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Background. Yiqi Yangjing prescription (YQYJ) is a traditional Chinese medicine prescription used for treating lung cancer. It has
a significant effect on enhancing efficacy, reducing toxic symptoms, and improving patients’ physical well-being. .e effective
inhibitory effect on nonsmall-cell lung cancer (NSCLC) has been demonstrated in vitro and in vivo. However, the mechanism of
action and the material basis still remain unclear. Methods. In this study, we explored this mechanism using network phar-
macology, after which we explored the pharmacodynamics and the actionmechanism of YQYJ using cell viability evaluation, plate
clone formation assay, flow cytometry, real-time quantitative PCR, andWestern blot. Results. .e enrichment results showed that
there were 50 active components and 68 core targets related to YQYJ inhibiting NSCLC, including quercetin, luteolin, gamatin,
kaempferol, heat shock protein HSP 90-alpha (HSP90AA1), cyclin-dependent kinase 2 (CDK2), epidermal growth factor receptor
(EGFR), signal transducer and activator of transcription 3 (STAT3), and others. Among them, quercetin and kaempferol revealed
the best binding effect with core targets. Most importantly, YQYJ promoted A549 cells from the quiescent phase into the
proliferative phase to enhance the sensitivity of A549 cells to YQYJ and inhibited the proliferation of A549 cells significantly
(P< 0.05)..e A549 cells were blocked in both S and G2/M phases while the apoptosis ratio was increased..e proliferation score
of A549 cells treated with YQYJ was significantly reduced compared to A549 cells in the proliferative phase (P< 0.05). .is
regulatory effect was related to the expression regulation of HSP90AA1, CDK2, STAT3, and phosphor-STAT3 (p-STAT3) by
YQYJ, kaempferol, and quercetin. Conclusion. Our results suggested that the inhibition of NSCLC via YQYJ had multicomponent
and multitarget characteristics. Its core mechanism is related to the regulation of the cell cycle, proliferation, and apoptosis of
NSCLC. .is study provides a direction and scientific basis for exploring the future mechanism of YQYJ for the treatment
of NSCLC.

1. Introduction

Global cancer statistics for 2020 revealed that lung cancer
accounted for 18.0% of the total cancer deaths, remaining
the leading cause of cancer-related death [1]. According to
previous studies, integrated therapies (e.g., radiotherapy and
targeted therapy) can effectively increase survival time and
quality of survival in patients with lung cancer. Traditional
Chinese medicine (TCM) also has an important role in
integrated therapies. Yiqi Yangjing decoction (YQYJ), also
named Feiyanning, is a traditional Chinese medicine pre-
scription used for treating lung cancer. YQYJ has obvious
advantages in enhancing efficacy, reducing toxic symptoms,
and improving survival quality and quality of patients’ life

[2–4]. It consists of “Astragali Radix,” “Ganoderma,”
“Atractylodis Macrocephalae Rhizoma,” “Herb Salviae
Chinensis,” “Epimedii Folium,” “Corni Fructus,” “Cre-
mastrae Pseudobulbus,” “Polygonati Rhizoma,” “Vespae
Nidus,” “Paridis Rhizoma,” and “Bufonis Venenum”. A
previous study revealed that the disease control rate of the
TCM combined group was slightly higher compared to the
chemotherapy group, while the adverse reactions were
significantly decreased [2]. Also, the experiments with
mouse transplantation tumors confirmed that YQYJ could
effectively inhibit the growth of NSCLC tumors and prevent
the metastasis and diffusion of cancer cells [5]. Moreover, in
vitro experiments have also led to a consistent conclusion
that YQYJ has a pronounced effect on inhibiting the
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proliferation and migration of human NSCLC cells [6].
However, the core mechanism of YQYJ still remains unclear.

.e development of network pharmacology and bio-
informatics provides a brand-new perspective and break-
through for explaining the scientific role of TCM [7]. .e
network pharmacology reveals the potential signaling
pathways and provides a powerful direction for further
explaining the pharmacodynamics mechanisms at the mo-
lecular level. Herein, we explored the role of active com-
ponents and core targets of YQYJ in inhibiting NSCLC using
network pharmacology. A comprehensive strategy of net-
work pharmacology and multiple pharmacodynamics ex-
periment are shown in Figure 1.

2. Materials and Methods

2.1. Component-Target Network Construction and Analysis.
Identification of active components and protein targets of
YQYJ: the Traditional Chinese Medicine Systems Pharma-
cology (TCMSP) database (https://tcmsp-e.com/) [8] and
HERB database (https://herb.ac.cn/) [9] were used to screen
the active components and targets of YQYJ based on ADME
parameters. .e HERB database, Scifindern (https://
scifinder-n.cas.org/), Swiss ADME (https://www.
swissadme.ch/) [10], and Swiss Target prediction database
(https://www.swisstargetprediction.ch/) [11] were used to
screen the active components and targets of YQYJ, which
were not collected on the TCMSP platform. .e screening
conditions in TCMSP were oral bioavailability ≥30% and
drug-likeness ≥0.18, while they were high for GI absorption
in Swiss ADME. Also, to predict drug-likeness (Lipinski.
Ghose, Veber, Egan, and Muegge) and potential targets, it
was necessary to meet high, and three of the five rules in
Swiss ADME and have a probability value >0 in the Swiss
Target prediction database.

