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Abstract 

Background:  LncRNAs can regulate miRNAs and mRNAs by sequestering and binding them. Indeed, many research-
ers have reported lncRNA mediated-competing endogenous RNAs (ceRNAs) could regulate the progression of solid 
tumors. However, the roles of ceRNA in acute myeloid leukemia (AML), especially in pediatric and adolescent AML, 
were not completely expounded.

Materials and methods:  27 cytogenetically normal acute myeloid leukemia (CN-AML) patients under 18 years old 
with corresponding clinical data were selected from the cancer genome atlas (TCGA), which was a large sample 
sequencing database of RNA sequencing. We constructed a survival specific ceRNA network, and investigated its 
associations with patients’ clinical information by analyzing the data from TCGA.

Results:  We identified survival specific lncRNAs, miRNAs and mRNAs, and constructed a survival specific ceRNA 
network of CN-AML patients and a weighted correlation network. Furthermore, we identified 4 biological pathways 
associated with OS and selected the most enriched pathway ‘Transcriptional misregulation in cancer’ to verify that it 
could accurately predict younger CN-AML patients’ prognosis to guide treatment.

Conclusions:  We successfully constructed a survival specific ceRNA network which could provide a new approach to 
lncRNA research in younger CN-AML. Importantly, we constructed a weighted correlation network to overcome the 
difficulty in biological interpretation of individual genes.
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Background
Long non-coding RNAs (lncRNA) were a group of 
noncoding RNAs with more than 200  bp, which has 
intrinsic advantages over the use of protein-coding 
RNAs in diagnostics [1]. LncRNAs play critical roles 
in diverse biological functions, including nuclear 
architecture, regulation of gene expression, immune 

surveillance, cancer development and maintenance 
of tumorigenesis. LncRNAs can regulate miRNAs 
and mRNAs by sequestering and binding them, and 
competing endogenous RNA (ceRNA) mechanism 
attracted more and more attention since it was firstly 
proposed by Salmena et  al. [2]. CeRNA is a complex 
post-transcriptional regulatory network using miRNA 
response elements (MREs) to compete for the bind-
ing of miRNAs thereby implementing mutual con-
trol between mRNAs, lncRNAs and miRNA [3]. A 
lot of studies have reported that ceRNA mechanism 
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plays critical roles in solid tumor progression [4–6]. 
Junge et al. [7], Ding et al. [8] and Chen et al. [9] also 
reported highly-upregulated RUNX1T1, C-Myc and 
CCAT1 acts as competing endogenous RNA (ceRNA) 
in adult acute myeloid leukemia. However, little has 
been done in pediatric and adolescent cytogenetically 
normal acute myeloid leukemia (CN-AML) patients. 
Although board overlap lies between AML adults and 
pediatric patients in pathogenesis, diagnosis, treat-
ment and prognosis of the diseases, differences still 
exist.

CN-AML, a most common AML type, is charac-
terized by the absence of microscopically detect-
able chromosome abnormalities, but mutations, 
epigenetic changes and dysregulated expression sig-
natures exists, respectively [10]. Some reports have 
shown CN-AML patients harboring mutations includ-
ing NPM1, CEBPA, FLT3-ITD and WT1 were associ-
ated with an disparate prognosis [11]. With the advent 
of high-throughput technologies such as microarray 
and next-generation sequencing, some prognostic 
gene expression signatures have been proposed. These 
findings helped focus targeted therapies for CN-AML 
with significantly heterogeneous outcomes [12]. The 
genes in a prognostic gene signature were consid-
ered as independent individuals, which may result in 
ignoring potential relationships between the genes 
[13]. To overcome these challenges and to reduce the 
difficulty in biological interpretation, we constructed 
a weighted correlation network and the significant 
modules associated with prognosis were selected [14]. 
Based on these modules information, we identified 4 
biological pathways associated with overall survival 
(OS). Next the most enriched pathway was selected 
to verify whether it could accurately predict pediatric 
and adolescent CN-AML patients’ prognosis and guide 
treatment. To our knowledge, our study is the first to 
construct survival specific ceRNAs co-expression net-
work and identify survival specific biological pathways 
in pediatric and adolescent CN-AML patients. This 
approach can help to clarify the functions of lncRNAs 
in younger CN-AML patients.

