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Abstract: The primary role of myostatin is to negatively regulate skeletal muscle growth. The gait
speed is a noninvasive, reliable parameter that predicts cardiovascular risk and mortality. This study
evaluated the relationship between serum myostatin concentrations and gait speeds in patients
who had undergone kidney transplantation (KT). A total of 84 KT recipients were evaluated. A
speed of less than 1.0 m/s was categorized into the low gait speed group. We measured serum
myostatin concentrations with a commercial enzyme-linked immunosorbent assay. KT recipients
in the low gait speed group had significantly older age, as well as higher body weight, body mass
index (BMI), skeletal muscle index, serum triglyceride levels, glucose levels, and blood urea nitrogen
levels, lower estimated glomerular filtration rates and serum myostatin levels, a higher percentage of
steroid use, and a lower proportion of mycophenolate mofetil use. Multivariable logistic regression
analysis revealed that lower myostatin levels and lower frequency of mycophenolate mofetil use were
independently associated with low gait speed. In multivariable stepwise linear regression analysis,
myostatin levels were positively correlated with gait speeds, and age and BMI were negatively
correlated with gait speeds. In the study, serum myostatin levels were significantly lower in the low
gait speed group. Subjects in the low gait speed group also had greater BMI and older age.

Keywords: myostatin; kidney transplant; gait speed; age; body mass index

1. Introduction

Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a
negative regulator of skeletal muscle development and growth [1]. It is predominantly
produced in skeletal muscles in response to various factors, including inflammatory cy-
tokines, oxidative stress, ammonia, angiotensin II, and glucocorticoids [2]. Knockout of
the myostatin gene causes skeletal muscle hypertrophy and hyperplasia [3]. Myostatin
up-regulates p21 (a cyclin-dependent kinase inhibitor) and decreases cyclin-dependent
kinase 2 (Cdk2) protein levels and activity in myoblasts, inhibiting myoblasts from G1 to S
phase of the cell cycle [4]. Myostatin is a key mediator in catabolism within muscle cells
and has a significant role in sarcopenia; inhibition of its related signaling pathway can be
a therapeutic strategy for management of sarcopenia and possibly its consequences [5].
Treatment of sarcopenia with bimagrumab, a human monoclonal antibody against type II
activin receptors, causing them to act as myostatin inhibitors, increased skeletal muscle
mass and strength and increased walking speeds [6]. In addition, myostatin expression
is also associated with decreased insulin sensitivity [7]. In a rat study, it was found that
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myostatin inhibition enhanced glucose disposal and glycogen synthesis in skeletal muscle,
through increases in levels of GLUT1 and GLUT4 glucose transporters [8].

Chronic kidney disease (CKD) leads to chronic inflammation, an increase in uremic
toxins, oxidative stress, and reduced physical activity, all of which are associated with
activation of myostatin [2]. Myostatin overexpression in CKD may increase its serum levels.
Myostatin concentration is significantly higher in non-dialysis CKD patients than in healthy
populations [9]. In detail, indoxyl sulfate upregulates myostatin expression, as noted from
animal studies; interleukin (IL)-6 activates the transcription factor, signal transducer, and
activator of transcription 3 (Stat3), which then increases myostatin gene expression. Serum
myostatin levels are typically higher in patients on hemodialysis than in healthy subjects,
but some studies have shown no significant difference between the two groups [9–11]. The
reasons for the inconsistent results are unknown, but age, gender, nutritional status, and
the mode of dialysis can all influence serum myostatin levels.

Myostatin participates in inflammation, remodeling, and fibrosis of vascular walls,
as well as the process of atherosclerosis [2,12]. Myostatin mRNA expression increased in
the vascular wall of patients with end-stage kidney disease, but without a concomitant
increase in myostatin protein expression [13]. Interestingly, in patients undergoing main-
tenance dialysis, serum myostatin levels were noted to have a positive correlation with
the appendicular skeletal mass index and to be negatively associated with the abdominal
aortic calcification score [14].

Low serum myostatin levels can be associated with adverse outcomes. In one study,
myostatin levels, upon admission to the intensive care unit, were an independent prognostic
biomarker for overall survival, with lower myostatin levels (cut-off value, 16.14 ng/mL)
being related to poor survival [15]. Additionally, myostatin levels were higher in patients
with diabetes than those without diabetes, and low myostatin levels were associated with
metabolic syndrome [16].

