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Small nucleolar RNAs signature (SNORS) 
identified clinical outcome and prognosis 
of bladder cancer (BLCA)
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Abstract 

Background:  Small nucleolar RNAs (snoRNAs) are a new non-coding RNAs (ncRNAs), which have not been widely investi-
gated and are identified to be involved in tumorigenesis. But the function of snoRNAs in BLCA has not been reported yet.

Methods:  SnoRNAs signature (SNORS) was constructed through LASSO cox regression analysis. Integrated analysis 
of candidate snoRNAs was performed to detect the correlation between copy number variation (CNV)/DNA methyla-
tion/protein/mRNA/alternative splicing (AS). Then we built a nomogram integrating independent prognostic factors 
to assist the clinical utility.

Results:  We have screened out 15 prognostic differentially expressed snoRNAs (DESs) and constructed SNORS 
consisting of 5 candidate snoRNAs which could appropriately stratify patients into low or high SNORS groups with 
distinct prognosis. Then we found 5 candidate snoRNAs might be regulated by their own CNV and DNA methyla-
tion. Moreover, 5 candidate snoRNAs were significantly correlated mRNA and alternative splicing (AS), which might 
regulate diverse biological process in tumorigenesis, such as “extracellular matrix”, “epithelial–mesenchymal transition 
(EMT)”, etc. signaling pathways. Furthermore, SNORS was an independent prognostic factor, which was strikingly cor-
related with clinical outcome. Through inporating with other variables, we have established a predictive nomogram, 
which was more effectively to predict prognosis than any other variables alone.

Conclusion:  Our findings first highlighted an important role of snoRNAs in BLCA and established a potential prog-
nostic model which could serve as a biomarker for BLCA.
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Highlights

1.	 This is the first study focusing on snoRNAs in BLCA.
2.	 Integration analysis of 5 candidate snoRNAs indi-

cated that they could be regulated with their own 

CNV/methylation, as well as influence function of 
mRNA, alternative splicing (AS) and protein.

3.	 The function annotation revealed that SNORS was 
enriched in “extracellular matrix”, “epithelial–mesen-
chymal transition (EMT)”, etc., which are so impor-
tant for tumorigenesis of BLCA.

4.	 We have established snoRNAs signature (SNORS), 
which was an independent prognostic factor, could 
serve as a biomarker for BLCA.
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Background
Bladder cancer (BLCA) is a malignancy originated from 
urinary tract with high morbidity and mortality, which is 
reported as the 10th most common cancer with an esti-
mated 549,000 new cases and 200,000 deaths in 2018 [1]. 
Epidemiological studies have identified that BLCA is a 
heterogeneous disease consisting of two major subtypes, 
non-muscle-invasive bladder cancer (NMIBC) and mus-
cle-invasive bladder cancer (MIBC), which have distinct 
incidence and prognosis. NMIBC, which comprises the 
majority of BLCA, has not penetrated the detrusor mus-
cle layer and is a not that life threatening with a ~ 90% 
five-year survival rate at most [2–4]. Transurethral resec-
tion of bladder tumour (TURBT) accompanied by intra-
vesicular instillation of chemotherapeutics or Bacillus 
Calmette-Guerin (BCG) is the standard treatment for 
NMIBC [5], but not all the patients benefit from it. More-
over, non-responders will finally recur or even invade 
into the detrusor muscle layer, progressing to MIBC, 
which make the therapy of BLCA more complex. MIBC, 
which do not have a favorable prognosis with a five-year 
survival rate  < 50%, are more prone to metastasize and 
need systemic therapy combined with radical surgery and 
chemotherapy [6, 7]. Even with the rapid development of 
clinical imaging, chemotherapy and surgery, the treat-
ment outcome of MIBC is not that satisfactory based 
on the current staging and grade system [8]. So it is very 
important to understand the potential mechanism and 
find some latent prognostic biomarkers for BLCA.

Recent years we have seen a rapid development of next 
generation sequencing and computational approaches, 
some protein non-coding RNA (ncRNA), such as micro-
RNA (miRNA), long non-coding RNA (lncRNA), circu-
lar RNA (circRNA), piwi-interacting RNA (piRNA) and 
small nucleolar RNA (snoRNA), which was first thought 
to be transcriptional noise, now have been reported to 
play an important role in many biological process [9–12]. 
Among them, miRNAs and lncRNAs, which comprise 
the majority of ncRNAs, were largely studied. They could 
cooperate with each other to play a vital role in tumori-
genesis of many types of cancer, such as hepatocellular 
carcinoma [13], oral cancer [14], pancreatic cancer [15], 
bladder cancer [16], and so on. But little attention has 
been paid to snoRNAs, which is another small ncRNAs 
with 60–300 nt in length mostly originated from introns 
of host genes in vertebrates [17, 18].