Materials and methods
TCGA AML dataset
A total of 27 patients with AML were collected from 
the cancer genome atlas (TCGA) database. The crite-
ria of exclusion were set as follows: (i) patients were 
not cytogenetically normal or cytogenetically informa-
tion unknown; (ii) patients didn’t have lncRNA, mRNA, 
miRNA information; (iii) patients were alive and the last 
contact days were unavailable. Overall, 27 CN-AML 
patients who were under 18 at diagnosis were included 

in our study. This study was fully compliance with the 
publication guidelines provided by TCGA. The data were 
obtained from TCGA, so the approval of ethics commit-
tee was not needed.

Data processing
TCGA database provided the normalized count data of 
RNA sequencing including lncRNA and mRNA expres-
sion profiles by RNASeqV2 system. The STAD level 3 
microRNA sequencing (miRNAseq) data, downloaded 
from TCGA database, were collected by Illumina HiSeq 
2000 microRNA sequencing platforms. TCGA database 
have already normalized these RNA expression profile 
data, so no further normalization was required. In the next 
step, each lncRNA, miRNA and mRNA were respectively 
put into univariate cox’s model. P value < 0.05 as screening 
criteria were used to select lncRNA, miRNA and mRNA 
which were significantly associated with OS. Clinical infor-
mation including age at diagnosis, gender, wbc at diagnosis, 
bone marrow blasts, peripheral blasts and molecular muta-
tions (FLT3-ITD, NPM1, CEBPA) were also used to build 
univariate cox’s model under the same standard. To explore 
the relationship between prognosis and the key lncRNAs, 
miRNAs and mRNAs involved in the ceRNA network, 
Kaplan–Meier curve were carried out at a P value < 0.05. 
Each significant mRNA identified by univariate cox was 
further chosen to construct a weighted correlation network 
and the significant modules associated with prognosis were 
selected for further exploration. The mRNAs in the specific 
modules associated with OS were further implemented by 
functional enrichment analysis. The most enriched path-
way was selected by carrying out multivariate cox regres-
sion formula. Prognostic models were reconstructed based 
on the relative contributions of each of the genes in the cox 
analysis, as described in the following equation: The risk 
score = Z1G1 + Z2G2 + Z3G3 + ……ZnGn (z is z scores 
obtained from the Cox analysis and G is the expression 
value of each gene). Then, the patients were classified into 2 
groups (high risk vs low risk) based on the median value of 
the predictor score. Survival times were compared between 
the 2 groups by using the Kaplan–Meier analysis at a P 
value < 0.05.

Construction of the ceRNA network
We used miRanda (http://www.micro​rna.org/micro​rna/
home.do) to find the lncRNA–miRNA interactions, and 
using miRBase targets (http://mirdb​.org/miRDB​/), miR-
TarBase (http://mirta​rbase​.mbc.nctu.edu.tw/) and Tar-
getscan (http://www.targe​tscan​.org/) to predict target 
genes. Predicted targets are ranked according to the pre-
dicted efficacy of targeting as calculated using cumulative 
weighted context ++ scores of the sites, and scores < − 0.4 
were selected as target genes of each miRNA. Then, 

http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
http://mirdb.org/miRDB/
http://mirtarbase.mbc.nctu.edu.tw/
http://www.targetscan.org/
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according to the theory of ceRNA, we chose the miRNA 
negatively regulated intersection expression of lncR-
NAs and mRNAs to construct the ceRNA network. The 
ceRNA networks were constructed and visualized using 
Cytoscape v3.0.

