network as compared to the IPA depleted network.

And as with the networks inferred from the CG list, the best results

were obtained for the IPA enriched inferred networks when the

fidelity score included both the confidence metric and the semantic

similarity metric. From these analyses, it is clear that model-based

inference part of the algorithm adequately constructs putative

regulatory interactions capable of explaining the data. It may seem

surprising that time course microarray data, for as much as it

reveals, is information-poor. The system is too under-determined,

and there are too many different, plausible ways to put the

network together while still corroborating the expression data.

Thus, it is important to supplement the predictions of any model-

based algorithm with independent information (e.g. semantic

similarity).

Methods used to construct networks using gene expression

profiles are typically undermined by the similarity of the

expression between various genes in the dataset. This makes

assigning network edges challenging since a given regulatory

interaction can be also explained by swapping out the source gene

with another gene that has a very similar expression profile. Genes

of this nature have been called module genes [48]. A mitigating

strategy is to focus on interactions that can be explained by

relatively few genes and share common pathways. This type of

approach has recently been utilized to construct gene networks

and shown to produce superior results when compared to more

traditional methods [76]. For the approach described herein, a

secondary filter was applied to the networks to remove gene

interactions pairs that can be explained by a large list of possible

combinations using the cluster product scores. (See Table S3 for

details.) Doing so results in the discovery of Fli1 as a cardiogenic

transcription factor. By prioritizing experimental inquiries, more

time and resources can be applied to testing other predictions.

Although the algorithm performs well, improvements in data

quantity and quality, as well as, ontological depth and coverage

are expected to significantly improve the predictive power of the

algorithm. While the dataset used to generate the regulatory

network is of great quality, the tissue excised from the growing

hearts consists of multiple cell types which likely hinders precise

network inference. The tissue is quite heterogeneous, and gene
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expression in the heart is region specific [77,78]. Applying the

algorithm to a dataset obtained from a more homogenous prep,

such as cardiomyocytes derived from induced pluripotent stem

cells, is expected to produce more relevant networks. Another

problem with this approach is the fact that over half (66%) of the

interactions predicted by the algorithm for the CG list had no

semantic similarity score, despite 31% of them being reported in

IPA. Using a more complete set of GO terms is expected to

increase the performance of the algorithm even more. Finally,

better profile clustering will lead to better expansion and help

avoid making erroneous predictions. This requires more robust

clustering algorithms and precise measurements of gene expres-

sion.

While the algorithm is among the most efficient in its class [31],

it is still computationally expensive to exhaustively search all

possible combinations of gene interactions. Improving the profile

clustering and using more complete semantic annotations is

expected to enhance the algorithm’s predictive capabilities. To

reduce the complexity of the inferred networks, the algorithm can

be augmented to exploit additional information obtained from

pathway analyses and independent data. This will lead to an

algorithm that produces more experimentally testable hypotheses,

result in more efficient network inference and deliver more

relevant biological networks. The approach presented herein is

well suited to increase our collective understanding of the

processes involved with cell lineage commitment, characterize

the progression of polygenic diseases, and help unravel the

complexities associated with pharmacogenomics. To further

validate the inference approach, the highest ranking regulatory

interactions will be tested using induced pluripotent stem cells

driven towards cardiomyogensis.
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