SnoRNAs interact with a set of ribonucleoproteins 
(RNPs) to form stable and functional snoRNPs par-
ticles to guide site-specific enzymatic modifications 
of other RNAs, including ribosomes (rRNAs), trans-
fer RNAs (tRNAs), and small nuclear RNAs (snRNAs) 
[19, 20]. According to the differences in structure and 

modification approach, they are basically divided into 
two major subtypes: C/D box snoRNAs and H/ACA 
box snoRNAs [21, 22]. The C/D box snoRNAs, which 
consist of two major boxes, namely, C (RUG​AUG​A, 
R = purine) and D (CUGA), function as a guide for 
position-specific 2′-O-methylation of target molecules 
and are associated with four core proteins, methyl-
transferase fibrillarin (FBL), NOP56/NOL5A, NOP58/
NOP5, and SNU13/NHP2L1, which constitute the core 
of C/D box snoRNPs [23–26]. Whereas, H/ACA box 
snoRNAs, which also have two specific hairpins and 
two short single-stranded regions called H and ACA 
boxes, are associated with pseudouridine synthase dys-
kerin (DKC1), GAR1, NHP2, and NOP10 to direct RNA 
pseudouridylation of target molecules [27, 28]. Moreo-
ver, there is another specific group of snoRNAs, called 
small Cajal body-specific RNAs (scaRNAs), which is 
gathered in Cajal bodies, could induce the post-tran-
scriptional modification of spliceosomal RNAs [29]. 
Despite basic function of pseudouridylation and meth-
ylation of other RNAs, compelling study demonstrated 
that dysregulation of snoRNAs can also lead to the 
development and progression of various diseases such 
as Prader Willi syndrome, metabolic stress disorders 
and even cancers [30–32]. Chang et  al. first reported 
h5sn2, which is an H/ACA box snoRNA, was strik-
ingly downregulated in meningiomas compared with 
normal brain tissues [33]. Then more studies have sug-
gested that snoRNAs participated in many biological 
processes of oncogenesis, such as proliferation, metas-
tasis, and angiogenesis [34, 35]. All of these indicated 
that snoRNAs exhibited the potential to act as diagnos-
tic biomarkers for prognosis and therapeutic targets. 
However, snoRNAs were reported to make some sense 
in variety type of cancer, but little is known whether 
snoRNAs influence the development of BLCA.

In this study, we have constructed a SNORS contain-
ing 5 candidate snoRNAs which could appropriately 
stratify patients into low  or high SNORS groups with 
distinct prognosis using Least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis. 
Furthermore, we found that candidate snoRNAs might 
be regulated by CNV/methylation. Moreover, candi-
date snoRNAs related mRNA, splicing and protein 
were reported to enrich in the “extracellular matrix”, 
“epithelial–mesenchymal transition (EMT)”, etc. signal-
ing pathways. Finally, we evaluated potential functions 
and clinical utility of our prognostic model. Together, 
our findings highlight an important role of snoRNAs 
in BLCA and established a potential prognostic model 
which could serve as a biomarker for BLCA.
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Materials and methods
Data collection and processing
The expression data of snoRNAs were downloaded from 
public database SNORic (http://bioin​fo.life.hust.edu.cn/
SNORi​c/), a website studied the function of snoRNAs 
in The Cancer Genome Atlas (TCGA). They mapped the 
reads to snoRNA from miRNA-sequencing data accord-
ing to previous suggestion and normalized and quanti-
fied the expression of snoRNAs as reads per kilobase per 
million mapped reads (RPKM) [36, 37]. After filtering 
snoRNAs with average RPKM > 0.5 across all samples and 
removing the sample without complete survival infor-
mation, we have finally obtained 392 tumour samples, 
16 adjacent non-cancerous samples and 468 detectable 
snoRNAs in TCGA-BLCA cohort for further study. The 
data of corresponding clinical information, molecular 
subtypes, DNA methylation, CNV, mRNA, and protein 
data were all obtained from TCGA data portal (https​
://porta​l.gdc.cance​r.gov/) or supplementary informa-
tion from Robertson et  al. [38]. The HTSeq-fragments 
Per Kilobase per Million (FPKM) data was transferred 
to the transcripts per million reads (TPM) which would 
represent expression of mRNA in TCGA-BLCA cohort. 
Then the mRNA with average expression value > 0.5 were 
retained for the subsequent analysis. Data were analysed 
with the R (version 3.5.2) and R Bioconductor packages.

Identification of candidate snoRNAs
The candidate snoRNAs were screened out from two 
strategies. First, differentially expressed snoRNAs (DESs) 
between BLCA and adjacent non-cancerous samples 
were measured with the bioconductor package “Linear 
Models for Microarray Data (limma)” in R. The threshold 
for the “limma” test to select the significantly DESs was 
defined as |Log(fold change)| (logFC) ≥ 1 and a adjusted 
p value (adj.P.Val) < 0.05. Second, univariate Cox regres-
sion analysis was performed to select prognostic can-
didate snoRNAs and threshold was defined as p < 0.05. 
After merging DESs with prognostic snoRNAs obtained 
from above analysis, remained snoRNAs were identified 
as candidate snoRNAs for further study.

