
Density Functional Theory Study of Ethylene Carbonate Adsorption
on the (0001) Surface of Aluminum Oxide α‑Al2O3

Brian Ramogayana, David Santos-Carballal,* Khomotso P. Maenetja, Nora H. de Leeuw,
and Phuti E. Ngoepe*

Cite This: ACS Omega 2021, 6, 29577−29587 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Surface coating is one of the techniques used to improve the
electrochemical performance and enhance the resistance against decomposition of
cathode materials in lithium-ion batteries. Despite several experimental studies
addressing the surface coating of secondary Li-ion batteries using α-Al2O3, the
reactivity of the material toward the electrolyte components is not yet fully
understood. Here, we have employed calculations based on the density functional
theory to investigate the adsorption of the organic solvent ethylene carbonate (EC)
on the major α-Al2O3(0001) surface. During adsorption of a single EC molecule, it
was found that it prefers to bind parallel to the surface through its carboxyl oxygen.
As the surface coverage (θ) was increased up to a monolayer, we observed larger
adsorption energies per EC molecule (Eads/NEC) for parallel interactions and a
reduction for perpendicular interactions. We also noted that increasing the surface
coverage with both parallel and perpendicularly interacting EC molecules led to a
decrease of the surface free energies and hence increased stability of the α-
Al2O3(0001) surface. Despite the larger Eads/NEC observed when the molecule was placed parallel to the surface, minimal charge
transfer was calculated for single EC interactions and at higher surface coverages. The simulated scanning tunneling microscopy
images are also presented for a clean corundum α-Al2O3 surface and after adsorption with different coverages of parallel and
perpendicularly placed EC molecules.

1. INTRODUCTION

Global interest is growing in the development of cheap,
renewable, and clean energy storage systems which will
facilitate moving away from the reliance on fossil fuels.
Alternative energy sources include solar,1−3 wind,4,5 and
biofuel energy.6,7 Among the most researched energy storage
systems is lithium-ion battery technology, which has
application in portable devices, electric vehicles, and stationary
smart grids.8 However, current Li-ion batteries use LiMn2O4 as
a cathode material, which over time needs replacement as it
experiences degradation due to the interactions with the
electrolyte, which leads to capacity fading.9−11 Various
strategies have been implemented to improve the electro-
chemical performance of LiMn2O4, including optimization of
the electrolyte,12,13 using alternative cathode materials14−17

and electrolyte salts,18−20 doping the cation sites of the
cathode,21,22 and coating the surface to create an artificial
barrier that limits direct cathode−electrolyte contact.23−27

Various types of coating materials have been explored, for
example, fluorides28−30 (AlF3, SrF2, and LaF3), phos-
phates,31−33 and oxides (ZnO,34−36 ZrO2,

37 MgO,38,39 and
Al2O3

28−41), which have shown improved capacity retention
and electrochemical performance compared to the uncoated

cathode material. Among these, aluminum oxide (α-Al2O3) is
considered one of the best candidates for coating materials
because of its good electrochemical properties.42 Kannan and
Manthiram43 and Eftekhari44 initially reported that α-Al2O3

significantly improves the electrochemical performance of the
LiMn2O4 spinel at elevated temperatures. Numerous subse-
quent studies indicated that α-Al2O3 also enhances the cycling
capacity by reducing the dissolution of the Mn transition
metal.40,41,45−47

In other technological applications, α-Al2O3 is mainly used
for its high thermal conductivity, resistance against extreme
temperatures and corrosion, and excellent electrical insulation
properties.48−51 Several studies have reported the adsorption of
various molecules, including H2O,

52−54 HCl,55−57 CO2,
58 and

methanol,59 onto the α-Al2O3 surfaces as these are of interest
for different applications. Quan et al.60 employed density
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functional theory (DFT) simulations to study the adsorption
of hydrofluoric acid (HF) on the α-Al2O3(0001) surface and
found that, upon relaxation, a new Al−F bond was formed.
This finding indicates that α-Al2O3 creates both a protective
barrier on its own between the cathode and the electrolyte
components and an additional passivating AlF3 coating layer
following the reaction with the HF acidic electrolyte
component.61