Walking speed is an important measure of functional status and health, and it has
been regarded as the “sixth vital sign” [17]. Sarcopenia is associated with a decline in gait
speed and functional dependence [18]. Lower gait speed can predict mortality, especially in
the elderly [19]. Low gait speed is a good predictor of morbidity and mortality in patients
on hemodialysis [20]. In one systematic review and meta-analysis of cohort studies, each
0.1 m/s decrease in gait speed was associated with an 8% increased risk for cardiovascular
diseases and a 14% increased risk for premature mortality [21]. In patients with CKD or
on dialysis, the gait speed decreased as CKD progression occurred, as concluded by a
systematic review; in this review, while most studies focused primarily on gait speeds as
estimation of gait impairments, kidney transplantation patients were not recruited [22].
Furthermore, the relationship among muscle mass, myostatin levels, and gait speeds is
not fully known in kidney transplant (KT) recipients. A recent study has found that
in KT recipients, patients in the low skeletal muscle index group, compared to those in
normal group, had significantly higher serum myostatin concentrations, as well as lower
serum brain-derived neurotrophic factor (BDNF) levels; however, there was no significant
difference in walking speed, which was determined by the time needed to walk for a
distance of 10 m, between the two groups [23]. In this study, we aimed to evaluate the
association between gait speed and serum myostatin levels in KT recipients.

2. Materials and Methods
2.1. Participants

This was a cross-sectional study, and it was conducted in the outpatient department of
KT in the medical center in Hualian, Taiwan. Patients who underwent KT for more than
6 months between September 2017 and March 2018 were enrolled in the study. The study
was approved by the Research Ethics Committee of Hualien Tzu Chi Hospital, Buddhist
Tzu Chi Medical Foundation (IRB104-84-B). These patients were asked to provide written
informed consent and were approved by local ethics committee before they were enrolled in
the study. The exclusion criteria included active infection within 3 months, acute transplant
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rejection, decompensated heart failure, malignancy upon enrollment, and unwillingness
to provide informed consent. Data regarding baseline characteristics, chronic medication
use, and important medical history were collected. History of immunosuppressive drug
use, including tacrolimus, mycophenolate mofetil, steroid, rapamycin, and cyclosporine,
was obtained through a review of medical records. Hypertension was recognized based
on a history of use of antihypertensive drugs, and the diagnosis of diabetes mellitus was
established by medical history or use of antidiabetic medications.

2.2. Measurement of Blood Pressure, Body Weight, and Height

We measured these participants’ blood pressure using standard mercury sphygmo-
manometers after a 10 min rest. Body weight was checked with patients wearing light
clothing, and height was checked with patients standing barefoot or in their stockings. The
body mass index (BMI) was then calculated as weight/height2 (kg/m2).

2.3. Measurement of Skeletal Muscle Index, Handgrip Strength, and Gait Speed

We measured the skeletal muscle mass using a single-frequency bioimpedance device
(Tanita BC 706DB, Tanita Corporation, Tokyo, Japan); skeletal muscle index was calculated
as skeletal muscle mass/height2 (kg/m2). Handgrip strength was determined using a
Jamar Plus Digital Hand Dynamometer (SI Instruments Pty Ltd., Hilton, Australia) with
a precision of 1 kg. Participants were asked to hold the dynamometer in both hands
and squeeze as hard as possible, while in an upright standing position, with arms by
the side of the trunk, and with elbows flexed at 90◦. The measurement on both arms was
repeated three times with 1 min rest intervals between each measurement, and we chose the
maximum value for further analysis. For gait speed measurement, patients were instructed
to walk at their usual pace for six meters on a flat and straight path. The measurements
were performed before the initiation of dialysis. A stopwatch was used, and the timing
began with a verbal start command (static start). Patients were instructed to maintain their
speed without deceleration by the end of the walking course. The gait speed was calculated
as the distance traveled (i.e., 6 m) divided by the time taken to cover that distance. The
slow gait speed was defined as a gait speed of less than 1 m/s, according to the European
Working Group on Sarcopenia in Older People (EWGSOP) criteria. All measurements were
performed by the same trained operator.