Weighted correlation network construction
Gene correlation is described as a network in which the 
relationship between the connected genes is represented 
by the weight. Each gene is described as a node. The edge 
weight between the connected nodes is the pairwise 
pearson coefficient. In gene correlation network con-
struction, an adjacency matrix and an adjacency function 
are defined. Using adjacency function the co-expression 
similarity between genes can be described as connection 
strength. The node dissimilarity is input to hierarchical 
clustering to define network modules. From the cluster-
ing tree many gene co-expression modules are discov-
ered. In the construction of hierarchical clustering tree, 
a dynamic shear algorithm based on tree branch shape 
is used. R Bioconductor was performed to construct a 
weighted correlation network.

GO, pathway analysis, PPI network establishment 
and leave‑one‑out cross validation (LOO‑CV)
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, http://david​.abcc.ncifc​rf.gov/) 
was used to perform Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis. Protein–protein interactions (PPI) network of 
survival specific genes was constructed using Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING, 
http://strin​g.embl.de/). In the network, genes represent 
nodes and the interactions between the nodes represent 
edges. The important nodes with high degree in the net-
work were obtained, namely hub nodes. The co-expresses 
value > 0.4 was used as the cutoff criterion. R Bioconduc-
tor was used to perform leave-one-out cross validation.

Results
Survival specific lncRNAs, miRNAs and mRNAs 
in cytogenetically normal AML and ceRNA network 
construction
After univariate cox’s model filtering of the data 
extracted from TCGA database, we identified 1402 lncR-
NAs, 56 miRNA, and 2232 mRNA negatively associated 
with overall survival, as well as 34 lncRNAs, 46 miRNA, 
and 54 mRNA positively associated with overall survival 
(P < 0.05). Next, based on the theory that lncRNA can 
regulate miRNA abundance by sequestering and binding 
them, acting as so-called miRNA sponges, we intended to 
establish the lncRNA–miRNA–mRNA ceRNAs network. 
7 miRNAs targeted 47 key lncRNAs were predicted 
though miRcode, and 56 target genes of these 7 miRNAs 
were predicted by three prediction tools—TargetScan, 
miRanda and miRTarBase. Considering false positive rate 
of prediction tools, predicted targets are ranked accord-
ing to the predicted efficiency of targeting as calculated 
using cumulative weighted context ++ scores of the sites. 
According to the theory of ceRNA, we then chose the 
miRNA that negatively regulated intersection expression 
of lncRNAs and mRNAs to construct the ceRNA net-
work using Cytoscape 3.0 (Table 1).

Finally, 35 lncRNAs, 7 miRNAs and 44 mRNAs were 
involved in the ceRNA network (Fig.  1). Furthermore, 
to identify their association with prognostic characteris-
tics, the Kaplan–Meier curve was applied. 6 lncRNAs, 1 
miRNA and 14 mRNAs were found significantly associ-
ated with cytogenetically normal AML patients’ overall 
survival (log-rank P < 0.05) (Additional file  1: Figure S1; 
Additional file 2: Figure S2; Additional file 3: Figure S3). 
Among these significant RNAs, 4 lncRNAs (AL356475.1, 
CRNDE, LINC00158 and LINC00504), 1 miRNA (hsa-
mir-363) and all 14 mRNAs (BRWD1, CNIH1, FMR1, 
GOLGA8J, GPBP1L1, HMBOX1, KIF5B, NUFIP2, 
PTAR1, RRN3, SNX4, TMF1, ZFC3H1 and ZKS-
CAN8) were negatively associated with overall survival 

Table 1  miRNAs targeted specifc intersection key lncRNAs and mRNAs in ceRNA network

miRNAs lncRNAs mRNAs

hsa-mir-25 TTTY9B, AC068020.1, C11orf44, DLEU1, CASC2, AC024563.1, 
AL356475.1, AC083799.1, AC006305.1, POLR2J4, AC009495.1, 
LINC00365, LINC00502, LINC00392, MIR4500HG, AC104445.1, 
CRNDE, LINC00504, C8orf49, VENTXP1