Ethylene carbonate (EC) is the most stable and effective
electrolyte solvent with better electrochemical performance
than propylene carbonate, dimethyl carbonate, and diethyl
carbonate.62−64 Compared to other organic solvents, EC has
boiling and melting points, which are approximately 248 and
36.4 °C, respectively.65 In our previous study,66 we employed
DFT calculations with a Hubbard Hamiltonian and long-range
dispersion corrections to study the adsorption of EC onto the
low-Miller-index surfaces of LiMn2O4, where we found that the
EC weakly adsorbed on the Mn/Li sites of the spinel surfaces
via the carbonyl or ethereal oxygen, thus allowing the molecule
to detach easily to expose the (111) surface. However, the
reactivity of EC with the coating material α-Al2O3 is equally
important but not yet fully understood.
In this paper, we have employed DFT calculations to

investigate the reactivity of EC at the major α-Al2O3(0001)
surface. We discuss the adsorption energies and binding
configurations from a single EC molecule up to full monolayer
coverage on the α-Al2O3(0001) surface. We have also carried
out an analysis of the charge transfer and vibrational
frequencies and finally have reported calculated scanning
tunneling microscopy (STM) images for future comparison
with the experiment.

2. RESULTS AND DISCUSSION

2.1. Bulk and Surface Models. The crystal structure of α-
Al2O3 has hexagonal symmetry with the space group R3̅c (no.
167). The structure consists of a hexagonal close-packed array
of oxygen atoms along the [001] direction with the Al atoms
occupying two-thirds of the octahedral interstices; see Figure
1a. Following a full bulk optimization, the predicted
equilibrium lattice parameters were a = b = 4.75 Å and c =
12.97 Å, which agrees within 0.21% with the values of a = b =
4.760 Å and c = 12.989 Å reported in the literature.76 As
shown in Figure 1b, EC is an organic molecule with formula
C3H4O3 with a high symmetry and large dielectric constant (ε
≈ 90.5)77,78 compared to other organic solvents.
The corundum α-Al2O3(0001) surface terminations studied

in this work were created by cleaving a fully optimized (2 × 2)
supercell of the bulk unit cell using the method implemented
in the METADISE code79 to create nondipolar surface models.
We chose to model the α-Al2O3(0001) surface, since it has
been reported as the dominant plane in corundum nano-
particles.80−82 The (0001) surface simulation cells contain 120
atoms (48 Al and 72 O) distributed in atomic layers of 6
formula units (f.u.) in both Al- and O-terminated slabs with a
surface area of 90.3 Å. A vacuum region of 15 Å was added
perpendicularly to the surface termination to avoid interactions
between the periodic images. The atoms in the upper layers
were allowed to relax (i.e., 3 f.u.), whereas the other atoms in
the bottom layers were kept fixed at their relaxed α-Al2O3 bulk
positions. The two slabs were stoichiometric, symmetric, and
nonpolar along the z-direction. Figure 2 shows the side and top
views of the Al- and O-terminated α-Al2O3(0001) surfaces
before and after relaxation. Convergence tests were carried out

Figure 1. (a) Hexagonal crystal structure of aluminum oxide (α-Al2O3) and (b) representation of the EC molecule, indicating the carbonyl (Oc)
and ethereal (Oe) oxygen atoms.

Figure 2. Top and side views of the (a) Al- and (b) O-terminated α-Al2O3(0001) surfaces before and after relaxation. The stacking sequence for
both Al- and O-terminated surfaces are shown on the far right of each panel. The crystallographic direction for the top view of (0001) surface
terminations is [001] for the abscissae toward the right.
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to determine the required total number of layers, relaxed
atomic layers, and the vacuum thickness until the energy
change dropped below 1 meV. Dipole corrections perpendic-
ular to the surface plane were applied during our calculations
to enhance the convergence of the electronic energy.
Geometry optimizations were conducted using the conjugate-
gradient technique and were considered converged when the
Hellmann−Feynman forces were below 0.01 eV/Å. The
stacking sequence of the two terminations consists of
alternating Al and O planes, which are reconstructed Tasker
type III surfaces.83 The stoichiometric slab terminating in the
Al layer has the sequence Al2, O6, Al4, O6, ..., O6, Al4, O6, Al2,
and the stacking sequence for the slab terminating in the
oxygen layer can be represented as O3, Al4, O6, Al4, ..., Al4, O6,
Al4, O3.
2.2. Surface Energies. The unrelaxed (γu) and relaxed (γr)

surface energies were calculated using eqs 1 and 2, respectively

γ =
−E E

A2u
u,slab bulk

(1)