Establishment and validation of prognostic snoRNAs 
signature (SNORS)
All patients were randomly divided into training and 
testing sets at cut-off 7:3. Then candidate snoRNAs were 
submitted to LASSO Cox regression analysis based on 
package “glmnet” in R to construct snoRNAs optimal 
prognostic signature (SNORS) in BLCA [39]. The for-
mula for SNORS risk-score = 

∑
n

i=1
 (coefi × Expri). The 

Expri is the relative expression of snoRNAs for patient i 
and coefi is the LASSO Cox coefficient of the snoRNA i 
in each cohort. Then all patients were separated into low 

or  high SNORS groups at the median cut-off. Kaplan–
Meier (KM) survival analysis were utilized to detect the 
difference of prognosis, including overall survival (OS), 
recurrence free survival (RFS), disease free survival 
(DSS), progression free interval (PFI), between high/
low SNORS patients and distinct stratified clinicopatho-
logical characteristics through package “survminer” in R. 
Time-dependent receiver operating characteristic (ROC) 
analysis was used to evaluate the prediction accuracy and 
ability of the signature, and the area under curve (AUC) 
for 1-year, 3-year and 5-year OS, RFS, DSS and DFI was 
measured through package “survivalROC” in R [40]. 
Furthermore, the correlation between SNORS with cor-
responding clinicopathological characteristics, includ-
ing age, gender, grade, subtype, lymphonodes positive by 
hematoxylin and eosin (HE), lymphovascular invasion 
status, pathological T stage, pathological N stage, patho-
logical M stage, pathological tumour stage, and clinical 
outcome, including neoplasm cancer status, new tumour 
event, primary therapy outcome and additional treat-
ment outcome, as well as molecular subtypes [41–43] 
including UNC, MDA, CC, TCGAcluster and Lund were 
measured by t-test/one-way ANOVA test or χ2 test  and 
shown by violin plot or cluster heat map. * p < 0.05, ** 
p < 0.01, *** p < 0.001.

Integration analysis of candidate snoRNAs
As the expression of genes is significantly associated with 
their own CNV and DNA methylation, the correlation 
between candidate snoRNAs and CNV/DNA methyla-
tion was measured [44, 45]. Furthermore, snoRNAs were 
reported to be involved in regulating expression and 
activity of mRNA, proteins and alternative splicing (AS) 
[29, 46, 47], the correlation between them was also ana-
lysed. The PSI values for splice events on samples, which 
are a common intuitive ratio for quantifying splicing 
events, were downloaded from TCGA SpliceSeq (http://
bioin​forma​tics.mdand​erson​.org/TCGAS​plice​Seq) [48] 
to investigate correlation between snoRNAs and splice 
events. Spearman correlation analysis were utilized to 
measure the association between candidate snoRNAs 
with above molecular data, and the coefficient |Rs| ≥ 0.3 
and FDR < 0.05 were defined as statistical significance.

Functional and annotation analysis
Candidate snoRNAs related mRNA and alternative splic-
ing (AS) were determined with spearman correlation 
analysis. The prognostic mRNAs screened out with uni-
variate cox regression analysis were performed functional 
enrichment analysis in various Gene Ontology (GO) cat-
egories and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) processes by using package “ClusterProfiler” in 
R [49]. Then, survival related mRNAs were performed 

http://bioinfo.life.hust.edu.cn/SNORic/
http://bioinfo.life.hust.edu.cn/SNORic/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://bioinformatics.mdanderson.org/TCGASpliceSeq
http://bioinformatics.mdanderson.org/TCGASpliceSeq
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protein–protein interactions (PPI) analysis with STRING 
tool (https​://strin​g-db.org/) to further investigate the 
potential function of these snoRNAs. Moreover, the 
snoRNAs associated AS mRNAs were also measured 
with above analysis. GO and KEGG terms/pathways with 
adjusted p‑values and q-value < 0.05 were considered to 
be significantly enriched signalling pathway/terms for 
these snoRNAs. Furthermore, the Hallmark gene sets 
(a total of 50 independent gene sets), which represent 
the most valuable and important signalling pathway in 
humans, were downloaded from the MSigDB of Broad 
Institute (http://softw​are.broad​insti​tute.org/gsea/index​
.jsp) [50]. Then we conducted Gene Set Variation Analysis 
(GSVA) to analyse the enrichment of biological process 
and pathways due to SNORS through package “GSVA” 
in R [51]. The significantly enriched Hallmark gene sets 
were determined as p value < 0.05 and t value > 1. In addi-
tion, we performed Single Sample Gene Set Variation 
Analysis (ssGSEA) to calculate the ssGSEA score of each 
Hallmark gene set in TCGA-BLCA cohort and spearman 
correlation analysis were used to evaluate the correlation 
between SNORS and each Hallmark gene set.

Construction of a prognostic nomogram
Independent prognostic factors were identified through 
univariate and multivariate Cox regression analysis by 
merging SNORS with other clinicopathological char-
acteristics and visualized via package “forestplot” in R. 
Then all screened out independent prognostic factors 
were combined to construct nomogram, which is scoring 
system used to predict the clinical outcome by integrat-
ing with prognostic parameters, through package “rms”, 
“nomogramEx” and “regplot” in R [52]. According to the 
nomogram, patients will get total point by plus  single 
point from multiple parameters and patients with higher 
total points were with worse prognosis. Furthermore, 
decision curve analysis (DCA) and calibration curves 
were detected to check the reliability of our nomogram.

