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Background: Patients with congenital diaphragmatic hernia (CDH) have a short

postnatal period of ventilatory stability called the honeymoon period, after which

changes in pulmonary vascular reactivity result in pulmonary hypertension. However, the

mechanisms involved are still unknown. The aim of this study was to evaluate mechanical

ventilation’s effect in the honeymoon period on VEGF, VEGFR-1/2 and eNOS expression

on experimental CDH in rats.

Materials and Methods: Neonates whose mothers were not exposed to nitrofen

formed the control groups (C) and neonates with left-sided defects formed the CDH

groups (CDH). Both were subdivided into non-ventilated and ventilated for 30, 60, and

90min (n = 7 each). The left lungs (n = 4) were evaluated by immunohistochemistry

of the pulmonary vasculature (media wall thickness), VEGF, VEGFR-1/2 and eNOS.

Western blotting (n = 3) was performed to quantify the expression of VEGF, VEGFR-1/2

and eNOS.

Results: CDH had lower biometric parameters than C. Regarding the pulmonary

vasculature, C showed a reduction in media wall thickness with ventilation, while CDH

presented reduction with 30min and an increase with the progression of the ventilatory

time (honeymoon period). CDH and C groups showed different patterns of VEGF,

VEGFR-1/2 and eNOS expressions. The receptors and eNOS findings were significant

by immunohistochemistry but not by western blotting, while VEGF was significant by

western blotting but not by immunohistochemistry.

Conclusion: VEGF, its receptors and eNOS were altered in CDH after mechanical

ventilation. These results suggest that the VEGF-NO pathway plays an important role

in the honeymoon period of experimental CDH.
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INTRODUCTION

Congenital diaphragmatic hernia (CDH) has an incidence of
1.09–2.67:10,000 live births (1–3), with a survival rate of 61% (4).
The degree of lung hypoplasia and pulmonary hypertension (PH)
are the main determinants of neonatal outcome in CDH (5, 6).
Newborns with CDH often experience a honeymoon period
during which they have adequate oxygenation. The mechanisms
involved in this period are not clearly understood, but they
could shed light on potential therapeutic strategies to improve
oxygenation and ventilation in CDH.

Vascular endothelial growth factor (VEGF) and nitric oxide
(NO) play a central role in the pathogenesis of PH in CDH. VEGF
regulates angiogenesis, vasculogenesis, and vascular remodeling,
and acts by binding to the receptors VEGFR-1 (VEGF receptor
1, also known as fins-like tyrosine kinase—Flt-1) and VEGFR-
2 (VEGF receptor 2, also called fetal liver kinase—Flk-1) (7–
11). VEGFR-1 reduces cell proliferation and organizes branching
and the capillary network, while VEGFR-2 is responsible
for vascular proliferation, promotes vascular branching and
maintains endothelial cells (12–14). VEGF can stimulate the
production of endothelial NO synthase (eNOS or NOS3) and,
consequently, of NO (a major regulator of smooth muscle cell
proliferation) (11, 15), which, in turn, upregulates VEGF (8).

Understanding how PH begins and which mechanisms lead
to vascular remodeling is key to better treatment strategies in
CDH (16). Given the critical role of VEGF, its receptors and
eNOS on vasculogenesis and angiogenesis, the aim of this study
was to evaluate the effect of mechanical ventilation during the
honeymoon period on the expression of these molecules and
vascular reactivity in the nitrofen CDHmodel.

MATERIALS AND METHODS

Animal Model of CDH
After approval by the Committee on Ethics in the Use of
Animals of Ribeirão Preto Medical School (CEUA #088/2017),
CDH was induced in Sprague Dawley rats by the administration
of 100mg of nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether,
Maybridge R©, Cambridge, United Kingdom) dissolved in 1ml of
olive oil by oral gavage on gestational day (GD) 9.5.

Experimental Groups
Rats were delivered by cesarian section on GD 21.5. Neonates
were separated into eight groups with n = 7 neonates in
each: non-ventilated controls (C); controls ventilated for 30min
(C30), 60min (C60), or 90min (C90), all from dams that were
not exposed to nitrofen; non-ventilated neonates with CDH
(CDH), and neonates with CDH ventilated for 30min (CDH30),
60min (CDH60) and 90min (CDH90), all with left side defects.
The presence and the side of the defect were determined by
transillumination of the chest (17).