γ γ+ =
−E E

Au r
r,slab bulk

(2)

where Eu,slab, Er,slab, and Ebulk are the total energy of the
unrelaxed slab, half-relaxed slab, and the bulk, respectively, all
with the same number of formula units, whereas A is the
surface area of the slab. Unrelaxed surface energies were
evaluated from static calculations of a slab created from a
freshly cut bulk, while the surface energies of the half-relaxed
slabs were calculated after geometry optimization, where the 3
f.u. uppermost atomic layers were allowed to relax, while the
remaining bottommost layers were kept fixed at their relaxed
bulk positions. The degree of relaxation (R) was also calculated
for all surface terminations as

γ γ
γ

=
−

×R 100u r

u (3)

As summarized in Table 1, the lowest unrelaxed and relaxed
surface energies were obtained for the Al-terminated slab with

γr = 0.11 eV/Å2, which accounts for the most stable
termination. The predominant stability of the Al-terminated

(0001) surface is consistent with previously reported
studies54,58,84−87 and the experimental work by McHale et
al.,88 who found that γ = 0.16 eV/Å2. For both Al- and O-
terminated surfaces, we observed a large geometry relaxation,
with the largest R = 65.8% obtained for the O-terminated slab.
This large difference between the unrelaxed and relaxed

surface energies was due to the inward movement of the
exposed ions in the Al-terminated facet and an outward ionic
movement in the O-terminated slab. During energy
minimization, we observed a large relaxation, wherein the
Al−O interlayer distance decreased from 1.85 to 1.69 Å and
increased from 1.70 to 1.97 Å for the Al-terminated and O-
terminated slabs, respectively. This decrease was associated
with vertical relaxation of Al−O, wherein the Al-terminated
slab experienced an inward relaxation of 0.75 Å along the z-
axis, thereby coming closer to the O layer underneath, while
the O-terminated slab experienced an outward relaxation of
0.99 Å. Similar findings were previously reported in both
experimental and theoretical studies, which also revealed that
the Al-terminated surfaces exhibit a large lattice contraction
along the z-direction in order to minimize the strong
electrostatic attractions.89−91 Al2O3 is a strongly ionic oxide,
and the reconstructed surface termination is unstable, since it
leaves bare surface Al3+ ions or dangling O-bonds.84,92−95 In
this work, the molecular adsorption of EC and the character-
ization of the physicochemical properties is only performed on
the most stable Al-terminated surface, which is the most likely
to appear in the corundum crystal morphology in the absence
of water.54

2.3. Molecular Adsorption. In this section, we study the
adsorption of EC on the major Al-terminated α-Al2O3(0001)
surface. Considering the availability of one top-layer Al site on
the (1 × 1) Al-terminated surface, the Al surface sites on our
modeled (2 × 2) Al-terminated surface are all identical. The
initial EC binding configurations on the surface involve
molecular coordination via the carbonyl (Oc) and ethereal
oxygen (Oe) in parallel, perpendicular, and bridging/bidentate
binding orientations. As discussed in our previous work,66

where the structural parameters of our optimized and isolated
EC molecule were compared with the available experimental
and theoretical data, our computational settings can properly
capture the main properties of this molecule. Upon adsorption,
the average adsorption energy per EC molecule on the α-
Al2O3(0001) surface was calculated as

= [ − + ]+E
N

E N E E
1

( )ads
EC

EC slab EC EC r,slab
(4)

where Eslab+EC, and EEC are the total energies of the slab with
the adsorbed EC molecules, and the isolated molecule,

Table 1. Surface Energies for the Unrelaxed (γu) and
Relaxed (γr) Al- and O-Terminated α-Al2O3(0001) Facets

surface terminations γu (eV/Å
2) γr (eV/Å

2) R (%)