RSBN1, CNIH1, TWF1, MFF, CCSER2, BAZ2B, SMU1, PTEN, SLC25A32, 
FOXN2, RRN3, DDX3X, EDEM1, NUFIP2, ZFC3H1, TMF1, KLHL15, 
VPS4B, CNEP1R1, DNAJB9, SLC25A36, GOLGA8J, SOX11, KIF5B, 
KIAA1109, PTAR1, SSFA2, GPBP1L1

hsa-mir-363 AC011498.1, AC092811.1, AC108134.2

hsa-mir-506 AC108134.2

hsa-mir-551a LINC00470, DLEU1, AC079949.1

hsa-mir-221 C15orf54, CASC2, LINC00158, AC011467.1, AC006305.1, LINC00326, 
BPESC1, LINC00460, AL356489.1, CRNDE, C5orf17

PCDHA4, CHORDC1, RAB1A, HMBOX1, PPP6C, BRWD1, FBXO28, 
SNX4, FMR1, UBE2J1, PCDHA6, PCDHA5, ZKSCAN8, PAIP2

hsa-mir-100 DLEU1, AC105206.1, POLR2J4, LINC00365, C8orf49 KBTBD8, SMARCA5

hsa-mir-204 AC092811.1, AC068831.1

http://david.abcc.ncifcrf.gov/
http://string.embl.de/
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(P < 0.05), while the remaining 2 lncRNA (AC011498.1 
and AC092811.1) were positively associated with overall 
survival (P < 0.05).

Correlation of lncRNAs and miRNAs signature with clinical 
or laboratory features and gene alterations
The 35 key lncRNAs and 7 miRNAs in the ceRNA net-
work were further analyzed for the association with the 
clinical features, such as age at diagnosis, gender, WBC 
at diagnosis, bone marrow blasts, peripheral blasts 
and molecular mutations (FLT3-ITD, NPM1, CEBPA) 
(Additional file  4: Table  S1). We found that CRNDE, 
LINC00504 and hsa-mir-363 were associated with 
peripheral blasts, CRNDE were associated with bone 
marrow blasts, CASC2 and CRNDE were associated 
with WBC at diagnosis. However, there was no asso-
ciation of other lncRNA, miRNA with any clinical fea-
tures. In addition, we found patients with high level of 
AC011498.1 were more likely to carry NPM1 mutation 
and CEBPA mutation compared with patients with low 
level of the lncRNA. Moreover, patients with high lev-
els of CRNED,LINC00504 and hsa-mir-363 were car-
ried CEBPA mutation. Association between miRNAs, 
race and ethnicity were also assessed (Additional file  5: 
Table S3). However, no links were found among miRNA, 
race and and ethnicity.

Co‑expression module establishment
The 2286 survival specific mRNAs were further chosen 
for co-expression exploring and a weighted correlation 
network was constructed. Weighted gene co-expression 
network analysis is a systems biology method for describ-
ing the correlation patterns among genes across micro-
array samples and exploring the hiding and biologic 
patterns Fig.  2a showed hierarchical clustering of these 
2286 mRNAs and the corresponding gene co-expres-
sion module. The color bars correspond to four gene 
co-expression modules including blue, brown, grey and 
turquoise modules. The gene number in these modules is 
421, 69, 577 and 1218 respectively. To further identify co-
expression modules associated with disease progression, 
clinical characteristics of the patients including survival 
time, FAB category and molecular alteration associ-
ated with prognosis (FLT3-ITD, NPM1, CEBPA) were 
explored Fig.  2b showed the module significance. Grey 
module were positively associated with the cytogeneti-
cally normal AML patients’ overall survival (cor = 0.64, 
P < 0.05) and CEBPA mutation (cor = 0.54, P < 0.05).