Harvest
After the cesarean section on GD 21.5, a tracheostomy
was performed for neonates in the ventilated groups. A
24G catheter was placed, connected to MiniVent type 845

(Hugo Sachs Elektronik—Harvard Apparatus GmbH, March-
Hugstetten, Germany), with a frequency of 80 breaths per
minute, FiO2 1.0, inspiration-expiration ratio 1:1, and PEEP
0 cmH2O. The tidal volume was 13.5 ml/kg in the control
groups (75 µl) and 9 ml/kg (50 µl) in the groups with
CDH, based on a previous study by our laboratory (18).
Non-ventilated animals were delivered by cesarian section,
weighted, and immediately euthanized. After weighing
(non-ventilated groups) or completing ventilation, the
neonates were euthanized by decapitation. The lungs were
removed and weighed, and the left lungs were fixed for
histological, immunohistochemical (IHC) or snap-frozen for
molecular processing.

Morphometry
Body weight (BW), total lung weight (TLW), left lung weight
(LLW) and the ratios TLW/BW and LLW/BW were measured.

Immunohistochemistry
Histological sections from the left lung (n= 4 neonates from each
group) were deparaffinized in xylol and dehydrated with ethanol.
Endogen peroxidase blockage was prepared by incubating the
slides in a 10% solution of hydrogen peroxidase (3%) and
phosphate-buffered saline (PBS) for 10min. Antigen retrieval
was performed by the heat-mediated method: the slides were
placed in 10mM citrate buffer, pH 6.0 for 40min in Optisteam
Plus steamer (model 652, Krups North America, USA), then
cooled in an ice-water bath for 15min and washed in distilled
water. After that, slides were incubated in a 10% goat serum
blocking solution, diluted in phosphate-buffered saline (PBS) for
30min to block non-specific binding sites. Depending on the
protein studied, the sections were incubated with the following
primary antibodies: mouse anti-VEGF 1:50 in 1% bovine serum
albumin (BSA) (sc-7269, Santa Cruz Biotechnology, Santa Cruz,
California, USA), rabbit anti-VEGFR-1 1:50 in 1% BSA (sc-
316, Santa Cruz Biotechnology, Santa Cruz, California, USA),
mouse anti-VEGFR-2 1:50 in 1% BSA (sc-6251, Santa Cruz
Biotechnology, Santa Cruz, California, USA), mouse anti-SMA
1:200 (clone 1A4, Santa Cruz Biotechnology, Santa Cruz,
California, USA) or rabbit anti-eNOS 1:100 in 1% BSA (sc-654,
Santa Cruz Biotechnology, Santa Cruz, California, USA) at 4◦C
overnight. After being washed, the sections were incubated in
a secondary anti-mouse antibody conjugated with horseradish
peroxidase 1:100 in 1% BSA (sc-2005, Santa Cruz Biotechnology,
Santa Cruz, California, USA) or anti-rabbit 1:200 in 1% BSA (sc-
2004, Santa Cruz Biotechnology, Santa Cruz, California, USA)
for 2 h. As a negative control, the primary antibody was omitted.
Vectastain ABC (Vector Labs, Burlingame, California, USA)
and DAB (Sigma-Aldrich, Saint Louis, Missouri, USA) kits were
used. The slides were counterstained with Harris’s hematoxylin,
dehydrated and assembled. They were photographed using a
Nikon Eclipse 80i photomicroscope (Nikon Instruments Inc.,
Melville, New York, USA) with 40× magnification, and the
images were captured using NIS-Elements (Nikon Corporation,
Tochigi, Japan).
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IHC Evaluation of Pulmonary
Vasculature—SMA Staining
The external diameter (ED) (delimited by the external elastic
lamina) and the internal diameter (ID) (delimited by the internal
elastic lamina) of ten vessels per animal were measured using Fiji
Image J (version 2.0.0-rc-67/1.52d, National Institutes of Health,
Bethesda,Maryland, USA). Themedia wall thickness (MWT)was
calculated using the formula: MWT= (ED–ID)/ED (19, 20).