Statistical analyses
Unpaired Student t test or one-way Anova test was uti-
lized to estimate statistical significance for parameters 
between two groups or more than two groups respec-
tively. The χ2 test was applied to analyse the correlation 
between SNORS and clinical parameters. Kaplan-Meier 
(KM) survival curves were used to detect differences of 
survival rates between different groups through the pack-
age “survminer” in R. Time-dependent ROC were utilized 
to evaluate the predictive accuracy through package “sur-
vivalROC” in R. The correlation between snoRNAs and 
indicated molecular data was measured by spearman 
correlation analyses. Independent prognostic factors, 

which were identified by univariate and multivariate cox 
regression analysis, were integrated to construct nomo-
gram, calibration curve and DCA according to Iasonos’ 
suggestion [52]. All statistical analyses were performed 
with R software 3.5.3. p < 0.05 was set at probability val-
ues of statistical significance.

Results
Identification of candidate snoRNAs
A study design and workflow were shown in Fig.  1. In 
total, 1524 snoRNAs and 414 samples were obtained 
from SNORic database. Then low expression snoRNAs 
with average RPKM ≤ 0.5 and samples without complete 
survival information were removed from further study. 
Finally, we have enrolled 392 BLCA samples, 16 adjacent 
non-cancerous samples and 468 detectable snoRNAs 
as an entire TCGA-BLCA cohort (Fig. 2b). The detailed 
clinical information of entire TCGA-BLCA cohort could 
be found in Additional file  1: Table  S1. Furthermore, 
we have got 250 differential expressed snoRNAs (DESs) 
when compared BLCA samples with adjacent non-can-
cerous samples tissues through package “limma”. Surpris-
ingly, DESs were almost all upregulated in BLCA samples 
(Fig. 2a and Additional file 2: Table S2), which is consist-
ent with previous study. Moreover, we have obtained 23 
survival-related snoRNAs via univariate cox regression 
analyses (Additional file 3: Table S3). After merging DESs 
and survival-related snoRNAs, 15 prognostic candidate 
DESs were prepared for further research (Fig. 2b, e). 

Construction of SnoRNAs Signature (SNORS)
The entire TCGA-BLCA cohort was divided into train-
ing and testing sets at the cut-off 7:3. Then 15 prognos-
tic DESs were submitted to LASSO and multivariate 
cox regression analysis, which were good at dimension 
reduction, to construct SNORS consisting of 5 candi-
date snoRNAs (Fig.  2c, d). KM survival curves demon-
strated that SNORD113-9, U3, U49A, and SNORD114-1 
were harmful factors, while SNORD19B was beneficial 
factor to patients with BLCA (Additional file  4: Fig-
ure. S1 and Additional file 5: Table S4). The formula for 
SNORS risk-score was calculated as follows: expres-
sion of SNORD113-9 * (0.01794) + expression of U3 * 
(0.02659) + expression of U49A * (0.00104) + expression 
of SNORD114-1 * (0.0002) + expression of SNORD19B * 
(− 0.0031).

SNORS is highly associated with prognosis in BLCA
The  patients within the training and testing sets were 
equally divided into high or  low SNORS groups at 
median cut-off. KM survival analysis suggested that low 
SNORS group have a better OS than high SNORS group 

https://string-db.org/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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in both cohorts (p < 0.001) (Fig.  3a, d). As the SNORS 
risk-score increased, there were more death patients 
(Fig. 3b, e). And the survival time of patients with high 
SNORS were much shorter compared with patients 
with low SNORS (Fig.  3b, e). Moreover, time-depend-
ent ROC curves demonstrated that SNORS displayed a 
high accuracy for predicting OS in both cohorts. AUC 
was 0.702 at 1 year, 0.664 at 3 years and 0.71 at 5 years 
in training cohort (Fig.  3c), 0.653 at 1  year, 0.609 at 
3 years and 0.726 at 5 years in testing cohort (Fig. 3f ). 
Furthermore, we also validated SNORS in prediction of 
DSS, PFI and RFS and found that all low SNORS groups 
were associated with better DSS, PFI and RFS than high 
SNORS patients (p < 0.01) (Additional file  6: Figure 
S2a, d, g). Thus, the death patients also have a higher 
SNORS risk-score and shorter survival time, which 
were all consistence with OS prediction (Additional 
file 6: Figure S2b, e, h). The AUC with 1-, 3- and 5-years 
were 0.678, 0.646, 0.695 in prediction DSS (Additional 
file  6: Figure S2c), 0.656, 0.632, 0.672 in in prediction 
PFI (Additional file 6: Figure S2f ), and 0.61, 0.56, 0.531 
in in prediction RFS (Additional file 6: Figure S2i).

Integration analysis of candidate snoRNAs and SNORS
As CNV and DNA methylation were reported to be 
involved in regulating snoRNAs expression in vari-
ous cancers [44, 53], the correlation between them 
was measured. The results showed that expression of 
SNORD19B and U3 were positively correlated with their 
CNVs (Fig.  4a and Additional file  7: Table  S5). In addi-
tion, we found U49A was strikingly positive correlated 
with their methylation probes, while U3 and SNORD19B 
had significantly negative correlation with their methyla-
tion probes (Fig. 4d, e and Additional file 8: Table S6). All 
of these indicated that expression of snoRNAs could be 
regulated by their CNV and methylation in BLCA.