Identification of protein targets of NSCLC: the gene
information of “Non-Small Cell Lung Cancer” was down-
loaded from the Online Mendelian Inheritance in Man
(OMIM) (https://www.omim.org/), DisGeNET (https://
www.disgenet.org/home/), and GeneCards (https://www.
genecards.org/,%20very.5.0). Next, we screened the top
lowest 10% targets of Disease Specificity Index (DSI) score in
DisGeNet (evidence index� 1) and the top highest 10% of
relevance score (RS) in GeneCards (RS higher than the
average value of 14.88). .e core targets of NSCLC were
screened by using the cytoHubba plugin in Cytoscape based
on the protein-protein interaction (PPI) network con-
structed by the STRING database (score ≥0.90) (https://cn.
string-db.org/) and Cytoscape 3.8.2 software. All of the
target IDs described above were standardized using the
UniProt database. Analysis Network plugin estimated the
topological parameters (degree) of a core network of YQYJ
inhibiting NSCLC to screen the core active components and
critical targets.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis clarified the
functions and potential pathways of YQYJ by using R
packages (“clusterprofile,” “org.Hs.eg.db,” and “enrich-
ment”). It was based on the P value cutoff� 0.05 and q-value

cutoff� 0.05 criteria. .e enrichment results were plotted by
using the Sangerbox tools (https://vip.sangerbox.com/index.
html), a free online platform for data analysis.

2.2. Molecular Docking. Processing and optimization of
molecular docking were done by the Schrodinger Maestro
software. .e target protein crystal structures (CDK2 (PDB
ID:3PY0), HSP90AA1 (PDB ID:3TUH)) were downloaded
from the Protein database (https://www.rcsb.org/), and re-
ceptors were preprocessed, optimized, and minimized
(constraint minimized using the OPLS3e force field) by the
Protein Preparation Wizard module of Schrodinger [12, 13].
.e 3D structure of active components was downloaded
from the PubChem database (https://pubchem.ncbi.nlm.
nih.gov/) and prepared by hydrogenation, structural opti-
mization, and energy minimization of the LigPre module in
Schrodinger. Finally, the proto-ligand was used as the active
site position, and the protein was selected as the centroid of
the 10 Å box for molecular docking and screening in the
Glide SP computing module. .e following formula was
used for the calculation of the scoring function (1) [14]:

ΔGbind � Clipo−lipo f rlr( ) + Chbond−neut−neut g(Δr)h(Δα)

+ Chbond−neut−charged + Chbond−charged−charged g(Δr)h(Δα)

+ Cmax−metal−ion f rlm( ) + CrotbHrotb

+ Cpolar−phobVpolar−phob + CcoulEcoul + CvdWEvdW

+ solvationterms.

(1)

.e complex formed by the docking compound and the
protein was visualized using Pymol 2.1 software (the
compound with the most negative binding energy for each
target) to obtain the binding mode of the compound and the
protein. .e amino acid residues of the compound and the
protein pocket could be seen according to the binding mode.

2.3. *e Analysis of the Potential Regulatory Mechanisms of
Critical Genes. Expression microarray series GSE19188
and GSE33532 were collected from the Gene Expression
Omnibus data set (GEO) and used to analyze HSP90AA1,
CDK2, and E2F1 expression levels in NSCLC. In addition,
GSE31908 was used to analyze the relationship between the
expression level of HSP90AA1 and poor overall survival
(OS) in NSCLC based on Kaplan-Meier Plotter (https://
kmplot.com/analysis/). Next, we explored the probable
mechanisms of HSP90AA1 and CDK2 in NSCLC through
LinkedOmics (https://linkedomics.org/admin.php), a
platform for analyzing cancer multi-omics data based on
the TCGA project [15]. Gene set enrichment analysis
(GSEA) in the Link Interpreter module was used to
conduct KEGG pathways, miRNA-target, and transcrip-
tion factor (TF) -target enrichment and reveal potential
regulatory mechanisms. .e rank standard was FDR <0.05
and 500 simulations. Furthermore, we analyzed the
functions of E2F1, HSP90AA1, and CDK2 in GeneMANIA

2 Evidence-Based Complementary and Alternative Medicine

https://tcmsp-e.com/
https://herb.ac.cn/
https://scifinder-n.cas.org/
https://scifinder-n.cas.org/
https://www.swissadme.ch/
https://www.swissadme.ch/
https://www.swisstargetprediction.ch/
https://www.omim.org/
https://www.disgenet.org/home/
https://www.disgenet.org/home/
https://www.genecards.org/,%20very.5.0
https://www.genecards.org/,%20very.5.0
https://cn.string-db.org/
https://cn.string-db.org/
https://vip.sangerbox.com/index.html
https://vip.sangerbox.com/index.html
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://kmplot.com/analysis/
https://kmplot.com/analysis/
https://linkedomics.org/admin.php


Yiqi Yangjing Decoction (YQYJ)
Astragali Radix, Ganoderma, Atractylodis Macrocephalae Rhizoma, Herb Salviae Chinensis, Epimedii Folium, Corni Fructus,

 Cremastrae Pseudobulbus, Polygonati Rhizoma, Vespae Nidus, Paridis Rhizoma, Bufonis Venenum.

Targets and pathway enrichment
Network pharmacology

Components: 89, such as kaempferol, quercetin, gamatin, and so on. 

Potential targets: 544, such as EGFR, STAT3, HSP90AA1, CDK2, CAV1, et al.

Target Pathway: non-small-cell lung cancer (NSCLC)

Targets and active 
components of 

YQYJC
(TCMSP, HERB)

Pathway enrichment
(KEGG)

Core mechanism of YQYJ in inhibiting NSCLC
Network pharmacology

Core Components: quercetin,
luteolin, gamatin, tetrandrine,
and kaempferol

Core targets: HSP90AA1, CDK2

BP: Regulation of cell death, cell
population proliferation, apoptotic
process

Pathways: 21 siganling pathways

Highly-related targets of NSCLC
(merging OMIM, GeneCards, and

DisGeNET)

Function and
parameters analysis

(Analysis-Network, KEGG,
GO, GEO, molecular docking,

and LinkOmics)

merge

cytoscape

YQYJ-NSCLC
core network

core targets of NSCLC
(STRING, CytoHubba)

Targets and active components of 
YQYJC

Pharmacodynamic effects of YQYJ on NSCLC
In virto cell experiment

Pharmacological effects: YQYJ inhibited the
proliferation and clonogenic capacity of NSCLC
significantly.