Al 0.25 0.11 57.0
O 0.38 0.13 65.8

Figure 3. Adsorption energies (Eads) calculated for a single EC molecule placed (a) parallel, (b) perpendicular, and (c) in a bridging/bidentate
binding.
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respectively. NEC corresponds to the number of adsorbed EC
molecules.
2.3.1. Single EC Molecule Adsorption. We next studied the

adsorption of a single EC molecule placed parallel and
perpendicular to the surface, interacting via the carbonyl (Oc),
ethereal (Oe) oxygen, and both on the top-layer Al positions of
the α-Al2O3(0001) surface. In all different orientations, the EC
molecule was initially placed at a distance of 2.0 Å from the
surface to favor the attractive forces between the adsorbate and
the facet. However, the molecule and surface were allowed to
move freely during relaxation. Figure 3 summarizes the
adsorption energies calculated for the α-Al2O3(0001) surface
with the EC molecule placed parallel, perpendicular, and in a
bridging/bidentate binding. The largest adsorption energy was
observed when the molecule was placed parallel to the surface
with Eads = −1.69 eV. In all adsorptions, the protruding Al
atom interacting with the molecule moves upward out of the
surface by ∼0.035 Å to form a bond with the EC molecule.
Upon relaxation of the bridging/bidentate configuration, the
EC molecule preferred to interact with the surface via the
carbonyl oxygen.
2.3.2. Varying Surface Coverages. To consider the effect of

different surface coverages, the number of adsorbed EC
molecules (NEC) was increased stepwise until a full monolayer
was obtained on the Al-terminated α-Al2O3(0001) surface.
The surface coverage (θ) was calculated as the ratio between
the number of adsorbed EC molecules (NEC) and the total
number of available adsorption sites (N) as

θ =
N
N

EC
(5)

where θ = 0 indicates that no adsorption takes place on the
surface, while θ = 1 shows that the surface adsorption reached
a full monolayer. The effect of surface coverage on the average
adsorption energy was explored for parallel and perpendicular
surface interactions of the EC molecule, which are summarized
in Figure 4. Generally, the value of Eads/NEC becomes
progressively smaller with NEC for the parallel binding
modes, but the average adsorption energy grows for the
perpendicular type of orientations for θEC ≤ 0.75, although it
slightly decreases again for θEC = 1.00. The decrease of Eads/

NEC observed for the parallel interactions indicates that for θEC
> 1, the steric effects due to the lateral interactions between the
EC molecules, which occupy a large surface area, destabilize
the system. For perpendicular interactions, the value of Eads/
NEC increases with respect to the single EC molecule
adsorption up to θEC ≤ 0.75 as there are attractive van der
Waals forces between the parallelly stacked molecules.
However, we observed a decrease of the average adsorption
energy (Eads/NEC) when we reached a full monolayer (θ = 1)
as the repulsive steric forces between the closely placed EC
molecules become larger than the attractive van der Waals
forces. Our results indicate that from a thermodynamic point
of view, the EC molecule prefers to attach to the surface in a
parallel fashion up to θEC ≤ 0.75, whereas a full monolayer is
energetically more favorable if all the molecules change to the
perpendicular orientation. We rationalize the change of the
adsorption configuration based on steric factors as the parallel
molecules repel each other, which therefore need to become
perpendicular to the surface to allow better accommodation of
the full monolayer. Note that adsorption at higher coverages
led to the detachment of the fifth molecule from the surface as
it experienced strong steric hindrance caused by the EC−EC
interactions.
We also explored the effect of surface coverage (θ) on the

work function (ϕ) for the EC molecules placed in parallel and
perpendicular configurations onto the surface. The work
function (ϕ) measures the energy required to bring a surface
electron into the vacuum,93 and it is known to be larger for
denser surface crystals than for those with open lattices.96,97

Generally, an increase in the work function was observed as we
increase the surface coverage (θEC) for both parallel and
perpendicular interactions; see Figure 5. The largest value of
the work function (ϕ) was observed for the full monolayer of
perpendicularly placed EC molecules with ϕ = 6.37 eV.

2.4. Surface Free Energies. We further calculated the
surface free energy (σ) for the surfaces after adsorption of
different coverages of EC molecules via

σ γ= +
− − ×+E E N E

Ar
EC slab r,slab EC EC

(6)

Figure 6 summarizes the effect of surface coverage (θ) on
the surface free energies (σ). The calculated surface free
energies generally decrease compared to the clean surface (θ =
0), indicating that the system is stabilized upon EC adsorption,
with the most stable surface achieved when we reach a full
monolayer (θ = 1). For parallel interactions, the surface free
energies decrease with respect to the surface energy of the
pristine (0001) facet up to θ ≤ 0.75, when σ stabilizes at
around 0.06 eV/Å. At θ = 1, repulsive steric forces between the
closely placed EC molecules become larger than the attractive
van der Waals forces, and as a result, the fourth molecule
detached from the surface upon relaxation of the full
monolayer-covered surface, hence leading to the same surface
energy for θ = 0.75 and θ = 1 for the parallel EC molecules.