2.4. Biochemical and Myostatin Investigations

Fasting blood samples with a total of about 5 mL were obtained from each participant.
Approximately 1 mL of each blood sample was analyzed for hemoglobin level using Sys-
mex K-1000 (Sysmex American, Mundelein, IL, USA). The other 4 mL were centrifuged at
3000× g for 10 min; serum creatinine, blood urea nitrogen, cystatin C, glucose, total choles-
terol, triglyceride, and albumin levels were analyzed using an auto-analyzer (Siemens
Advia 1800, Siemens Healthcare GmbH, Henkestr, Germany). We used enzyme-linked
immunosorbent assays to assess serum intact parathyroid hormone (iPTH) levels (Abcam,
Cambridge, MA, USA). The creatinine- and cystatin C-based estimated glomerular filtration
rate (eGFR) was determined using the Chronic Kidney Disease Epidemiology Collabora-
tion equation. Serum myostatin levels were checked with a commercial enzyme-linked
immunosorbent assay (ELISA) (R&D Systems, Inc., Minneapolis, MN, USA).

2.5. Statistical Analysis

Variables with normal distribution were presented as mean ± standard deviation and
analyzed using Student′s independent t-test or analysis of variance test; variables that
were not normally distributed were given as median (interquartile range) and analyzed
using the Mann–Whitney U test. Categorical variables were expressed as number and
relative proportion [number (%)] and analyzed using chi-squared test. Simple regression or
multivariable logistic regression analysis was used to evaluate the factors correlated to low
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gait speeds. A p value of less than 0.05 was considered statistically significant. Statistical
analysis was performed by using SPSS 19.0 software (SPSS, Chicago, IL, USA).

3. Results

A total of 84 KT recipients were enrolled in this study, and the baseline characteristics
are shown in Table 1. The distribution of serum myostatin levels is depicted in Figure 1;
the variable was not normally distributed, so the logarithm of serum myostatin concen-
tration was used for subsequent linear regression analysis. The mean gait speeds were
1.21 ± 0.15 m/s and 0.86 ± 0.10 m/s in the normal and low gait speed groups, respectively
(p < 0.001). Patients in the low gait speed group (n = 31) were found to be older (p = 0.009),
to have higher weight (p = 0.044) and BMI (p = 0.017), and to have a higher skeletal muscle
index (p = 0.027). Serum triglyceride (p = 0.029) and fasting glucose (p = 0.007) levels were
significantly higher in the low gait speed group. Although there was no statistical difference
in the serum creatinine levels between the groups, in the low gait group, there was lower
eGFR based on both creatinine (eGFRcre, p = 0.047) and cystatin C (eGFRcys, p = 0.006),
as well as higher cystatin C levels (p = 0.015). Mean myostatin levels were 7.61 ng/mL in
the normal gait speed group and 6.26 ng/mL in the low gait speed group (p < 0.001). The
proportion of mycophenolate mofetil use was significantly lower (p = 0.001) in the low gait
speed group, and the proportion of steroid use was significantly higher (p = 0.037) in the
low gait speed group.
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Table 1. Clinical variables of the 84 renal transplant recipients according to gait speed.

Characteristics All Patients
(n = 84)

Normal Gait Speed
Group (n = 53)

Low Gait Speed
Group (n = 31) p Value

Age (years) 45.45 ± 10.84 43.11 ± 10.26 49.45 ± 10.79 0.009 *
KT duration (months) 77.00 ± 50.00 80.00 ± 48.00 72.00 ± 54.00 0.515

Height (cm) 161.20 ± 7.60 161.46 ± 7.60 160.74 ± 7.72 0.678
Body weight (kg) 63.38 ± 12.73 61.25 ± 10.01 67.02 ± 15.90 0.044 *

Body mass index (kg/m2) 24.36 ± 4.47 23.48 ± 3.46 25.87 ± 5.56 0.017 *
Skeletal muscle index (kg/m2) 15.99 ± 2.19 15.59 ± 1.79 16.68 ± 2.63 0.027 *

Left handgrip strength (kg) 25.03 ± 8.54 25.88 ± 8.37 23.57 ± 8.78 0.233
Right handgrip strength (kg) 26.44 ± 9.33 27.59 ± 8.11 24.47 ± 10.97 0.140