Regulation of core targets: Up-regulated the
expression of HSP90AA1 and CDK2, down-
regulated the phosphorylation of STAT3.

Proliferation and Clonogenic Capacity
(MTT, plate clone formation assay)

Inhibition of NSCLC
(A549 cells, YQYJ, kaemoferol,

quercetin)
Cell Cycle and apoptosis

(Flow cytometry)

Conclsion: YQYJ inhibited the proliferation
of NSCLC via regulating the cell cycle and
expression of HSP90AA1, CDK2, p-STAT3, et al.

Regulation of core targets
(qPCR, Western blot)

Systematic function of YQYJ inhibiting NSCLC

50 componets were related to NSCLC, such as quercetin, luteolin, gamatin, tetrandrine, kaempferol,
and others. Among these, Kaempferol and quercetin showed a higher binding capacity with potential
targets.

YQYJ could regulate the expression levels and activity of HSP90AA1, CDK2, STAT3, p-STAT3, et al.

YQYJ inhibited the proliferation of NSCLC via regulating the cell cycle and promoting apoptosis. It 
was related to HSP90AA1, CDK2, p-STAT3, et al.

Multi-Components

Multi-targets

Mainly mechanism

Figure 1: .e comprehensive strategy of YQYJ inhibits NSCLC.
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(https://genemania.org/) [16] and constructed their
functional interaction network.

2.4. Cell Culture. Human NSCLC cell line A549 was saved
in the library of Shanghai Chest Hospital. Cells were
cultured in RPMI 1640 medium (HyClone, Logan, Utah,
USA), containing 10% fetal bovine serum (FBS) (.ermo
Fisher Scientific, USA) and 1% penicillin/streptomycin,
in a humidified atmosphere containing 5% CO2/95% air
and 37°C.

2.5. Medicines and Reagents. Chinese Herbal Medicine
YQYJ was provided by the Shanghai Institute of Materia,
Chinese Academy of Sciences (Shanghai, China) (Supple-
mentary Information S1). Kaempferol (CAS:520-18-3) and
quercetin (CAS:117-39-5) were purchased from MedChe-
mExpress (MCE, New Jersey, USA) and solubilized in
DMSO. All of the stock solutions were stored at −20°C. .e
RPMI 1640 medium and phosphate-buffered saline (PBS)
were acquired from HyClone (Logan, Utah, USA). FBS and
penicillin-streptomycin solution were obtained from Gibco
(Grand Island, NY, USA). Methyl thiazolyl tetrazolium
(MTT), RIPA Buffer Reagent, and the BCA Protein Con-
centration Assay Kit were acquired from Beyotime
(Shanghai, China). .e primers and DMSO were purchased
from Sangon Biotech (Shanghai, China). Primary antibodies
against GAPDH (#8884), HSP90α (#8165), CDK2 (#2546),
and Anti-rabbit IgG HRP-linked Antibody (#7074) were
purchased from Cell Signaling Technology (Boston, USA).
Primary antibodies against STAT3 (ab68153) and phosphor-
STAT3 (p-STAT3) (ab76315) were obtained from Abcam
(Cambridge, UK). Cell Cycle Staining Kit and Annexin
V-FITC/PI apoptosis Kit were purchased from MULTI
SCIENCES (Shanghai, China). .e E.Z.N.A.® Total RNA kit
was bought from Omega Bio-Tek (Norcross, Georgia, USA).
.e ChamQ® SYBR qPCR Master Mix, HiScript II Reverse
Transcriptase, and ECL chemiluminescence reagents were
purchased from Vazyme (Nanjing, China).

2.6. Cell Viability andClone Efficiency Analysis. Cell viability
and clone efficiency reflected the impact of YQYJ on the
toxic effects and proliferative capacity of A549 cells. Briefly,
A549 cells were inoculated with 5×103 per well in a 96-well
culture plate, and the volume of the culture medium was
100 μL for 12 h. Cells were then exposed to gradually in-
creased concentration (0.18, 0.25, 0.375, 0.5, 0.75, 1.5, and
3.0mg/mL) of YQYJ for 12, 24, and 48 hours and gradually
increased concentration (5, 10, 20, and 40 μmol/mL) of
kaempferol or quercetin for 24 hours. At each time point,
10 μL of sterile MTTdye (5 g/L) was added to each well and
incubated for another four hours at 37°C. After removal of
the medium, 150 μL DMSO was added to each well and
properly mixed and dissolved at room temperature for
another 15min. .e absorbance at 490 nm was determined
using a microplate reader Synergy H1 Hybrid (Bio Tek
Instruments, Germany) and Gen5 software. Cell viability
was calculated using the following formulas:

Cellviability(%) �
ExperimentalGroupA−BlankGroupA

ControlGroupA−BlankGroupA

×100%.

(2)

For the clone efficiency experiment, A549 cells were
treated with YQYJ (0.25, 0.5, and 1.0mg/mL) for 24 hours,
and then seeded 1000 per well and cultured until significant
clonal formation (greater than 50 cells). Clone efficiency was
measured using the following formula:

Clone efficiency �
Number of clones
Vaccinated cells

× 100%. (3)

2.7. Flow Cytometry. A549 cells were treated with kaemp-
ferol, quercetin, or different concentrations of YQYJ (0.25,
0.5, and 1.0mg/mL) for 24 hours and then stained with Cell
Cycle Staining Kit or Annexin V-FITC/PI apoptosis Kit
(MULTI SCIENCES, Shanghai, China) according to the
manufacturer’s instructions. All cells were collected and
then checked with BD FACSCanto II (USA). .e results of
the cell cycle and apoptosis ratio were calculated using
ModFit LT 3.2, and the images of the apoptosis were
exported using Flowjo 10.8.1.