IHC Evaluation of VEGF, VEGFR-1/2 and
eNOS Expression
IHC analysis of VEGF, VEGFR-1/2 and eNOS were performed
based on stereology principles, using the 50 hitsWeibel reticulum
(21). For each slide studied, 10 random fields were photographed.
The calculation was made by counting the number of times the
reticulum lines crossed the parenchyma, marked by the IHC and
the result was divided by the number of lines in the reticulum
crossing the lung parenchyma (22, 23).

Western Blotting
Left lungs from n = 3 animals per group were homogenized
in 1 ml/organ of extraction buffer (pH 7.4) containing
100mM Tris, 100mM sodium pyrophosphate, 100mM sodium
fluoride, 10mM EDTA, 10mM sodium vanadate, and 2mM
phenylmethylsulfonyl fluoride (PMSF), 0.1 mg/ml aprotinin, and
100mM Triton-X 1% at 4◦C with a tissue homogenizer (Bio-Gen
PRO200, Pro Scientific, Oxford, USA), operated at maximum
speed for 30 s. The extracts were centrifuged at 12,000 rpm at
4◦C (Hettich Mikro 200R, Andreas Hettich GmbH & Co.KG,
Tuttlingen, Germany) for 30min to remove insoluble material,
and the supernatants of these tissues were used for protein
quantification using the Bradfordmethod. Then, 50µg of protein
were denatured, run on SDS-PAGE gel electrophoresis, and
transferred to nitrocellulose membranes in two stages at 100V
for 1 h each. The membranes were blocked for 1 h in Intercept R©

(PBS) blocking buffer (#927-70001, Li-Cor Biosciences, Lincoln,
NE, USA) at room temperature. After this period, they were
incubated with VEGF (1:1000, ab1316, Abcam, Burlingame,
CA, USA), VEGFR-1 (1:1,000, Ptglab #13687-1-AP, Proteintech
Group Inc., Rosemont, IL, USA), VEGFR-2 (1:1,000, Cell Signal
#9698S, Cell Signaling Technology, Danvers, MA, USA) or
eNOS (1:2,000, ab76198, Abcam, Burlingame, CA, USA), and
β-Actin (1:10,000, ab8226, Abcam, Burlingame, CA, USA). All
antibodies were diluted in Intercept R© (PBS) blocking buffer
(#927-70001, Li-Cor Biosciences, Lincoln, NE, USA) and the
membranes were incubated at 4◦C overnight. After this period,
the membranes were washed in TBST 1× and incubated with
IRDye 680RD goat anti-rabbit (1:10,000, #925-68071, Li-Cor
Biosciences, Lincoln, NE, USA) or IRDye R© 800CW donkey anti-
mouse (1:10,000, #926-32212, Li-Cor Biosciences, Lincoln, NE,
USA) in Intercept R© (PBS) blocking buffer (#927-70001, Li-Cor
Biosciences, Lincoln, NE, USA) for 1 h at room temperature, and
washed with TBST 1×. Images were acquired with Odyssey CLX
Imaging System (LI-COR Corporate, Lincoln, NE, United States)
and analyzed using Image Studio Lite software (version 5.2,

LI-COR Inc., Lincoln, Nevada, USA). Protein expression was
normalized with a loading control (β-actin).

Statistical Analysis
Data were analyzed using ANOVA with Tukey-Kramer post-
test and expressed as mean and standard deviation (SD). A p-
value <0.05 was considered significant. The statistical analyses
were performed using GraphPad Prism version 8.4.0 (GraphPad
Software Inc., La Jolla, California, USA).

RESULTS

Twenty-nine adult female rats were required: seven not exposed
to nitrofen, which generated 72 neonates, and 22 exposed to
nitrofen, which generated 195 newborns.

Morphometry
Newborns with CDH had lower birth weight, lower lung weight
and lower lung to body weight ratios, showing significant
pulmonary hypoplasia compared to controls (Figure 1).