Gait speed (m/s) 1.08 ± 0.21 1.21 ± 0.15 0.86 ± 0.10 <0.001 *
Systolic blood pressure (mmHg) 144.14 ± 18.66 146.02 ± 18.40 140.94 ± 18.98 0.231
Diastolic blood pressure (mmHg) 82.27 ± 10.30 83.79 ± 10.21 79.68 ± 10.09 0.077

Hemoglobin (g/dL) 11.91 ± 2.12 12.06 ± 1.97 11.66 ± 2.37 0.417
Total cholesterol (mg/dL) 189.09 ± 45.07 191.64 ± 38.14 184.74 ± 55.39 0.502

Triglyceride (mg/dL) 121.00 (89.25–166.75) 112.00 (86.50–154.00) 148.00 (97.00–206.00) 0.029 *
Fasting glucose (mg/dL) 96.00 (89.25–108.75) 94.00 (88.00–106.00) 100.00 (94.00–136.00) 0.007 *

Blood urea nitrogen (mg/dL) 24.00 (16.00–33.50) 23.00 (15.00–28.00) 26.00 (19.00–48.00) 0.041 *
Creatinine (mg/dL) 1.30 (1.00–1.80) 1.30 (0.95–1.60) 1.40 (1.10–2.10) 0.109

eGFRcre (mL/min/1.73 m2) 58.63 ± 26.17 62.96 ± 25.23 51.22 ± 26.49 0.047 *
Cystatin C (mg/L) 1.40 (1.07–1.87) 1.26 (1.04–1.77) 1.61 (1.22–2.20) 0.015 *

eGFRcys (mL/min/1.73 m2) 54.00 ± 25.99 59.87 ± 26.02 43.97 ± 23.03 0.006 *
Myostatin (ng/mL) 6.99 (5.82–8.32) 7.61 (6.39–9.73) 6.26 (4.87–7.00) <0.001 *

Albumin (g/dL) 4.35 ± 0.18 4.37 ± 0.19 4.31 ± 0.18 0.222
iPTH (pg/mL) 91.15 (52.95–146.35) 96.60 (56.08–132.63) 83.60 (48.93–173.65) 0.952
Female, n (%) 45 (53.6) 30 (56.6) 15 (48.4) 0.466

Diabetes mellitus, n (%) 40 (47.6) 26 (49.1) 14 (45.2) 0.730
Hypertension, n (%) 46 (54.8) 28 (52.8) 18 (58.1) 0.642
Living donor, n (%) 18 (21.4) 13 (24.5) 5 (16.1) 0.365

Tacrolimus use, n (%) 59 (70.2) 34 (64.2) 25 (80.6) 0.111
Mycophenolate mofetil use, n (%) 54 (64.3) 41 (77.4) 13 (41.9) 0.001 *

Steroid use, n (%) 69 (82.1) 40 (75.5) 29 (93.5) 0.037 *
Rapamycin use, n (%) 7 (8.3) 5 (9.4) 2 (6.5) 0.633

Cyclosporine use, n (%) 13 (15.5) 9 (17.0) 4 (12.9) 0.618
Statin use, n (%) 32 (38.1) 18 (34.0) 14 (45.2) 0.308

Fibrate use, n (%) 9 (10.7) 5 (9.4) 4 (12.9) 0.620

Values for continuous variables are given as mean ± standard deviation and tested by Student’s t-test; variables
that are not normally distributed are given as median and interquartile range and tested using Mann–Whitney U
test. KT, kidney transplantation; eGFRcre, estimated glomerular filtration rate from serum creatinine; eGFRcys,
estimated glomerular filtration rate from serum cystatin C; iPTH, intact parathyroid hormone. * p < 0.05 was
considered statistically significant.