Functional enrichment analysis and establishment PPI 
network of survival specific genes
To provide more information for predicting prognosis 
and guiding treatment in younger CN-AML patients, 
mRNAs in grey module were applied to select biological 
pathways associated with OS using gene ontology (GO) 

Fig. 1  The lncRNA–miRNA–mRNA ceRNA network. Red rhombus: upregulated lncRNAs, red ellipse: upregulated mRNAs, and red rectangle: 
upregulated miRNAs. Green rhombus: downregulated lncRNAs, and green rectangle: downregulated miRNAs
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enrichment analysis and KEGG pathway analysis. GO 
analysis showed that the most significantly enriched GO 
terms were “transcription, DNA-templated” (ontology: 
BP), “integral component of membrane” (ontology: CC) 
and “DNA binding” (ontology: MF) (Fig. 3). Enrichment 
provides a measure of the significance of the function, 
and as the enrichment increases, the corresponding func-
tion is more specific.

Furthermore, KEGG pathway analysis showed that 
4 pathways associated with OS and the most enriched 
pathway was ‘Transcriptional misregulation in cancer’ 
(Fig.  3). Among these pathways, the ‘Transcriptional 
misregulation in cancer’ pathway was associated with 
myeloid leukemogenesis and AML cell functions [15], 
the ‘TGF-beta signaling pathway’ was involved in the car-
cinogenesis [16], the ‘Regulation of actin cytoskeleton’ 
has been investigated as a cause of tumor invasion and 
metastasis [17] and ‘Ether lipid metabolism’ was involved 
in the development of cancer [18].

The protein–protein interactions (PPI) network of sur-
vival specific genes in grey module was next constructed 

by STRING, which was composed of 312 nodes and 
601 edges (Fig.  4). Moreover, 30 genes in the PPI net-
work were identified as hub genes in cytogenetically 
normal AML, including BCL2 and HIF1A genes, when 
“Degrees ≥ 9” was set as the cut-off criterion.

Construction and performance of prognostic 
pathway‑based signatures
Next, the most enriched network ‘Transcriptional mis-
regulation in cancer’ was carried out multivariate cox 
to verify whether it could accurately predict pediatric 
and adolescent CN-AML patients’ prognosis. After mul-
tivariate cox’s model filtering, we identified 4 mRNAs 
(MLLT3, CEBPA, HIST2H3C and AFF1) in ‘Transcrip-
tional misregulation in cancer’ pathway were indepen-
dently associated with prognosis. Only CEBPA were 
positively associated with OS, the remaining 3 mRNAs 
were all negatively associated with OS. The risk score 
was calculated through the four mRNAs status and their 
weight on OS, which is represented by the β coefficient 
in multivariate cox model. The risk score = (0.670 * status 

Fig. 2  a Gene co-expression modules in CN-AML. Clustering dendrogram of genes, with dissimilarity based on topological overlap, together with 
assigned module colors. b The relationship between co-expression modules and Clinical characteristics in CN-AML. Previous digit shows module 
coefficient and the numbers in brackets represent P value
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of MLLT3) − (0.749 * status of CEBPA) + (0.962 * status 
of HIST2H3C) + (0.824 * status of AFF1). The patients 
were then classified into 2 groups (high risk vs low risk) 
based on the median value of the predictor score and the 
Kaplan–Meier curve was applied. As shown in Fig. 5, the 
survival time between the 2 groups (high risk vs low risk), 
created based on the prognostic pathways, was signifi-
cantly different (P < 0.05) (Fig. 5). The 3-year-Area Under 
Curve (AUC) of signature was 0.978 (Fig.  5). The heat-
map were also created to evaluate the signature, and the 
results distinctly demonstrated that most dead patients 
were in high risk group and had worse OS (Fig.  5). 
Therefore, our 4 mRNA signatures (MLLT3, CEBPA, 
HIST2H3C and AFF1) may offer an approach for risk 
assessment and predicting the prognosis in pediatric and 
adolescent CN-AML patients.