2.8.QuantitativeReal-TimePCRAssay (RT-qPCR). .e total
RNA of each experimental group was isolated from ex-
perimental groups using E.Z.N.A.® Total RNA kit according
to the manufacturer’s instructions. .e extracted RNA was
reverse transcribed into cDNA using HiScript II Reverse
Transcriptase. .e qRT-PCR was conducted using an ABI
viia7 real-time PCR System (Life Technologies, Lough-
borough, UK) and ChamQ® SYBR qPCR Master Mix. .e
target genes primers were designed and synthesized by
Sangon Biotech (Shanghai, China). .e GAPDH (the in-
ternal reference) was obtained from the primer bank. .e
relative gene expression was calculated using the 2–ΔΔCT
method as previously described. .e specific experimental
steps and conditions are shown in Supplementary Infor-
mation S1.

2.9. Western Blot. .e protein regulation of HSP90AA1,
CDK2, STAT3, and p-STAT3 by YQYJ was estimated by
Western blotting. RIPA buffer was used to extricate the total
protein of experimental groups. GAPDH was used as the
internal standard. Finally, the protein bands were detected
using ECL chemiluminescence reagents and biomolecular
imagers (.ermo Fisher Scientific, USA). .e details of the
experiment are shown in Supplementary Information S1.

2.10. Statistical Analysis. SPSS 25.0 software was used for
statistical analysis. .e experimental results are described
with mean and standard deviation (SD). Analysis of variance
(ANOVA) and Tukey’s test were applied to compare the
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Figure 2: Continued.
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mean of each group with that of the control group. P-val-
ue< 0.05 was considered as statistical significance.

3. Results

3.1. Identification of Potential Targets and Pathways.
First, we analyzed the active components, potential targets,
and action pathways of YQYJ by using network pharma-
cology..e active components and potential targets of YQYJ
from the TCMSP database and HERB database were based
on the ADME parameters, which are the classic data used for
screening drug ingredients and represent the body’s disposal
process after the drug enters the body. .ere were 89 active
components and 544 targets of YQYJ, as shown in Figure S1,
including quercetin, kaempferol, luteolin, gamatin, signal
transducer and activator of transcription 3 (STAT3), E2F
Transcription Factor 1 (E2F1), epidermal growth factor
receptor (EGFR), caveolin-1 (CAV1), and so on. KEGG
enrichment revealed the multiple potential pathways of
YQYJ (Figure 2(a)). In total, 37.63% of pathways of YQYJ
were related to human disease, 12.37% were associated with
environmental information processing, 6.99% were related
to cellular processes, 33.33% were associated with the or-
ganismal system, and 9.14% were related to metabolism
(Figure 2(b)). Most importantly, it was found that YQYJ was
enriched in NSCLC (the low P-value and higher rich factor
value in Figure 2(a)).

To further analyze the mechanism through which YQYJ
inhibits NSCLC, we screened 174 core targets of NSCLC
from 1093 highly related target genes of NSCLC by using the
STRING database (score ≥0.900) and cytoHubba plugin of
Cytoscape (Figure 2(c))..en, a YQYJ-NSCLC core network
was constructed using Cytoscape 3.8.2 software by merging
the potential targets of YQYJ and NSCLC (Figure 2(d)). .e

orange diamond node represents the 50 active components
of YQYJ, and the blue triangle node represents 68 potential
targets of YQYJ inhibiting NSCLC.

In this network, many active components (e.g., beta-
sitosterol, tetrandrine, kaempferol, flavone, and quercetin)
were found to bind one or more genes, contributing to
proliferation and apoptosis (e.g., E2F1, stem cell growth
factor receptor, STAT3, retinoblastoma-associated protein,
and mitogen-activated protein kinase 14). Also, the func-
tional analysis revealed that the YQYJ-NSCLC core network
was involved in multiple biological processes, including
protein phosphorylation, regulation of cell death, cell
population proliferation, apoptotic process, protein kinase
activity, nuclear factor kappa B, hypoxia-inducible factor 1
(HIF-1), phosphoinositide 3 kinase/Akt (PI3K-Akt), and
Wnt, calcium signaling pathways (Figure 3). In addition, the
regulatory effect of YQYJ on the HIF-1 [17], tumor necrosis
factor (TNF) [18], PI3K-Akt [19], and E2F1 [20] of NSCLC
cells has been already demonstrated. .e uncontrolled
growth properties of excessive tumor cell proliferation and
reduced apoptosis have a major role in tumor progression
[21]. .e obtained results displayed that the components of
YQYJ could intervene in NSCLC progress by binding to
multiple targets and regulating cell population proliferation
and death.