Multivariable logistic regression analysis after adjustment for confounding factors
revealed that lower myostatin levels (odds ratio [OR] 0.538, 95% confidence interval [CI]
0.327–0.883, p = 0.014), as well as a lower usage of mycophenolate mofetil (OR 0.165, 95%
CI 0.038–0.720, p = 0.017) were independently associated with low gait speed (Table 2).
Multivariable stepwise linear regression analysis also showed positive correlation of myo-
statin levels with gait speeds (β = 0.353, adjusted R2 change = 0.245, p = 0.001) (Table 3).
There was negative correlation of age (β = −0.239, adjusted R2 change = 0.033, p = 0.016)
and body mass index (β = −0.211, adjusted R2 change = 0.031, p = 0.035) with gait speeds.
The area under the receiver operating characteristic curve indicated the diagnostic power
of serum myostatin levels for prediction of low gait speed was 0.769 (95% CI: 0.664–0.854,
p < 0.001) (Figure 2).
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Table 2. Multivariable logistic regression analysis of the factors correlated to low gait speed among
84 renal transplant recipients.

Variables Odds Ratio 95% Confidence Interval p Value

Myostatin, 1 ng/mL 0.538 0.327–0.883 0.014 *
Mycophenolate mofetil, used 0.165 0.038–0.720 0.017 *

Age, 1 year 1.043 0.973–1.118 0.234
Body weight, 1 kg 0.966 0.858–1.087 0.563

Body mass index, 1 kg/m2 1.068 0.803–1.421 0.650
Skeletal muscle index, 1 kg/m2 1.112 0.701–1.764 0.652

Triglyceride, 1 mg/dL 1.006 0.999–1.014 0.091
Fasting glucose, 1 mg/dL 1.009 0.987–1.031 0.439

Blood urea nitrogen, 1 mg/dL 0.993 0.911–1.083 0.879
eGFRcre, 1 mL/min/1.73 m2 1.036 0.970–1.107 0.289

Cystatin C, 1 mg/L 1.631 0.256–10.400 0.605
eGFRcys, 1 mL/min/1.73 m2 0.977 0.905–1.055 0.553

Albumin 0.180 0.003–9.829 0.401
iPTH 1.008 0.996–1.019 0.181

Steroid, used 0.716 0.081–6.314 0.763
Data analysis was performed using the multivariable logistic regression analysis (adopted factors: mycophenolate
mofetil use, steroid use, age, body weight, body mass index, skeletal muscle index, triglyceride, fasting glucose,
creatinine, blood urea nitrogen, cystain C, eGFRcre, eGFRcys, myostatin, albumin, and iPTH). eGFRcre, estimated
glomerular filtration rate from serum creatinine; eGFRcys, estimated glomerular filtration rate from serum cystatin
C; iPTH, intact parathyroid hormone. * p < 0.05 was statistically significant.
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Figure 2. The area under the receiver operating characteristic curve indicates the diagnostic power of
serum myostatin values for predicting low gait speed among 84 renal transplant recipients.

There was no significant difference in serum myostatin levels between those who
received rapamycin treatment (n = 7) and those who did not (n = 77) (p = 0.968) (Figure 3).
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Table 3. Correlation between gait speed values and clinical variables among 84 renal transplant
recipients.

Variables

Gait Speed (m/s)

Simple Regression Multivariate Regression

r p Value Beta Adjusted R2 Change p Value

Age (years) −0.348 0.001 * −0.239 0.033 0.016 *
KT duration (months) 0.030 0.785 — — —

Height (cm) 0.035 0.753 — — —
Body weight (kg) −0.298 0.006 * — — —

Body mass index (kg/m2) −0.338 0.002 * −0.211 0.031 0.035 *
Skeletal muscle index (kg/m2) −0.362 0.001* — — —

Left handgrip strength (kg) 0.025 0.821 — — —
Right handgrip strength (kg) 0.132 0.230 — — —

Systolic blood pressure (mmHg) 0.170 0.122 — — —
Diastolic blood pressure (mmHg) 0.208 0.058 — — —

Hemoglobin (g/dL) 0.103 0.353 — — —
Total cholesterol (mg/dL) 0.115 0.298 — — —
Log-Triglyceride (mg/dL) −0.218 0.047 * — — —

Log-Glucose (mg/dL) −0.232 0.032 * — — —
Log-BUN (mg/dL) −0.213 0.052 — — —

Log-Creatinine (mg/dL) −0.186 0.090 — — —
eGFRcre (mL/min/1.73 m2) 0.193 0.079 — — —