Comparison of ‘Transcriptional misregulation 
in cancer’ pathway with other prognostic parameters 
and leave‑one‑out cross validation signature
Univariate Cox analysis was used to test clinical parame-
ters with the prognosis. The results showed gender, bone 
marrow blasts and peripheral blasts could not predict 

the outcome, while age at diagnosis, FLT3-ITD and WT1 
mutations were significantly associated with survival 
(Additional file  6: Table  S2). After adjusting for age at 
diagnosis, FLT3-ITD and WT1 mutations, our prognos-
tic signatures remained as independent prognostic fac-
tors in the multivariate analysis (P < 0.05).

Leave-one-out cross validation test (LOO-CV) is 
powerful in estimating a model’s performance. To ver-
ify whether the 4-mRNA signature could predict other 
pediatric and adolescent CN-AML patients’ prognosis, 
LOO-CV was applied. The results showed the AUC of 
signature was 0.604 which validated the 4-mRNA signa-
ture performed well and could successfully predict the 
prognosis of pediatric and adolescent CN-AML patients.

Discussion
Pediatric and adolescent acute myeloid leukemia (AML) 
with incidence of approximately 7 occurrences per 1 mil-
lion children annually is a rare type of childhood cancer 
[19]. Because high incidence of severe and dose-limiting 
short- and long-term toxicities happened, younger AML 
therapy was a big challenge for patients, their families, 
and care providers [20]. Although multiple national and 

Fig. 3  Top 20 enrichment of GO terms and pathways for mRNAs in grey module (the bar plot shows the enrichment scores of the significant 
enrichment GO terms and pathways) a biological process (GO:BP); b cellular component (GO:CC); c molecular function (GO:MF); d pathways(KEGG)
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international cooperative groups have contributed to an 
evolving treatment strategy including four to five kinds 
of intensive myelosuppressive chemotherapy and stem 
cell transplantation over several decades, there was only 
a mild decline in younger AML mortality. Do¨hner et al. 
[21] has been reported State-of-the-art recommenda-
tions in adult AML. But little has been done in pediat-
ric and adolescent AML patients. Although there were 
broad overlap in diagnosis, treatment and prognosis for 
AML, differences still exist between adolescent and adult 
patients [11]. Hence, to improve younger AML’s progno-
sis, the pivotal genes and regulatory mechanism in AML’s 
development and progress need to be identified. Studies 
revealed that lncRNAs play important roles in diverse 
gene expression and cellular processes regulation. Dys-
regulation of lncRNAs has been reported to contribute 
to oncogenesis and tumor metastasis, including AML 
[22, 23].Therefore, the investigation of lncRNAs’ expres-
sion and function could help us to understand leukemo-
genesis and identify novel therapeutic targets. However, 
to date, only a few studies have reported mechanical and 
functional characterization of AML-associated aberrant 
gene networks [24–27].

Recently, many studies have reported that endogenous 
lncRNA had miRNA responsive elements (MRE) and 
modulated miRNAs via acting as miRNA sponges and 

binding with them [28]. These lncRNAs acting as com-
peting endogenous RNAs (ceRNAs) participate in post-
transcriptional regulation by interfering with the miRNA 
pathways [29]. ceRNAs have been shown to play criti-
cal roles in diverse biological functions and the disrup-
tion of the equilibrium of ceRNAs were implicated in 
tumorigenesis [3, 28]. For example, ATB lncRNA blocked 
miR-200 family by binding to its targets and upregulated 
ZEB1 and ZEB2, thereby inducing EMT and invasion in 
hepatocellular carcinoma [30]. Hence, understanding 
the intricate interplay among protein-coding messen-
ger RNAs, miRNAs and lncRNA would help to identify 
gene regulatory networks which played critical roles in 
the progress and development of younger CN-AML. In 
the present study, we identified prognosis related spe-
cific lncRNAs, miRNAs and mRNAs of CN-AML from 
TCGA database. Moreover, we constructed a ceRNA net-
work which could provide an integrated biological view 
based on the bioinformatics differential analysis. Some 
of these network have been reported to be solid tumor-
associated gene-network, such as lncRNA–miRNA 
(CASC2-miR-221 [31]), miRNA–mRNA (miR-221-
RAB1A [32] ,miR-25-PTEN [33], and miR-221-FMR1 
[34]). The ceRNA network that we built revealed a pre-
viously unknown ceRNA regulatory network in pediat-
ric and adolescent CN-AML. However, we failed to find 