MWT Measurement
MWT was measured in histological sections immunostained
for SMA (Figure 2A). Non-ventilated newborn rats with CDH
had increased MWT compared to non-ventilated controls (C
vs. CDH, p < 0.001), with a decrease in the MWT at 30min
of ventilation (CDH vs. CDH30, p < 0.001) followed by a
progressive increase at 60min (CDH30 vs. CDH60, p < 0.001),
and 90min of ventilation, when it reached values similar to
non-ventilated animals (CDH60 vs. CDH90, p < 0.001). In the
controls, there was a reduction in MWT between 30 and 60min
(C30 vs. C60, p < 0.001), as seen in Figure 2B.

Expression of VEGF, VEGFR-1/2 and eNOS
We observed an increased expression of VEGF at 30min of
ventilation in the groups with CDH (CDH vs. CDH30, p < 0.01)
and a reduction after 60min (CDH60 vs. CDH90, p < 0.01)
in WB, but without statistical difference by IHC. There was no
difference in the expression of VEGF among control animals
(Figures 3, 4).

Assessment of VEGF receptors expression showed that
VEGFR-1 increased with ventilation at 30min in the controls
(C vs. C30, p < 0.01), followed by a reduction in VEGFR-1
expression with the progression of ventilation toward 90min
(C60 vs. C90, p< 0.01). The groups with CDH showed a decrease
of VEGFR-1 at 30min of ventilation (CDH vs. CDH30, p <

0.01) with a subsequent increase (CDH30 vs. CDH60, p < 0.01).
Concerning VEGFR-2, controls showed an increased expression
of VEGFR-2 with ventilation at 30min (C vs. C30, p < 0.01). In
the CDH animals, there was a reduction of VEGFR-2 expression
with ventilation at 30min (CDH vs. CDH30, p < 0.01) and an
increase after that period (CDH30 vs. CDH60, p < 0.01).

In the controls, there was an increase in eNOS expression with
ventilation (C vs. C30, p= 0.01; C60 vs. C90, p < 0.01), while the
groups with CDH presented a reduction in its expression (CDH
vs. CDH30, p < 0.01).
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FIGURE 1 | Nitrofen-induced CDH decreases birth weight and causes pulmonary hypoplasia. Newborn rats with nitrofen-induced CDH had lower body weight, left

lung weight, total lung weight, total lung weight to body weight ratio (TLW/BW), and left lung weight to body weight ratio (LLW/BW). C, control; C30, control ventilated

for 30min; C60, control ventilated for 60min; C90, control ventilated for 90min; CDH, congenital diaphragmatic hernia; CDH30, CDH ventilated for 30min; CDH60,

CDH ventilated for 60min; CDH90, CDH ventilated for 90min. *p < 0.05.

FIGURE 2 | Mechanical ventilation induces a transient improvement of the media wall thickness (MWT) of the pulmonary arteries in the CDH. (A) Photomicrographs of

representative histological sections showing pulmonary arteries immunostained for smooth muscle actin (SMA). (B) MWT measurement of pulmonary arteries on

immunostained sections showing increased MWT in CDH animals with improvement in ventilated animals at 30 and 60min and return to levels similar to

non-ventilated CDH animals after 90min of mechanical ventilation (n = 10 arteries measured in four animals per group). Dashed lines refer to the arteries’ media wall

thickness. CDH, congenital diaphragmatic hernia. Magnification = ×400; bar = 50µm. C, control; C30, control ventilated for 30 mins; C60, control ventilated for

60min; C90, control ventilated for 90min; CDH, congenital diaphragmatic hernia; CDH30, CDH ventilated for 30min; CDH60, CDH ventilated for 60min; CDH90,

CDH ventilated for 90 min.
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FIGURE 3 | Positive immunostaining in the different groups. Representative

lung sections of immunohistochemical staining for VEGF, VEGFR-1/2 and

eNOS. Black arrows on the top figures show the immunostaining pattern from

each marker. C, control; C30, control ventilated for 30min; C60, control

ventilated for 60min; C90, control ventilated for 90min; CDH, congenital

diaphragmatic hernia; CDH30, CDH ventilated for 30min; CDH60, CDH

ventilated for 60 minu; CDH90, CDH ventilated for 90min.

Magnification = ×400; bar = 50µm.

AlthoughWB expression presents a similar pattern to the IHC
for VEGFR-1/2 and eNOS, there was no significant difference,
possibly due to sample size and the less quantitative nature
of immunohistochemistry.