3.2. Analysis of Core Components and Targets of YQYJ. In the
core network, quercetin, luteolin, tetrandrine, gamatin, and
kaempferol were the top 5 disease-related components,
while heat shock protein HSP 90-alpha (HSP90AA1), cyclin-
dependent kinase 2(CDK2), phosphatidylinositol-4,5-
bisphosphate 3-kinase, catalytic subunit gamma (PIK3CG),
DNA topoisomerase 2-alpha (TOP2A), and mitogen-

(d)

Figure 2: Identification of potential targets and pathways. (a) Pathway analysis based on targets of the active components in YQYJ. (b) .e
classification pie map of the KEGG enrichment pathway. (c).e PPI network and 174 core targets of NSCLC. (d).e core network of YQYJ
inhibits NSCLC..e orange diamond node represents the 50 active components of YQYJ, and the blue triangle node represents 68 potential
targets of YQYJ inhibiting NSCLC.
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activated protein kinase 14 (MAPK14) were the top 5 targets
(Table 1). .e degree, betweenness centrality, and closeness
centrality of all the above components and targets were
higher than the average value. .at means that they may
have an important role in the core network of YQYJ
inhibiting NSCLC. So, we choose the five active components
and the top two targets (HSP90AA1 and CDK2) to analyze
the regulation of NSCLC by YQYJ further.

First, we analyzed the binding potency of the active
components and target proteins by molecular docking.
Gemcitabine, a tumor chemotherapy drug whose intra-
cellular metabolites bind to DNA and act primarily in the
G1/S phase [22, 23], was selected for docking with the core
targets. Also, the binding potency data worked as a
baseline for positive control. .e results shown in Table 2
indicate that compounds had an excellent binding effect
with the target protein and binding energy of <6 kcal/mol.
.e binding energies of the four active components
(quercetin, luteolin, kaempferol, and gamatin) to critical
targets were lower than gemcitabine, which suggested that

these components could stably bind to the active pocket of
the HSP90AA1 and CDK2 protein. Among them,
kaempferol and quercetin performed best in docking
scoring and binding patterns with proteins (Table 2,
Figures 4(a) and 4(b)). All of them showed significant
inhibition of NSCLC [24–26]. For example, quercetin
inhibits NSCLC proliferation and induces apoptotic
through the lncRNA SNHG7/miR-34a-5p pathway [24].
Kaempferol inhibits Nrf2 signaling by inducing apoptotic
in NSCLC cells by downregulation of Nrf2 mRNA [25].

�e 21 signaling pathways
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Figure 3: .e KEGG and GO enrichment of the YQYJ-NSCLC core network. (a) GO analysis based on core targets of YQYJ inhibiting
NSCLC. (b) .e top 20 of KEGG enrichment of the 68 core targets of YQYJ inhibiting NSCLC. (c) .e 21 signaling pathways of the YQYJ-
NSCLC core network.

Table 1: .e top 5 active components and targets in the core network of YQYJ inhibiting NSCLC.

Category Gene name/Component name Degree Betweenness centrality Closeness centrality
Component Quercetin (MOL000098) 105 0.317593 0.489362
Component Luteolin (MOL000006) 25 0.141721 0.440613
Component Gamatin (479-85-6) 21 0.149231 0.415162
Component Tetrandrine (518-34-3) 21 0.165844 0.403509
Component Kaempferol (MOL000422) 20 0.034529 0.395189
Target HSP90AA1 36 0.211704 0.469388
Target CDK2 24 0.148645 0.473251
Target PIK3CG 22 0.082792 0.444015
Target TOP2A 19 0.164112 0.387205
Target MAPK14 13 0.026462 0.353846

Table 2: Molecular docking of the core target proteins.

Target CDK2 (kcal/mol) HSP90AA1 (kcal/mol)
Gamatin −7.94 −7.39
Kaempferol −8.15 −7.77
Luteolin −7.76 −7.36
Quercetin −8.26 −8.24
Tetrandrine −6.98 −7.01
Gemcitabine −7.22 −7.25
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Figure 4: Continued.
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Also, it effectively restores the chemorefractory phenotype
relating to the EMT pathway [26].

KEGG pathway analysis showed that HSP90AA1 and
CDK2 coexpressed genes in NSCLC participate in meta-
bolism (pyrimidine metabolism), cell growth and death (e.g.,
cell cycle), and genetic information processing (e.g., mRNA
surveillance pathway, DNA replication, and nucleotide ex-
cision repair) (Figures 4(c)–4(f)). Higher expression of
pyrimidine synthesis genes has been shown to usually result
in a poor prognosis for patients with glioblastoma [27] and
NSCLC [28]. Targeted pyrimidine synthesis can inhibit
glioblastoma and thus can be used as a novel inhibition
strategy [27]. .e cell cycle, the regulation of genetic in-
formation, is closely related to tumor cell proliferation [29].
.e functions of CDK2 and HSP90AA1 were also related to
the G2/M transition of the mitotic cell cycle according to the
PPI network from GeneMania (Figure 5). As HSP90AA1
and CDK2 were important in the cell cycle and pyrimidine
metabolism, we had reason to believe that HSP90AA1 and
CDK2 have a positive role in lung cancer proliferation.

Next, we explored the regulatory enrichment of
HSP90AA1 and CKD2 coexpressed genes in NSCLC, in-
cluding the enrichment of miRNAs and TF (Table 3). MIR-
323 ranked first in the HSP90AA1 regulatory network of

LUAD, and E2F1 ranked the highest in both the HSP90AA1
and CDK enriched networks. miR-323, which is significantly
upregulated in lung cancer cells, controls A549 cell prolif-
eration and apoptosis by regulating the AKT and ERK
signaling pathways [30]. E2F1 is a transcription factor that
has an important role in S phase progression and apoptosis.
Although E2F1 overexpression in multiple tumors promotes
tumor proliferation [31], its low expression in lung ade-
nocarcinoma may be associated with promoting immune
escape from tumor cells [32]. We also found a down-
regulation trend of E2F1 (log (FC)< 0 and FDR <0.05) in the
data sets GSE33532 (Figure 6(a)) and GSE19188
(Figure 6(b)). .e expression of CDK2 and HSP90AA1 was
consistent with that of E2F1 (Figures 6(a) and 6(b)).
Moreover, the low expression level of HSP90AA1 in
GSE31908 was associated with poor OS (Figure 6(c)). .ese
findings confirmed that E2F1, HSP90AA1, and CDK2 could
be involved in the genetic information and cell cycle reg-
ulation in the process of NSCLC tumorigenesis.