2.5. Bader Charge Analysis. To investigate the electronic
charge transfers between the EC molecules and the surface, we
carried out a Bader charge analysis for the most favorable
adsorption configurations found on the α-Al2O3(0001) surface.
We used the code developed by Henkelman and collabo-
rators98 to perform the Bader analysis of charges.99 In this
method, the atoms are defined as the regions enclosed within
surfaces of zero flux of charge density. Table 2 summarizes the
charge transfers between the surface and the adsorbed EC

Figure 4. Average adsorption energy as a function of the surface
coverage for the EC molecules adsorbed parallelly and perpendicularly
to the surface.
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molecules. For the adsorption of a single EC molecule, we
generally observed minor charge transfers between the surface
and the adsorbate. Similar results were found in our previous
study, where we investigated the EC adsorption on the major
surfaces of the LiMn2O4 spinel.66 The EC molecule gained
small charges of −0.094 and −0.071 e− when it was placed in
parallel and perpendicular modes onto the surface. As we
increased the surface coverage to θ = 0.50, the charge transfer
remained constant in both orientations. However, we found a
reduction of the charge transfer for θ ≥ 0.75 compared to
lower surface coverages of the EC molecule due to the
interactions between the closely packed adsorbate molecules.
We also calculated the charge accumulation/depletion between
the interacting atoms, that is, the carbonyl or ethereal oxygen
atoms of the EC molecule and the Al atom of the surface. Our
calculations suggest that there is minor charge accumulation
for the parallel interactions, whereas there is a minimal

depletion of charge for parallel interactions when the coverage
is increased up to θ = 0.50. However, we observe a large charge
accumulation of 0.761 and 0.836 e− on the interacting oxygen
atom for θ = 0.75 and at full monolayer coverage.
To gain more insights into the electronic charge transfers,

we analyzed the differential electron density (Δρ). Figure 7
shows the isosurfaces of the electron density difference
between the α-Al2O3(0001) surface and the EC molecule at
different coverages. The charge density difference was obtained
by subtracting the sum of the electron charge densities of the
clean surface (ρsurf) and an isolated EC molecule (ρEC), with
an identical structure as in the adsorbed form, from the
electron density of the total system comprising the surface and
the adsorbed molecule (ρsys) according to

ρ ρ ρΔρ = − +( )sys surf EC (7)

Figure 5. Work function (ϕ) as a function of the surface coverage for the EC molecules adsorbed parallelly and perpendicularly to the surface.

Figure 6. Surface free energies (σ) for the Al-terminated α-Al2O3(0001) surface as a function of the surface coverage for the EC molecules
adsorbed parallelly and perpendicularly to the surface.
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Figure 7 shows that, although we observe a small charge
transfer for the adsorption of a single EC molecule, the
electronic charge flow indicates an internal charge rearrange-
ment within the molecule. We observe partial oxidation of the
carbon atom and partial reduction of the interacting oxygen
due to an intramolecular electronic rearrangement from the
CO π-bond to the newly formed Al−O σ-bond, which is
also in agreement with our previous work.66 The isosurfaces of
charge density also indicate electronic accumulation on the

hydrogen atoms, caused by the interactions between them and
the surface oxygen atoms.