DISCUSSION

Advances in the care of newborns with CDH have led to
an increase in survival, but mortality is still high and mainly
caused by PH (24). Hence, understanding the pathological
changes that determine the beginning of this PH will lead to
improved therapeutic strategies in newborns with CDH. We
describe that the honeymoon period in fetuses with CDH is
associated with changes in VEGF expression, receptors, and
eNOS, suggesting a mechanism that can be explored for future
therapeutic interventions.

Our morphometric results were consistent with previous
publications, which observed lower birth weight and pulmonary
hypoplasia in newborn rats with nitrofen induced CDH (16, 25–
28).

The ventilation periods used in our study were designed to
study the critical period of adaptation from fetal to neonatal
circulation, which happens in the first 24 h of the life of
the human newborn (29). In the newborn rat life, 30min
corresponds to about 13 h of a human newborn; 60min to about
26 h of the human newborn; and 90min to about 40 h of the
human newborns (29, 30).

Previous studies have evaluated the MWT of newborn rats
with CDH after 30min of ventilation, with results similar to those
found here (16, 26–28, 31, 32). However, the mechanisms of these
changes in the pulmonary vasculature are not yet understood
(33), and no study had evaluated this parameter with continued
ventilation for 60 and 90min. Controls showed a reduction in
MWT (vasodilation) with ventilation. In the rat pups with CDH,
despite the decreased MWT at 30min, the response was not
sustained after 60 and 90min, and MWT increased again. These
findings suggest that there is, in fact, a pathological vascular
adaptation in patients with CDH, a group in which the response
to ventilation corresponds to vasoconstriction, which may be one
of the causes of the persistence of the fetal pulmonary circulation
pattern (34). We did not find publications that described this
phenomenon in rats with CDH, and the hypothesis is that it
corresponds to the honeymoon period.

Little is known about the molecular mechanisms involved in
the honeymoon period of patients with CDH and the changes
that culminate in their end. This phenomenon was first described
by Collins et al., who questioned the hypothesis that pulmonary
hypoplasia was solely responsible for the CDH patients’ high
morbidity and mortality because, in isolation, it did not explain
the transient clinical stability in the first hours of life. They
postulated that this period’s pathophysiology is likely due to a
dynamic event, not only due to pulmonary hypoplasia (35). Due
to the role of VEGF in angiogenesis and vasculogenesis, and of
eNOS in the regulation of vascular dilation and constriction, we
hypothesized that these molecules are involved in the etiology of
the honeymoon period.

VEGF, a potent mitogenic and angiogenic factor (36), is one
of the factors responsible for the differentiation and proliferation
of endothelial cells during embryogenesis (11), and both its
proper expression and that of its receptors are necessary for
normal vascular development (12).The deletion of the gene that
encodes VEGFR-1 in rats results in vascular hyperplasia and
failure to form functional vasculature, leading to death around
GD 8.5. However, with the deletion of the kinase domain without
affecting the extracellular domain, there is normal vascular
development (37). Such findings suggest that VEGFR-1 functions
as a decoy for VEGF, restricting its access to VEGFR-2 (37,
38). VEGFR-1 is also believed to play a role in the maturation
and maintenance of vascular integrity (13), and its inhibition
promotes VEGFR-2 expression (12). The deletion of the VEGFR-
2 gene leads to early embryonic death due to a deficiency in
vascular formation (14). There is a reciprocal regulation between
VEGF and NO (15, 38–41). NO, synthesized by endothelial
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FIGURE 4 | VEGF, VEGFR-1, VEGFR-2, and eNOS immunostaining and Western blotting counts. VEGF, VEGFR-1/2 and eNOS immunostaining and western blotting

counts per group. C, control; C30, control ventilated for 30min; C60, control ventilated for 60min; C90, control ventilated for 90min; CDH, congenital diaphragmatic

hernia; CDH30, CDH ventilated for 30min; CDH60, CDH ventilated for 60min; CDH90, CDH ventilated for 90min.

cells, is a critical factor in maintaining low vascular resistance
in the pulmonary circulation (42, 43), which was demonstrated
experimentally by Steudel et al., who recorded PH in mice with
eNOS deficiency (44).