3.3. Inhibitory Effect of YQYJ ona549Cells. We chose human
lung cancer cells A549 to explore the pharmacodynamics
mechanism of YQYJ. First, the inhibitory effect of YQYJ was
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Figure 4: .e analysis of core targets. (a) .e surface and detailed mode of CDK2-quercetin. (b) .e surface and detailed mode of
HSP90A1-quercetin. Compounds are rendered in bright blue. Active site residues are displayed in gray. Yellow dash represents hydrogen
bond distance or π-stacking. (c) Pathway enrichment of HSP90AA1 coexpression genes in LUAD. (d) Pathway enrichment of HSP90AA1
coexpression genes in LUSC. (e) Pathway enrichment of CDK2 coexpression genes in LUAD. (f) Pathway enrichment of CDK2 coex-
pression genes in LUSC.
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Figure 5: .e PPI network analysis of HSP90AA1, CDK2, and E2F1 from GeneMANIA.

Table 3: .e miRNA and transcription factor-target networks of HSP90AA1 and CDK2 in NSCLC (LinkedOmics).

Enriched category Targets
LUAD LUSC

Geneset Leading
edge num FDR Geneset Leading

edge num FDR

miRNA target HSP90AA1 TAATGTG, MIR-323 59 0 CAGGGTC, MIR-504 37 0.072108

miRNA target HSP90AA1 ATGTTAA, MIR-
302C 73 0 GGGGCCC, MIR-296 31 0.072108

miRNA target HSP90AA1 ATCATGA, MIR-433 42 0 GAGCCTG, MIR-484 44 0.10816

miRNA target HSP90AA1 TTTGCAG, MIR-
518A-2 79 0.001119 GACAATC, MIR-219 34 0.13298

miRNA target HSP90AA1 TACTTGA, MIR-26A,
MIR-26B 84 0.0012789 AGCGCTT, MIR-518F,

MIR-518E, MIR-518A 5 0.14078

miRNA target CDK2 ACGCACA, MIR-210 2 0.6621 AGGAAGC, MIR-516-3P 24 0.53934
miRNA target CDK2 GACAATC, MIR-219 28 0.73015 GTGGTGA, MIR-197 17 0.54347
miRNA target CDK2 TTCCGTT, MIR-191 6 0.764 TCCAGAG, MIR-518C 39 0.5539

miRNA target CDK2 CTCAGGG, MIR-
125B, MIR-125A 40 0.77051 ATATGCA, MIR-448 52 0.55946

miRNA target CDK2 AGCGCAG, MIR-191 5 0.77057 GGTGTGT, MIR-329 38 0.57271
Transcription
factor target HSP90AA1 V$E2F1_Q6 93 0 V$E2F4DP1_01 82 0
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Table 3: Continued.

Enriched category Targets
LUAD LUSC

Geneset Leading
edge num FDR Geneset Leading

edge num FDR

Transcription
factor target HSP90AA1 V$E2F_02 91 0 V$E2F1_Q6 85 0

Transcription
factor target HSP90AA1 V$E2F1DP1_01 90 0 V$E2F_Q6 75 0

Transcription
factor target HSP90AA1 V$E2F1DP2_01 90 0 V$E2F_Q4 70 0

Transcription
factor target HSP90AA1 V$E2F4DP2_01 90 0 V$E2F_02 79 0

Transcription
factor target CDK2 V$E2F1_Q6 100 0 V$E2F_Q6 91 0

Transcription
factor target CDK2 V$E2F_Q6 86 0 V$E2F_Q4 90 0

Transcription
factor target CDK2 V$E2F_Q4 86 0 V$E2F1_Q6 93 0

Transcription
factor target CDK2 V$E2F4DP1_01 88 0 V$E2F_02 90 0

Transcription
factor target CDK2 V$E2F_02 87 0 V$E2F1DP1RB_01 83 0
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Figure 6: Continued.
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Figure 6: .e analysis of HSP90AA1, CDK2, and E2F1 in GEO expression microarray series. (a) GSE33532. (b) GSE19188. (c) HSP90AA1
expression level with poor OS of LUAD in GSE31908.
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evaluated by MTT on cell viability. Cells were treated with
YQYJ at different concentrations (0.18, 0.25, 0.375, 0.5, 0.75,
1.0, 1.5, and 3.0mg/mL). .e results showed that YQYJ
significantly inhibited A549 cell viability in a dose- and time-
dependent manner (all P< 0.05) (Figures 7(a) and 7(b)).
Kaempferol (10, 20, and 40 μmol/mL) and quercetin (10, 20,
and 40 μmol/mL) were also effective in inhibiting A549 cell
proliferation (all P< 0.05) (Figure 7(c)).

Next, we used the cell clone formation rate to evaluate
the proliferative capacity of A549 cells. .e low concen-
tration of YQYJ (0.25mg/mL) could effectively inhibit the
proliferative capacity of A549 cells (P< 0.001) (Figure 7(d)).