Fig. 4  Protein–protein interaction network of genes in grey module and Hub genes selected from protein–protein interaction network (the bar 
plot shows the enrichment scores of the interactions between the nodes)
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target mRNAs when we constructed a ceRNA network 
with lncRNAs positively associated with overall survival 
and miRNAs negatively associated with prognosis.

In order to identify the function of the key lncRNAs, 
miRNAs and mRNAs in the ceRNA network, we ana-
lyzed their associations with OS by Kaplan–Meier 
curve. Our results suggested that 6 lncRNAs, 1 miRNA 
and 14 mRNAs were associated with CN-AML overall 
survival. Among them, has-mir-363 has been reported 
to be associated with prognosis of AML [35]; lncRNA 
CRNDE played critical roles in promoting cell prolifera-
tion, invasion and migration of solid tumor [36]; mRNA 
HMBOX1 and KIF5B was involved in the carcinogenesis 
[37, 38]. The other lncRNAs (AL356475.1, AC011498.1, 
AC092811.1, LINC00158 and LINC00504) and mRNAs 

(BRWD1, CNIH1, FMR1, GOLGA8J, GPBP1L1, NUFIP2, 
PTAR1, RRN3, SNX4, TMF1, ZFC3H1 and ZKSCAN8) 
were not reported previously. We analyzed the relation-
ships of the above 35 key lncRNAs, 7 miRNAs with clini-
cal features including age at diagnosis, gender, WBC at 
diagnosis, bone marrow blasts, peripheral blasts and 
molecular mutations (FLT3-ITD, NPM1, CEBPA). The 
results showed that AC011498.1, CRNED, LINC00504 
and hsa-mir-363 were the indicators of CEBPA muta-
tion of AML. Furthermore, AC011498.1 was also asso-
ciated with NPM1 mutation. LncRNA CRNDE and 
miRNA hsa-mir-363 have been previously reported to 
be associated with clinical features of leukemia [35, 39]. 
However, the other lncRNAs we found here have not 
been reported to be the indicators of relevant features 

Fig. 5  Kaplan–Meier for OS in low risk and high risk groups. AUC curve for the risk score, heatmap for 4 mRNAs expression level and survival status 
in all 27 patients
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previously. The imprint of genetic ancestry and popula-
tion structure carried in the genome of each individual 
and groups has led to the remarkable racial and ethnic 
diversity, which integrate biological, geopolitical, linguis-
tic and cultural factors and are widely applied in popula-
tion study [40]. Besides, Bonham et al. [41] have reported 
that the assessment of race and ethnicity at the individual 
level will make us closer to more individualized genetic-
based medicine. Hence, we have estimated the associa-
tion between miRNAs, race and ethnicity, but we failed 
to find any relation among them.