Log-Cystatin C (mg/L) −0.303 0.005 * — — —
eGFRcys (mL/min/1.73 m2) 0.296 0.006 * — — —

Log-Myostatin (ng/mL) 0.504 <0.001 * 0.355 0.245 0.001 *
Albumin (g/dL) −0.007 0.949 — — —

Log-iPTH (pg/mL) 0.065 0.555 — — —
Mycophenolate mofetil use 0.246 0.024 * — — —

Steroid use −0.217 0.047 * — — —
Rapamycin use −0.023 0.834 — — —

Cyclosporine use 0.073 0.507 — — —
Statin use −0.149 0.177 — — —

Fibrate use −0.086 0.439 — — —

Data of triglyceride, glucose, BUN, creatinine, cystatin C, and myostatin levels showed skewed distribution
and were, therefore, log-transformed before analysis. Data analysis was performed using the univariable linear
regression analyses or multivariable stepwise linear regression analysis (adopted factors: mycophenolate mofetil
use, steroid use, age, body weight, body mass index, skeletal muscle index, log-triglyceride, log-glucose, log-
cystatin C, eGFRcys, and log-myostatin). KT, kidney transplantation; BUN: Blood urea nitrogen; eGFRcre,
estimated glomerular filtration rate from serum creatinine; eGFRcys, estimated glomerular filtration rate from
serum cystatin C; iPTH, intact parathyroid hormone. * p < 0.05 was considered statistically significant.
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4. Discussion

In this study, the most important finding is that lower serum myostatin levels, older
age, and higher BMI were independently associated with low gait speeds in KT recipients.
Among these factors, lower serum myostatin levels seemed to be the strongest predictor of
low gait speeds.

Serum myostatin levels were lower in the low gait speed group. Myostatin, expressed
in skeletal muscle, binds to activin receptors type IIB (ActRIIB) on myoblasts, which
further transphosphorylate activin type I receptors. Smad 2/3 is phosphorylated and then
aggregates with Smad 4. The Smad 2/3 and Smad 4 complex is translocated into the nucleus,
blocking the transcription of myogenesis-responsible genes [1,24]. Smad 7 attempts to bind
to activin type I receptors and also prevents the formation of the Smad 2/3 and Smad 4
complex. Smad 7 transcription is induced by activin stimulation, which can be regarded as
the negative feedback mechanism of myostatin promotor activity and the related signaling
pathway [25,26]. Additionally, overexpression of Smad 7 may downregulate endogenous
myostatin mRNA levels. As a result, myostatin can auto-regulate its own expression by
negative feedback via Smad 7 [25]. The mechanism may explain the decreased levels
of serum myostatin in the low gait speed group. In one study that recruited healthy
elderly subjects, a positive correlation between serum myostatin levels and gait speed was
found [27]. To the best of our knowledge, this is the first study focusing on the association
between myostatin levels and gait speeds in patients who have underwent KT.

There was an inverse relationship between BMI and gait speed in our study; in
the low gait speed group, the serum triglyceride levels were significantly higher. One
possible explanation for higher BMI in the low gait speed group is age-related sarcopenic
obesity, which is related to higher fat mass, as well as hypertriglyceridemia [28]. In one
cross-sectional study, among the components of metabolic syndrome, low high-density
lipoprotein cholesterol in women was significantly associated with lower gait speeds [29].
To sum up, higher BMI may reflect sarcopenic obesity, and dyslipidemia is in part associated
with gait speeds.

It is difficult to explain why the skeletal muscle index is slightly higher in patients
with lower gait speed. First, a lack of myostatin can lead to excessive muscle growth.
Myostatin knockout mice had larger muscle mass but no related increase in maximum
tetanic force generation [30,31]. There was increased number of type IIb muscle fibers and
a decreased number of type I and IIa fibers, which could contribute to faster fatigue in
mice with myostatin depletion. Mitochondrial depletion resulting from lack of myostatin
might be associated with easy fatigability and decreased exercise capacity. As a result,
lower myostatin levels can increase skeletal muscle mass but lower gait speeds due to
faster fatigability. The second explanation is that, as noted above, the higher BMI in the
lower gait speed group might indicate sarcopenic obesity. In fact, reference values and
cut-offs for skeletal muscle mass or the skeletal muscle index vary widely among different
available methods; therefore, it may be impossible to define sarcopenia absolutely by
using the skeletal muscle index [32]. Furthermore, obesity may have adverse impacts on
skeletal muscle quality, by inducing skeletal muscle inflammation through inflammatory
cytokines and chemokines [33]. Despite a higher skeletal muscle index, the skeletal muscle
malfunctions, thus causing low gait speeds.