Previous reports suggested that snoRNAs and their 
associated proteins, mRNAs and AS could collaborate 
to trigger cancer progression by influencing transcrip-
tional and translational process. Then the correlations 
between them were measured. The results revealed 
that SNORD19B, U3, and SNORD114-1 were nega-
tively correlated with ACVRL1, Bak, and CD20, respec-
tively, while U49A were positively correlated with Chk2 
(Fig. 4b, c and Additional file 9: Table S7). Furthermore, 

Fig. 1  A study design and workflow
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we found that 5 candidate snoRNAs were highly corre-
lated with 2204 mRNAs (Additional file  10: Table  S8). 
Among them, 361 mRNAs were correlated with two, 
160 mRNAs with three, and 60 mRNAs with four 
candidate snoRNAs. Moreover, the results from the 
univariate cox regression analysis suggested that 525 
associated mRNAs influence the prognosis of BLCA 
patients (Fig.  5; Additional file  11: Table  S9). Then we 
found they could successfully formed clusters through 
PPI analysis by STRING tool (Fig.  5b and Additional 
file 12: Table S10). Furthermore, GO enrichment anal-
ysis showed candidate snoRNAs associated mRNAs 
were mainly enriched in “extracellular matrix”, “focal 

adhesion” etc. signalling pathways (Fig.  5c and Addi-
tional file 13: Table S11). The KEGG enrichment analy-
sis also demonstrated that they were mainly enriched 
in “PI3K-Akt signalling pathway”, “focal adhesion”, 
“ECM-receptor interaction”, “proteoglycans in can-
cer”, etc. signalling pathways (Fig.  5d and Additional 
file  14: Table  S12). Moreover, we detected the cor-
relation between 5 candidate snoRNAs and AS. The 
results revealed that there were 318 snoRNAs associ-
ated AS mRNAs, and 102 AS mRNAs were included 
in above associated mRNAs (Fig.  5e and Additional 
file  15: Table  S13). Then the PPI network showed that 
associated AS mRNAs also clustered well (Fig.  5f and 

Fig. 2  Identification of candidate snoRNAs. a Volcano plot demonstrated the differential expressed snoRNAs (DESs). The cut-off for DESs was 
logFC ≥ 1 and adj.P.Val < 0.05. Upregulated DESs (yellow); downregulated DESs (blue); 15 prognostic DESs (encircled). b Venn plot for screening 
of candidate snoRNAs. c LASSO coefficients profiles of 15 candidate snoRNAs. d Tuning parameter (λ) selection cross‐validation error curve. The 
vertical lines were drawn at the optimal values by the minimum criteria and the 1‐SE criteria. SNORS was chose at the left line by 1‐SE criteria. e 
Summary table for differential expression analyses and univariate Cox regression analyses for 15 prognosis DESs
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Additional file  16: Table  S14). Thus, GO enrichment 
analysis showed they were still mainly enriched in 
“extracellular matrix”, “focal adhesion”, etc. (Figure  5g 
and Additional file  17: Table  S15). The KEGG enrich-
ment analysis demonstrated they were mainly enriched 
in “proteoglycans in cancer”, “focal adhesion”, “ErbB 
signalling pathway”, etc. signalling pathways (Fig.  5h 
and Additional file  18: Table  S16). Moreover, we next 
performed GSVA to figure out dynamics of biological 
processes and pathways for Hallmark gene sets based 
on SNORS. The results showed that “TGF-β signal-
ling”, “MTORC1 signalling”, “epithelial–mesenchymal 
transition (EMT)”, and “KRAS signalling up”, etc. sig-
nalling pathways, were remarkably activated in high 
SNORS group, while low SNORS group were enriched 
in “KRAS signalling down” signalling pathways (Fig. 5i). 
Moreover, we also found that all above pathways asso-
ciated with malignancy were strikingly positive cor-
related the SNORS risk-score (Fig.  5j and Additional 
file 19: Table S17).

The correlation between SNORS with clinicopathological 
characteristics and molecular subtypes in BLCA
KM survival analysis suggested that all clinical param-
eters were associated with prognosis of BLCA patients 
except for gender (Additional file  20: Figure S3). Con-
sidering positively associated with biological process in 
tumorigenesis, the correlation between SNORS with 
corresponding clinicopathological characteristics and 
clinical outcome were measured. Surprisingly, we found 
that SNORS was not correlated with clinicopathologi-
cal characteristics such as pathological T/N/M stage, 
grade, lymphonodes metastasis, etc. (Figure  6a, d and 
Additional file 21: Figure S4 a–h). But the results showed 
that patients with high SNORS were more likely to be 
neoplasm cancer status with-tumor, primary/additional 
therapy with progressive disease/persistent disease/stable 
disease (PD/SD), new tumor event occurrence and non-
papillary subtype (Fig. 6a–c, e–g). Although the SNORS 
was not correlated with many clinicopathological char-
acteristics, we next investigated whether SNORS could 
apply to different clinicopathological characteristics. The 

Fig. 3  SNORS is a prognostic biomarker for overall survival (OS) in TCGA-BLCA cohort. a–c KM survival, risk score and time-dependent ROC curves 
of OS based on SNORS groups in training cohort. d–f KM survival, risk score and time-dependent ROC curves of OS based on SNORS groups in 
testing cohort. The high SNORS and low SNORS groups were stratified at median cut-off. The AUC was assessed at 1, 3 and 5 years
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stratification survival analysis demonstrated that SNORS 
was independent from all above parameters and could 
efficiently predict the prognosis in almost all the sub-
groups (Additional file 22: Figure S5).