2.6. Vibrational Modes. The simulated wavenumbers of
the vibrational modes are directly related to the force constant
of the intramolecular bonds, calculated as the second
derivatives of the total energy with respect to the atomic
positions,101,102 which were allowed to move by small
displacements to ensure that they fall within the harmonic
part of the energy potential well. Table 2 summarizes the
vibrational modes for the carbonyl group ν(CO) and

Table 2. Charge Transfer between the EC Molecule and the Surface (ΔqEC); Average Value for the Charge Accumulation/
Depletion within the Interacting EC Atom (ΔqOc/Oe

), i.e., Carbonyl or the Ethereal Oxygen Atom as a Function of the Surface
Coverage (θEC)

a and Average Stretching Mode for the Carbonyl Group ν(C=O), as Well as the Asymmetric νasy(CH2) and
Symmetric Stretching Mode νsys(CH2) and the Bending Mode for the Methylene Group δ(CH2)

CH2

adsorption orientation θ ΔqEC (e−) ΔqO
c
/O

e
(e−) νCO (cm−1) νsys (cm

−1) νasy (cm
−1) δ (cm−1)

isolated EC molecule 1829 2952 2990 1341
liquid film EC66,100 1803 2928 2955 1397

parallel 0.25 −0.094 −0.053 1654 3087 3022 1482
0.50 −0.094 −0.049 1665 2991 3112 1474
0.75 −0.021 0.743 1704 3015 3064 1455
1.00 −0.010 0.766 1753 3054 3053 1468

perpendicular 0.25 −0.071 0.056 1619 3024 3059 1432
0.50 −0.072 0.054 1851 3026 3086 1456
0.75 −0.019 0.617 1819 3091 3040 1465
1.00 −0.019 0.631 1823 3120 3054 1474

aNegative charge transfer values indicate a charge accumulation on the adsorbate, while positive values indicate charge transfers to the surface.

Figure 7. Top and side views of the charge density flow (Δρ) for different coverages of the EC molecule adsorbed (a) parallelly and (b)
perpendicularly on the α-Al2O3(0001) surface. Density gain and depletion regions are represented in yellow and blue, respectively. Isosurfaces
display a value of ±0.099, ±0.190, ±0.018, and ±0.009 e/Å3 for (i) a single EC, (ii) two EC, (iii) three EC, and (iv) four EC molecules.
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methylene group ν(CH2) {i.e., the asymmetric stretching mode
(νasy), symmetric stretching mode (νsys) and the bending mode
(δ)}. The stretching modes presented are the modes for the
isolated EC molecule and the average vibrational modes at
various EC coverages on the Al-terminated α-Al2O3(0001)
surface. The wavenumbers of the vibrational modes of an
isolated EC molecule are in excellent agreement with the
experimental modes for liquid films,100 and thus, we are
confident of our predictions for the interacting molecules. The
average stretching modes calculated for EC as we increase the
surface coverage remain in the same range as for single EC
adsorption, indicating that the vibrational modes are not
affected by the increase in coverage. For example, our
computed vibrational modes for the carbonyl group ν(C−H)
for single adsorptions and at higher coverage were within the
range 2850−3300 cm−1 reported in the previous studies.103,104

The carbonyl (CO) stretching modes are red-shifted
compared to the isolated adsorbate, suggesting that the
carbonyl double bond weakens upon adsorption. The
stretching vibrational modes of the methylene (CH2) groups
are blue-shifted with respect to the isolated EC molecule as a
result of the steric effect and the more restricted mobility of the
hydrogen atoms.
2.7. STM Images. We have also derived the topographical

STM images from a spatial distribution of the valence band
state in the vicinity of the Fermi level of the surfaces containing
different coverages of the EC molecule. The STM images were
simulated according to the basic formulation of the Tersoff−
Hamann approach,105 where the tip of the STM was
approximated to an infinitely small point source. We have
used the program HIVE106 for the production of our constant-
height STM topographic images, where the partial charge
density was integrated between the ranges −2.5 to 0 eV.107−109
Figure 8 show the STM images for a clean surface and after
adsorption with different coverages of parallel and perpendic-
ular EC molecules. The STM for a clean corundum α-Al2O3

surface was obtained at 0.1 Å and a density of ϱ = 0.0017 e/Å3,
clearly showing alternating rows of well-defined Al and O
atoms. The corundum α-Al2O3 adopts the same hexagonal
array as the isostructural hematite α-Fe2O3 mineral, displaying
similar STM images.110−112 STM images for the surfaces with
adsorbed EC molecules clearly show the array and orientation
of the molecules on the surface, allowing us to discriminate the
orientation and surface coverage of the EC molecules.
However, due to the size of the molecule, the molecule(s) in
the adsorbed surfaces appear as bright spots as shown by the
insets. At higher coverage, the images become less clear since
the molecules become closely packed and closer to each other.