To date, the prognostic gene expression signatures 
have been extensively proposed for targeted therapies 
in cancer patients with significantly heterogeneous out-
comes. However, the potential relationships of the genes 
have been ignored [13]. Genes were considered as inde-
pendent individuals, which may result in undermining 
potential relationship between genes [13]. To overcome 
these challenges and to reduce the difficulty in biologi-
cal interpretation, we constructed a weighted correla-
tion network [14]. Then, we analyzed the relationships 
among the modules, OS, FAB category and the molecular 
mutations associated with prognosis (FLT3-ITD, NPM1, 
CEBPA). To identify biological pathways that were indi-
cators of AML’s prognosis, significant modules associ-
ated with OS and clinical features were selected to carry 
out functional enrichment analysis. The GO analysis 
showed that the functions of significant differences in 
the aspects of “transcription, DNA-templated” (ontol-
ogy: BP), “integral component of membrane” (ontology: 
CC) and “DNA binding” (ontology: MF). Furthermore, 
by KEGG pathway analysis, we identified 4 biological 
pathways associated with OS which may predict prog-
nosis and guide treatment in younger CN-AML patients, 
including ‘Transcriptional misregulation in cancer, Regu-
lation of actin cytoskeleton, TGF-beta signaling pathway 
and Ether lipid metabolism’. Recently, many studies have 
shown epigenetic abnormalities caused by ‘Transcrip-
tional misregulation in cancer’ play important roles in 
tumor biology, such as DNA methylation, histone modi-
fications and noncoding RNAs [42–44]. Therefore, we 
selected the most enriched network ‘Transcriptional mis-
regulation in cancer’ to verify the relationship between 
epigenetic abnormalities and CN-AML patients’ progno-
sis. The result showed that the ‘Transcriptional misregu-
lation in cancer’ pathway could strongly predict younger 
CN-AML patients’ survival. In our study, we only showed 
FLT3-ITD mutations could predict unfavorable outcome 
of pediatric CN-AML patients (P = 0.003), but we failed 
to find the relationship between NPM1 and CEBPA 
mutation and patients’ prognosis. One reason may be the 
sample size in our study was small and it couldn’t come 
to a significant conclusion. Another reason may be that 

patients simultaneously possess FLT3-ITD, NPM1 or 
CEBPA mutations in our study. Some reports have shown 
FLT3-ITD could implement a negative effect on OS irre-
spective of NPM1 or CEBPA mutations [45–47].

In PPI network analysis, we identified 30 hub genes and 
selected the top ten genes to analysis in detail. Among 
them, the PIK3CG gene, which encodes the catalytic 
subunit of phosphoinositide 3-OH-kinase-γ (PI3Kγ) 
namely p110γ, is located in chromosome band 7q22 and 
is often missing in myeloid malignancies [48]. Grimwade 
et  al. [48] has implied PIK3CG was evaluated as a can-
didate suppressor gene of myeloid tumor. Dysregulation 
of apoptosis, which leads to the accumulation of tumor 
cells by slowing the rate of cell turnover, is a hallmark of 
cancer [49]. BCL-2 proteins encoded by BCL-2 gene can 
be classified into two families, anti-apoptotic and pro-
apoptotic proteins. As a central regulator of cell polarity, 
loss of CDC42 suppresses AML cell polarity and divi-
sion asymmetry [50]. Primary AML cells show consti-
tutive release of a wide range of chemokines (including 
CCL5) involved in leucocyte chemotaxis, differentiation 
and angiogenesis [51]. LEP acting as a growth factor 
promotes cellular proliferation and may affect leukemic 
hematopoiesis [52]. Hence, the genes PIK3CG, BCL-
2, CDC42, CCL5 and LEP in the treatment of AML are 
now being widely and actively taken into consideration. 
In previous studies, there were no reports showing the 
other top ten hub genes were associated with AML.

Conclusion
Taken together, we filtered survival related specific lncR-
NAs, miRNAs and mRNAs after analyzing by univariate 
cox’s model from TCGA database. We successfully con-
structed a survival specific ceRNA network which could 
provide a new approach to lncRNA research in younger 
CN-AML. Importantly, we constructed a weighted cor-
relation network to overcome the difficulty in biologi-
cal interpretation of independently individual genes. We 
showed that 4 biological pathways associated with OS 
may be considered as potential specificity biomarkers in 
the diagnosis, prognosis and classification of pediatric 
and adolescent CN-AML. In addition, we select the most 
enriched network ‘Transcriptional misregulation in can-
cer’ to verify that it could accurately predict pediatric and 
adolescent CN-AML patients’ prognosis.
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