Recently, a comprehensive molecular landscape has 
been established for BLCA by TCGA and other inde-
pendent groups. They classified BLCA into many dif-
ferent molecular subtypes, such as luminal, basal, 
genomically unstable (GU), etc. Then we detected the 
difference of SNORS among these molecular subtypes. 

We were amazed to find that low SNORS group was con-
centrated on the molecular subtypes of luminal, luminal 
papillary, CC1/CC3, uroA, and genomically unstable 
(GU), which all represented low malignancy and better 
prognosis. However, molecular subtypes with basal, basal 
squamous, TP53-like, CC2 and basal/SCClike, which 
were characterized by high malignancy and worse prog-
nosis, significantly accumulated in high SNORS group 
(Fig. 6h–n). Those findings suggest the clinical utility of 
our SNORS in BLCA.

Fig. 4  Integration analysis of candidate snoRNAs. a Correlation matrix showed the spearman correlation between candidate snoRNAs and their 
own CNV. b Sankey diagram showed the interaction of candidate snoRNAs and proteins. c Correlation matrix showed the spearman correlation 
between candidate snoRNAs and proteins. d Sankey diagram showed the interaction of candidate snoRNAs and methylation sites. e Correlation 
matrix showed the spearman correlation between candidate snoRNAs and methylation sites. The blue represented positive correlation and yellow 
indicated negative correlation. Shading colour and asterisks indicated the correlation coefficients. * p < 0.05, ** p < 0.01
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The SNORS was an independent prognostic factor in BLCA
As SNORS was significantly correlated with clinical 
outcome and prognosis, next we aimed to find whether 
SNORS was an independent prognostic factor in BLCA. 
Univariate and multivariate cox regression analysis indi-
cated that SNORS, pathological N stage, age and patho-
logical T stage, which were four harmful independent 
prognostic factors for prognosis predicting in BLCA 
(Fig. 7a, b). Based on multivariate cox regression analysis, 
we then integrated four independent prognostic factors 
to construct a nomogram, which is a quantitative scoring 
method to predict survival probability for BLCA patients 

(Fig. 7c). The value range of each variable is determined 
for its contribution to the nomogram, which often 
referred to the regression coefficient. Then individual 
will get total points by plus single point of each variable 
within the nomogram. Finally, we can predict the clini-
cal outcome or the probability of the individual clinical 
ending event through the function conversion of the total 
points. For example, in Fig. 7c, we found that this patient 
got total points of 38.2, referring to probability of 30.1% 
to death at 3  years and 37.1% to death at 5  years. The 
patients with high score would have a worse prognosis 
compared with patients with low score. Moreover, DCA 

Fig. 5  Function annotation and enrichment analysis. a Interaction network of 5 candidate snoRNAs and their survival associated mRNAs. The 
bubble size indicated the –log(pvalue) of univariate cox regression analyses for each mRNA. The top 50 associated mRNAs of each snoRNA 
were shown. b PPI network of candidate snoRNAs associated prognostic mRNAs. c, d GO and KEGG enrichment analysis of candidate snoRNAs 
prognostic mRNAs. The bubble size indicated the –log(pvalue) of each GO/KEGG term. e Interaction network of 5 candidate snoRNAs and their 
associated AS mRNAs. The bubble size indicated the –log(pvalue) of their correlation coefficient. The top50 associated mRNAs of each snoRNA 
were shown. f PPI network of candidate snoRNAs associated AS mRNAs. g, h GO and KEGG enrichment analysis of candidate snoRNAs associated 
AS mRNAs. The bubble size indicated the –log(pvalue) of each GO/KEGG term. i The bar plot showed the results of GSVA based on SNORS. The 
significantly enriched Hallmark gene sets were determined as p value < 0.05 and t value > 1. j Correlation matrix of SNORS, candidate snoRNAs and 
the relative levels of Hallmark gene sets. The blue indicated positive correlated and yellow indicated negative correlated. The asterisks represented 
the statistical p value (*p < 0.05; **p < 0.01)
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curves suggested that SNORS was supreme beneficial 
when compared with all prognostic factors alone (Fig. 7d, 
e). Even though three clinicopathological characteris-
tics were combined, the net benefit of SNORS was also 
comparable to the clinical combination model. Moreover, 
SNORS could strikingly promote the net benefit of clini-
cal combination model. The calibration curves indicated 
that our nomogram displayed similar prediction accuracy 
as the ideal model (Fig. 7f, g). Then we subsequent com-
bined SNORS with other three prognosis factors to strat-
ify all the samples to four different groups. The results 

showed that patients with low SNORS/young/low path-
ological T stage/low pathological N stage had a longer 
survival, while prognosis of patients with high SNORS/
elder/high pathological T stage/high pathological N stage 
was worse among all groups (Fig.  7h, j and l). Further-
more, ROC curves revealed that the AUC of the SNORS 
reached higher AUCs than the three clinicopathological 
characteristics alone and approximately well matched 
with clinical combination model. And SNORS could also 
remarkably improve the AUC value of clinical combina-
tion model in established nomogram (Fig.  7i, k, m and 