3. CONCLUSIONS

We have employed DFT calculations to investigate the
adsorption of a range of EC coverages onto the major α-
Al2O3(0001) surface. Our surface energy calculations indicate
that the Al-terminated (0001) surface is the most stable facet,
which compares well with the previous works. A single EC
molecule prefers to bind in a parallel mode to the Al-
terminated α-Al2O3(0001) surface with only minor charge
transfer occurring upon adsorption. When the surface coverage
was increased up to the full monolayer, the Eads/NEC for
parallel interactions decreased with coverage, whereas the
average adsorption energy increased for perpendicular
orientations compared to the initial adsorption of an isolated
EC molecule. The surface free energies decrease with an
increase of the EC coverage, indicating increased surface
stability when parallel or perpendicular EC molecules interact
with the surface. Minor charge transfers between the surface
and EC molecules were generally observed for both
orientations even at higher surface coverage. However, we
found an increase in charge accumulation on the interacting
atom (either the carbonyl or ethereal oxygen). We also
observed steric hindrance at higher coverages due to the EC−

Figure 8. Simulated STM images of (a) clean Al-terminated α-Al2O3(0001) surface and after adsorption with different coverages of (b) parallelly
and (c) perpendicularly placed EC molecules at a sample bias of −2.5 eV. Density (ϱ) and tip distance (d) are also indicated. Insets show the
adsorbed EC molecules and atoms on the top surface layer.
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EC interaction, which led to the detachment of EC molecules
at high coverages.
As we increase the surface coverage, our simulations show an

increasing red shift for ν(CO) with respect to an isolated
EC molecule, suggesting that the carbonyl bonds weaken upon
adsorptions. The blue shift of the symmetric and asymmetric
ν(CH2) modes indicate steric hindrance. The simulated STM
images are also presented for a clean corundum α-Al2O3(0001)
surface and surface with adsorbed molecules at different EC
coverages. The STM for the clean corundum α-Al2O3(0001)
surface compares well with the image for the same facet of the
isostructural hexagonal haematite α-Fe2O3 structure, which can
be used for comparison with future experiments.
The results obtained in this work indicate that the EC

solvent used as an electrolyte is relatively inert toward Al2O3,
which is important in the interpretation of the role of alumina
as a coating for the cathode materials in Li-ion batteries. Future
work will focus on the interaction of EC with the α-
Al2O3(0001)/LiMn2O4(111) heteroepitaxial junction and the
effect on the mobility of the Li ions through the interface.

4. COMPUTATIONAL METHODS
The spin-polarized DFT calculations were carried out using the
Vienna ab initio simulation package.67 The generalized gradient
approximation was employed using the Perdew, Burke, and
Ernzerhof exchange−correlation functional.68 The core elec-
trons and their interaction with the valence electrons were
described using the projector augmented-wave method69 in the
implementation of Kresse and Joubert.70 The frozen core
electrons comprised levels up to 2p for Al and 1s for O and C,
while the electron of the H atom was treated as a valence
electron.
The semiempirical method of Grimme with the Becke−

Johnson damping [D3-(BJ)]71,72 was included to model the
long-range dispersion interactions. The energy of a surface−
adsorbate system was also calculated using a number of
functionals that include van de Waals interactions,73,74 but the
variation in the calculated results was less than 1%, most likely
because the EC molecule is quite polar and the interactions are
dominated by electrostatics. The comparison and agreement
between these methods shows that the functional chosen in
this work [D3-(BJ)] is suitably accurate to describe the
surface−adsorbate interactions.
The kinetic energy cutoff was fixed at 560 eV for the

expansion of the Kohn−Sham valence states. Γ-Centered
Monkhorst−Pack grids of 9 × 9 × 5 and 5 × 5 × 1 k-points
were used for the integration in the reciprocal space of the α-
Al2O3 bulk and its two (0001) surface terminations,
respectively. The Γ point of the Brillouin zone was sampled
during energy minimization of the isolated EC molecule using
a cell of dimension 10 Å × 11 Å × 12 Å to avoid spurious
interactions. To improve the convergence of the Brillouin zone
integrations, Gaussian smearing with a width of 0.05 eV was set
for all geometry optimization calculations.72 However, the
tetrahedron method with Blöchl corrections was used to obtain
accurate total energies and electronic properties.75
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