3.4. YQYJ Regulates the Cell Cycle and Promotes Apoptosis.
Based on the previous network pharmacological analysis and
the functional analysis of the core targets, we assumed that
the regulatory effect of the YQYJ on the NSCLC cell cycle
was important in the mechanism of action of YQYJ in the
inhibition of NSCLC (Figures 3 and 4). In particular, it had
an important role in the G1/S and G2/M transition of the
mitotic cell cycle (Figure 5). We treated A549 cells with
YQYJ, kaempferol, and quercetin for 24 hours and examined
their cell cycle changes using PI or Annexin V/PI staining
and flow cytometry. .e quiescent phase A549 cells could be
promoted by YQYJ from G0/G1 phase to the proliferation
and division phase and blocked in the S and G2/M phases
(P< 0.05) (Figure 8(b), Table 4). Compared to A549 cells in
the proliferative phase, the G0/G1 phase of experimental
groups was significantly upregulated (P< 0.05), and the
proliferation score was significantly reduced (P< 0.05)
(Figure 8(b), Table 4). Meanwhile, both kaempferol and
YQYJ (0.5mg and 1.0mg/mL) were effective in promoting
apoptosis in A549 cells (P< 0.05) (Table 4)..e regulation of
apoptosis by YQYJ was also confirmed by Zheng et al. [33],

thus suggesting that YQYJ could effectively inhibit different
proliferation periods of A549 cells.

3.5. Regulation of Potential Targets. In NSCLC, HSP90AA1
and CDK2 expression levels were generally lower than in
normal tissues (Figures 6(a) and 6(b)). Also, the mRNA
expression level of HSP90AA1 and CDK2 was upregulated
observably by YQYJ, kaempferol, and quercetin (allP< 0.05)
(Figure 9(a)). As shown in Figure 9(b), the protein ex-
pression levels of HSP90AA1 and CDK2 had an upregu-
lation trend in experimental groups, especially in the YQYJ
(1.5mg/mL) group (P< 0.05), the kaempferol group
(P< 0.05), and the quercetin group (P< 0.01). .is con-
firmed the ability of active components to bind to the core
targets, which is consistent with the molecular docking
results (Table 2).

In addition, STAT3 and p-STAT3 have an important
role in tumors [34]. STAT3 phosphorylation regulates
cancer metastasis [35] and may be used as a biomarker of
poor prognosis in lung cancer [36]. In this study, we ex-
plored the expression changes of STAT3 and p-STAT3 in
A549 cells. .e obtained results showed that YQYJ,
kaempferol, and quercetin could all downregulate the
STAT3 and p-STAT3 protein expression, especially in the
YQYJ group, kaempferol group, and quercetin group of
p-STAT3 (P< 0.05) (Figure 9(c)). .ese findings suggested
that YQYJ may be important for regulating protein phos-
phorylation, inhibiting tumor progression, and improving
prognosis.

4. Discussion

YQYJ is a TCM prescription used for the treatment of lung
cancer. Clinical studies have confirmed that YQYJ can
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Figure 7: (a, b) YQYJ inhibited the proliferation of A549 cells, in a dose- and time-dependent manner (∗YQYJ groups vs control group
∗P< 0.05, ∗∗P< 0.01, ∗∗∗ P< 0.001;△△ 12 hours vs 24 hours P< 0.01;△△ 24 hours vs 48 hours P< 0.01; ### 12 hours vs 48 hours P< 0.001).
(c) .e kaempferol (10, 20, and 40 μmol/mL) and quercetin (10, 20, and 40 μmol/mL) significantly inhibited the proliferation of A549 cells
(∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001). (d) A549 cells showed a significant decrease in their proliferative and clonal ability after treating with
YQYJ for 24 hours (∗∗∗P< 0.001).
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Figure 8: Flow cytometry results. (a) Cycle fitting map and apoptosis map of A549 cells; (b) the results of the cell cycle, apoptosis, and
proliferation score of A549 cells.
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Table 4: .e result of the cell cycle, apoptosis, and proliferation score.

Control
(proliferative

phase)

Control
(quiescent
phase)

0.25mg 0.5mg 1.0mg Kaempferol
(60 µM) Quercetin (25 µM)

G0/G1 30.56± 14.25 84.63± 3.011 58.75± 6.604∗∗## 57.38± 6.374∗∗## 49.82± 3.657∗∗### 49.29± 6.603∗### 59.41± 7.960∗∗∗##
S 37.60± 2.298 7.61± 1.953 28.51± 5.069### 30.68± 5.749### 38.24± 1.659### 21.71± 8.487∗∗## 28.07± 7.708∗###
G2/M 31.83± 15.975 7.76± 1.083 12.74± 1.544∗∗ 11.95± 0.641∗∗ 11.95± 1.996∗∗ 29.00± 2.267## 12.52± 0.423∗∗
Apoptosis 0.05± 0.04 0.26± 0.148 1.03± 0.775 6.80± 5.218∗∗## 7.46± 2.262∗∗## 7.82± 3.385∗∗## 1.73± 0.444
Proliferation
score 69.43± 14.252 15.36± 3.014 41.25± 6.610∗∗## 42.63± 6.372∗∗## 50.18± 3.652∗∗### 50.71± 6.504∗∗### 40.59± 7.960∗∗∗###

∗Experimental groups VS control (proliferative phase) group, ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001. # Experimental groups VS control (quiescent phase) group,
#P< 0.05, ##P< 0.01, ###P< 0.001.
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Figure 9: Continued.
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reduce chemotherapy-related toxic and side effects and
improve the quality of life [2–4, 37]. Although some studies
have explored the role of YQYJ on NSCLC, the exact
mechanism of action remains unclear. To the best of our
knowledge, the present study is the first that systematically
illustrated the active components and targets of YQYJ and
the potential core mechanism of YQYJ inhibiting NSCLC.