Fig. 6  Association between the SNORS with clinicopathological characteristics and molecular subtypes. a Cluster heat map showed the 
relative levels of candidate snoRNAs which were stratified by SNORS in the TCGA-BLCA cohort. Yellow means upregulation while blue means 
downregulation. b–g Differences in SNORS between different clinicopathological characteristics and clinical outcome in TCGA-BLCA cohort. The 
upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value. Student t tests 
or one-way Anova tests were used to compare the statistical difference between primary therapy outcome (b), additional treatment outcome 
(c), pathological tumour stage (d), neoplasm cancer statue (e), new tumour event (f), and histology subtype (g). h Alluvial diagram showing the 
dynamic changes of SNORS, indicated molecular subtypes and vital status in TCGA-BLCA cohort. i–n Differences in SNORS between different 
molecular subtypes in TCGA-BLCA cohort. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes 
represented median value. Student t tests and one-way Anova tests were used to compare the statistical difference between Lund1 (i), Lund2 (j), CC 
(k), TCGAcluster (l), MDA (m), and UNC (n) molecular classification systems
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Fig. 7  SNORS is an independent prognosis factor in BLCA. a, b Forest plot summary of the univariate and multivariable cox regression analysis 
measuring SNORS and clinicopathological characteristics. The p value, HR and 95% confidence interval (CI) were indicated in the figure. c 
Nomograms which integrated with independent prognosis factor for predicting the probability of patient mortality at 3- or 5-years OS. Blue circle 
represent the  point each parameter scored. d, e DCA curves for four independent prognostic factors or combination of them in OS prediction 
at 3-years (d) and 5-years (e). f, g Calibration curves of the nomogram for predicting the probability of OS at 3-years (f) and 5-years (g). h–j KM 
survival curves for patients stratified by both SNORS and age (h)/pathological T stage (i)/pathological N stage (j). The subgroup information and 
p value were display in detail. k–m ROC curves for four independent prognostic factors or combination of them in OS prediction at 1 years (k), 
3 years (l) and 5 years (m) in TCGA-BLCA cohort. The abbreviation was as followed in Fig. 7 d–e and k-m: ALL combine: combination of SNORS, age, 
pathological T stage and pathological N stage; Clinical combine: combination of age, pathological T stage and pathological N stage
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Additional file 23: Table S18). All of these suggested that 
our established nomogram could be of a high potential 
for clinical utility.

Discussion
BLCA is a malignancy with high incidence and recur-
rence. Although great progress has been   achieved for 
recent emerging neoadjuvant chemotherapy and immu-
notherapy, indolent and aggressive tumours could not 
be distinguished just based on traditional system, such 
as TNM staging and tumour grade, etc., which mainly 
represented anatomical distribution without biologi-
cal features. Even though FISH, NMP22, etc. have been 
approved by FDA to participate in diagnosis of BLCA, 
its clinical prospective utility still have a long way to 
validate. With the rapid development of next genera-
tion sequencing and bioinformatics, ncRNAs, which are 
thought to be “junk” at first, are found to play a critical 
roles in tumorigenesis.

Recently, snoRNAs, which are a new small ncRNAs, 
have attracted researchers’ attention and been identified 
to be involved in many important biological processes. 
Some study even found that dysfunction of snoRNAs 
may induce oncogenesis and could serve as biomarkers 
in cancers [32]. Thus snoRNAs was reported to exert its 
effect on tumorigenesis in various regulatory ways [54]. 
First, several snoRNAs have been found to display a spe-
cific expression pattern, directly participate in tumo-
rigenesis in different cancer. Second, snoRNAs might 
regulate other genes expression or function through 
post-transcriptional and translational way, which indi-
rectly induced tumorigenesis [55]. Therefore, snoRNAs 
were found to act as oncogenes or tumour suppressors 
in various biological processes, such as cell prolifera-
tion, invasion, apoptosis and metastasis. Siprashvili et al. 
found SNORD50A and SNORD50B were usually deleted 
in human cancer.  Loss of SNORD50A and SNORD50B 
could increase the binding of K-RAS and hyper-acti-
vation of RAS-ERK1/ERK2 signalling to induce tumo-
rigenesis [47]. A lot of snoRNAs, including SNORD78, 
SNORD71A and SNORD42 etc., were reported to be 
associated with non-small cell lung cancer (NSCLC) pro-
liferation, migration and invasion. Yan et al. even estab-
lished a six snoRNA signature to act as a non-invasive 
biomarker for diagnosis and prognosis prediction of renal 
clear cell carcinoma (ccRCC). But little was reported to 
elaborate the function of snoRNAs in BLCA. In present 
study, we aimed to study the role of snoRNAs in BLCA, 
which to our knowledge, is the first study focusing on 
snoRNAs in BLCA. We first selected DESs compared 
tumour samples with adjacent non-cancerous samples. 
What surprised us was that almost all DESs were upreg-
ulated in tumour samples, which was consistent with 

results from previous study. After submitting prognos-
tic snoRNAs to LASSO cox regression analysis, we have 
screened out 5 candidate snoRNAs, which were all C/D 
box snoRNA, and constructed SNORS as the diagnosis 
biomarker depending on TCGA dataset.