In our study, age is significantly higher in low gait speed group. Aging contributes
to sarcopenic obesity with increased fat mass and diminished muscle mass [34]. In one
observational study, the proportion of lower gait speeds increased with older ages [35].

It has been shown that in early CKD, plasma myostatin levels are elevated due to
decreased renal clearance and increased myostatin production [2]. However, in the lower
gait speed group in our study, there was lower eGFR and lower myostatin levels. One
possible reason is that myostatin down-regulation is induced by other factors (as mentioned
above); another explanation is that myostatin expression at the tissue level, which is not
measured in our study, might be more representative. In fact, increased myostatin activation
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by cytokines, uremic toxins, oxidative stress, and physical inactivity in CKD might not be
fully reflected by serum myostatin concentrations [2].

The proportion of mycophenolate mofetil use in patients with low gait speeds is signif-
icantly lower, but whether lower frequency of mycophenolate mofetil use is associated with
gait speeds is not yet clear. One possible explanation is corticosteroid-induced myopathy.
A greater proportion of patients not receiving mycophenolate mofetil treatment (n = 30)
received steroid therapy (n = 28; p = 0.047).

Myostatin inhibits the Akt/mammalian target of rapamycin (mTOR) signaling path-
way through a decrease in Akt phosphorylation, and the mTOR complex mTORC1 regulates
skeletal muscle protein synthesis and muscle hypertrophy [36,37]. As noted from Figure 3,
rapamycin use may not have significant impact on serum myostatin levels. Further research
is needed to confirm this finding.

Treatment targeting myostatin inhibition may have promising results for patients
with sarcopenia or low gait speeds, as mentioned above. Myostatin inhibition therapy
may be of benefit, independently of serum myostatin levels, as in our study, the serum
myostatin levels are lower in those with lower gait speeds. This warrants further studies
for confirmation.

In short, patients in the low gait speed group, when compared to the normal gait
speed group, had a significantly more advanced age, greater body weight, greater BMI,
higher skeletal muscle index, and lower eGFR, as well as lower myostatin levels.

This study has some limitations. Firstly, the sample size is small and may not be
representative of the overall population (especially not of young and middle-aged groups),
and this may directly influence the interpretation of the results. Secondly, skeletal muscle
mass was measured by using a bioimpedance device, and it did not have ideal reference
values for defining sarcopenia. Therefore, we cannot clearly define the association of
skeletal muscle mass or index with gait speed values. Thirdly, since this is a cross-sectional
study, whether low myostatin levels and low gait speed groups are just in association
or have causal relationship is not known. Whether the low gait speed group influences
outcomes cannot be demonstrated from the results of this study. Serum myostatin levels
may change over time, and the changes might have impacts on skeletal muscle mass,
muscle strength, gait speeds, renal functions, or overall survival. Currently, there are
limited data to confirm these possible associations. Fourthly, the determination of serum
myostatin levels can be easily influenced by conditions that alter myostatin expression,
such as age and comorbidities. In addition, currently available ELISA detects only total
circulating myostatin, not the precursor protein such as promyostain. Indeed, whether
promyostain directly regulates growth of skeletal muscle is not clear. Finally, if we further
divide the low gait speed group into “low” and “very low” groups, the association of
serum myostatin levels with gait speeds might be even greater; however, the small sample
size would make the analysis even more difficult. Different cutoffs for gait speeds might
give rise to different results.

5. Conclusions

In this study, we can conclude that in patients having undergone KT, serum myostatin
levels are positively correlated with gait speed values, and we can predict low gait speeds
from myostatin levels. Although gait speed may predict mortality, there is currently no
clear, direct evidence to prove that low serum myostatin levels are associated with poor
overall survival in KT recipients. Future research can focus on the role of serum myostatin
as an independent biomarker for survival in these patients, and an extended follow-up
period is mandatory.
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