Network pharmacology results indicated that YQYJ had
89 active components and 544 potential targets. Its mech-
anism of action involves 21 signaling pathways (Table S1)
and several biological processes, such as cellular processes,
metabolism, and microenvironment information processing
(Figure 2), including EGFR, JAK2, MET, CCND1, E2F1,
STAT3, TP53, beta-sitosterol, tetrandrine, kaempferol, fla-
vone, and quercetin. Functionally, YQYJ mainly acts on
cellular components such as protein kinase complex, RNA
polymerase II transcriptional regulatory complex, mem-
brane microdomain, caveola, and so on. For example,
CAV1, as a major protein component of caveola, has an
important regulatory role in tumorigenesis, while highly
expressed caveolin-1 was identified as an independent
prognostic risk factor for NSCLC [38]. Knockdown of
caveolin-1 inhibited the invasion and migration of lung
cancer cells [38] and increased therapeutic sensitivity of lung
cancer to cisplatin-induced apoptosis [39].

Next, we further analyzed 68 core targets of the YQYJ-
NSCLC core network..e results showed that the regulatory
effect of YQYJ on NSCLC was mainly reflected in regulating
cell proliferation and death, promoting apoptosis, and
regulating phosphorylation of target proteins (Figures 3(a)
and 3(b)). In this network, many active components were
found to bind one or more genes that contribute to pro-
liferation and apoptosis. Molecular docking results

demonstrated the good binding efficiency of this active
component to core targets (HSP90AA1 and CDK2). Pre-
vious studies have clarified that the tumor weight and cancer
cell proliferation index of C57 mice were significantly re-
duced by YQYJ decoction [33], and the VEGF expression of
Lewis cells was significantly decreased [40]. Wang et al. [17]
found that YQYJ could regulate the proliferation and ap-
optosis of A549 cells by reducing the amount of lactic acid
produced by glycolysis products of lung cancer cells. Also, it
was related to depressing the expression of HIF-1α and 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3).

In the present study, YQYJ significantly inhibited the
proliferation of A549 cells, promoted the apoptosis of A549
cells, and promoted A549 cells from the quiescent phase into
the proliferative phase. .e increase of cells in the prolif-
erative phase helps to enhance the sensitivity of A549 cells to
YQYJ. And then, the A549 cells were blocked in both S and
G2/M phases which increased the apoptosis ratio (Figure 8,
Table 4). .e proliferation score of A549 cells treated with
YQYJ was significantly reduced compared to A549 cells in
the proliferative phase (Table 4). .is suggested that YQYJ
could promote death and inhibit the proliferation of NSCLC
cells. Zheng et al. [33] found the regulation of proliferation
score of C57 mice tumor by YQYJ, and Wang et al. [17]
found that YQYJ could regulate the proliferation and ap-
optosis of A549 cells by increasing the dose of YQYJ. In
addition, we found a downregulating trend in the tran-
scriptomic data of NSCLC, although the overexpression of
HSP90AA1, CDK2, and E2F1 was important for the pro-
liferation of multiple tumors [29, 31, 41]. In the present
study, the RT-qPCR and Western blot experiment con-
firmed that YQYJ upregulated the expression level of
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Figure 9: Regulation of YQYJ on A549 cells. (a).emRNA expression levels of CDK2 and HSP90AA1..ey were upregulated significantly
by YQYJ, kaempferol, and quercetin (∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001). (b) .e protein expression level of HSP90AA1 and CDK2. It
shows an upregulation trend in each group, especially in the YQYJ (1.5mg/mL) group (∗P< 0.05), the kaempferol group (∗P< 0.05), and the
quercetin group (∗∗P< 0.01). (c) .e protein expression level of STAT3 and p-STAT3. YQYJ, kaempferol, and quercetin could down-
regulate protein phosphorylation significantly (∗∗P< 0.01, ∗∗∗P< 0.001).
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HSP90AA1 and CDK2. Enrichment results showed that the
functions of CDK2 and HSP90AA1 were also related to the
G2/M transition of the mitotic cell cycle, cell cycle regula-
tion, DNA replication, and similar. To sum up, these results
revealed that YQYJ has an inhibitory role in inhibiting
NSCLC primarily by inhibiting cell proliferation and pro-
moting apoptosis. .is effect was also achieved through a
variety of targets and signaling pathways.

.e discovery of the relationship between the potential
targets of YQYJ and the inhibition action of NSCLC, such as
HSP90AA1 and CDK2, helps guide further research of the
core targets and YQYJ. For instance, the inhibitors of CDK4/
6 have been approved for the treatment of breast cancer [29],
and inhibitors of HSP90 (geldanamycin (GA), radicicol
(RD), and its semisynthetic derivatives) were in preclinical
research of tumor [41]. Our results, the upregulation ex-
pression of HSP90AA1 and CDK2 was related to the
inhibited action of NSCLC cells, confirmed the important
role of the core targets in lung cancer and may provide new
ideas for the related research on guiding the clinical treat-
ment of lung cancer.

However, given the limitations of network pharmaco-
logical analysis and studies of Chinese natural medicine,
core mechanistic studies of NSCLC inhibition by YQYJ have
not yet included all pharmaceutical components and po-
tential targets of action, which need to be further addressed
by future pharmacological studies and clinical research.
With the exploration of Chinese herbal medicine compo-
nents and the study of NSCLC-related genes, it is expected to
find more potential targets of YQYJ, which could explain the
mechanism of action of YQYJ.

5. Conclusion

.is is the first study that elaborated on the core network of
YQYJ in the inhibition of NSCLC and its mechanism of
action from the perspective of network pharmacology. We
confirmed that YQYJ mainly inhibited the progression of
NSCLC proliferation by regulating the process of genetic
information replication and cell cycle progression during the
development of lung cancer. In addition, we identified
several miRNA and transcription factors associated with
HSP90AA1 and CDK2 and explored the potential of
HSP90AA1 and CDK2 as therapeutic targets for NSCLC,
thus providing a direction and scientific basis for future
studies of mechanisms of action.
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