SnoRNAs might exert similar function of other ncR-
NAs to regulate a lot of RNA transcripts, and at the same 
time be regulated by others. Therefore, aberrant expres-
sion of snoRNAs could be a disaster to the tightly con-
trolled RNA networks, which was reported to initiate 
and induce oncogenesis. As 5 candidate snoRNAs were 
significantly differential expressed in BLCA samples, we 
next wanted to figure out whether CNV and DNA meth-
ylation was a key approach to regulate their expression. 
Then we found U3, U49A and SNORD19B, which made 
a larger contribution to SNORS, were significantly corre-
lated with their own CNV and specific methylation sites. 
So we inferred that upregulation of snoRNAs in BLCA 
might be a cause of CNV and methylation, the specific 
mechanism should be investigated in the future. Then 
the correlation between snoRNAs with proteins, mRNAs 
and AS was measured. We found that SNORD19B, U3, 
SNORD114-1and U49A had a correlation with ACVRL1, 
Bak, CD20 and Chk2 respectively. These proteins took 
part in the process of apoptosis and cell cycle, which was 
very important in tumorigenesis. Moreover, the results 
showed that 5 candidate snoRNAs were highly correlated 
with 2204 mRNAs. Among them 581 mRNAs have a cor-
relation with more than 2 candidate snoRNAs, and 525 
associated mRNAs were associated with the prognosis of 
BLCA patients. In addition, we also found that 5 candi-
date snoRNAs were significantly correlated with AS. The 
PPI network demonstrated that candidate snoRNAs asso-
ciated mRNAs and AS mRNAs could successfully form 
clusters. All of these indicated that 5 candidate snoRNAs 
within the signature were significantly  mutually corre-
lated and could regulate same important targets.

Extracellular matrix (ECM) is a highly dynamic struc-
ture which ubiquitously exists in all kinds of tissues and 
subsequently undergoes remodelling control. Remod-
elling of ECM is also reported to influence diverse bio-
logical process, including proliferation, migration and 
differentiation [56]. Dysregulation of ECM composition, 
structure and abundance leads to several pathological 
diseases, such as fibrosis and cancer. ECM is major com-
ponents consisting of tumour microenvironment (TME), 
which could collaborate with other constituents, such as 
immune and stromal cells, to act as initiator and inducer 
by building a chronic inflammatory and  pro-angiogenic 
intratumoural atmosphere. Moreover, ECM was also 
found to correlate with cancer patients’ outcomes and 
treatment efficacy [57]. Thus, GO and KEGG enrichment 
analysis from candidate snoRNAs related mRNA and AS 
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all enriched in “extracellular matrix”, “focal adhesion”, and 
“proteoglycans in cancer”, etc. signalling pathways. These 
indicated 5 snoRNAs might be involved in regulating 
extracellular matrix formation and remodelling to induce 
BLCA occurrence. Then we investigated the function 
annotation of low and high risk  groups according to 5 
candidate snoRNAs constructed SNORS. Amazingly, the 
GSVA suggested that high SNORS groups were enriched 
in signalling pathways associated with “TGF-β signalling”, 
“MTORC1 signalling”, “epithelial-mesenchymal transi-
tion (EMT)”, and “KRAS signalling up”, etc., which were 
representative of ECM modification and malignancy of 
BLCA we have reported previously [58]. But low SNORS 
group displayed the opposite situation. Although highly 
related with the malignancy of BLCA, we unfortunately 
found that SNORS exhibited no correlation with TNM 
stage and grade, etc., meanwhile, we can see that SNORS 
was strikingly correlated with clinical outcomes, such as 
neoplasm cancer status, primary/additional therapy out-
come and new tumour event, which were closely related 
to patients’ prognosis. Moreover, the patients with higher 
SNORS were more likely to be molecular subtypes related 
with EMT/TGF-β signalling pathway, worse survival, and 
high malignancy including basal, basal squamous, TP53-
like, CC1/CC3, and basal/SCClike, while patients with 
molecular subtypes of luminal, luminal papillary, CC2, 
uroA, and genomically unstable (GU), which character-
ized by low malignancy and better prognosis exhibited 
lower SNORS. All of these demonstrated that SNORS 
could predict the tumour malignancy in spite of clinical 
parameters.

In addition, KM survival curves demonstrated SNORS 
was harmful risk factor for prognosis, and high SNORS 
patients had a worse OS, DSS, PFI and RFS. Although as 
a heterogeneous disease, stratification analysis showed 
that SNORS was independent from all of them and could 
predict well in all subgroups. Moreover, we found that 
SNORS was an independent prognostic factor in BLCA 
even combining with other variables. And the diagnosis 
accuracy of SNORS was much better than conventional 
clinical pathological characteristics alone and compa-
rable to the combination of three clinical independent 
prognostic factors. Besides, we further integrated the 
SNORS with pathological N stage, pathological T stage, 
and age to construct a nomogram. We also found SNORS 
could cooperate with clinical pathological characteristics 
to exert higher diagnosis accuracy compared  with vari-
ables alone and might have a potential value for clinical 
apply. All of these indicated that SNORS play an onco-
genic role and was potent biomarker which could predict 
prognosis in BLCA.

Our study has some limitations as our analysis were 
retrospective and the efficiency of the SNORS should 

be further validated in prospective studies. Moreover, 
we should incorporate more independent variables with 
SNORS scoring system to improve the prediction accu-
racy, as not all patients with a high SNORS displayed a 
worse prognosis.

Conclusion
We performed comprehensive analysis of snoRNAs 
and established a prognostic and predictive SNORS for 
BLCA, which could open our view in snoRNA and may 
provide a useful scoring system for clinical utility.
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