The publications that refer to VEGF expression, its receptors
and eNOS in the CDH context present divergent results. As for
VEGF, some studies have not observed changes (11, 16, 42, 45),
although Boucherat et al. described very high levels in some
neonates with CDH (42). Others found reduced (46, 47) or
increased levels (7, 33, 48, 49). Few studies in the literature
have evaluated the expression of VEGFR-1/2 in the context of
the CDH. Previous studies carried out in our laboratory found
decreased expression of VEGFR-1 (16, 27, 50). There are reports
of increased VEGFR-2 in sheep (49) and reduced inmice (11, 50).
Gallindo et al. studied this receptor’s expression immediately
after birth and after 30min of ventilation and found reduced
expression after ventilation in the groups with CDH (16).

The expression of eNOS in CDH is another point where
the literature is controversial. While some studies have shown
no difference (26, 43, 51), others found reduced (42, 49, 52–
54) or increased expression in CDH (5). Regarding the effect of
mechanical ventilation, Shinkai et al. found an increase in eNOS
mRNA during the first hour of ventilation, followed by a decrease
after 6 h (55). We hypothesized that the conflicting results found
in the literature are related to the degree of PH presented and the
ventilatory parameters used.

The increase of VEGF expression after 30min of ventilation
in rats with CDH could represent an attempt to “return to

normality” (stimulating vasodilation), which cannot be sustained
since there is a decrease in expression at 90 min.

As VEGFR-2 is the receptor that, despite the lower affinity
for the ligand, presents more significant tyrosine kinase activity,
the hypothesis is that its altered expression contributes to the
vascular changes found in the CDH. Considering the IHC results,
reduction of receptor expression in CDH after ventilation for
30min corresponded to the decrease in MWT, and increase
of the expression with the progress of the ventilatory time
(60 and 90min) corresponded to its increase, suggesting a
central role of the VEGFR-2 in the pathogenesis of CDH-
related PH.

There was a reduction (significant by IHC) of VEGFR-
1 expression in the groups with CDH compared to
controls. Because VEGFR-1 is believed to act as a decoy
(37, 56), the already elevated VEGF would be more
available for binding with VEGFR-2, promoting vascular
proliferation stimulation (33), which could be one of the
triggers for the end of the honeymoon period. Moreover,
eNOS does not have its activity increased in the rat
pups with CDH, which was expected to happen by
VEGFR-2 stimulation.

In summary, we show an increased VEGF expression in
CDH after 30 and 60min of mechanical ventilation associated
with decreased VEGFR-1 expression. We hypothesize that
the reduced VEGFR-1 could leave the more free VEGF to
ligate to VEGFR-2 leading to increased eNOS expression and
vasodilation. However, in rat pups with CDH, there was an
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increase in the MWT (vasoconstriction), showing maladaptation
to extrauterine circulation.

These results support the theory of a disruption of VEGF-
NO expression and signaling in newborns with CDH (5, 11,
49, 57), which could be lead to altered vascular reactivity,
suggesting a critical VEGF-NO role in the honeymoon period of
experimental CDH.

This is the first study to evaluate VEGF, VEGFR-1/2
and eNOS during the honeymoon period in experimental
CDH. Further studies are necessary to elucidate why
newborns with CDH did not have increased eNOS
despite increased VEGFR-2 expression. Understanding
the disruption in this VEGF-NO pathway could
provide new insights and a potential target for new
treatment strategies.

The study has some limitations: (1) it is possible that we
did not find statistical differences in WB due to the sample
size. However, the number of neonates was determined mainly
by the difficulty in ventilating patients with CDH for 60
and 90min; (2) we did not expand the lungs for evaluation
because there is no difference in the histological assessment for
hypoplastic lungs in the rats’ toxicological model (58), and (3)
gene expression was not studied; however, not always it correlates
with protein expression.

CONCLUSION

Understanding the pathways that trigger the PH in CDH is one
of the critical points for improving the treatment of newborns
with CDH. Our findings show a change in the expression of
VEGF, VEGFR-1/2 and eNOS in CDH induced by nitrofen
after 30, 60, and 90min of mechanical ventilation, suggesting
that the VEGF-NO pathway plays an important role in the
honeymoon period in experimental CDH and could be a target
for novel therapies.
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