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ABSTRACT: Drought is the worst environmental stress constraint that inflicts heavy losses to global
food production, such as wheat. The metabolic responses of seeds produced overtransgenerational
exposure to e[CO2] to recover drought’s effects on wheat are still unexplored. Seeds were produced
constantly for four generations (F1 to F4) under ambient CO2 (a[CO2], 400 μmol L−1) and elevated
CO2 (e[CO2], 800 μmol L−1) concentrations, and then further regrown under natural CO2 conditions to
investigate their effects on the stress memory metabolic processes liable for increasing drought resistance
in the next generation (F5). At the anthesis stage, plants were subjected to normal (100% FC, field
capacity) and drought stress (60% FC) conditions. Under drought stress, plants of transgenerational
e[CO2] exposed seeds showed markedly increased superoxide dismutase (16%), catalase (24%),
peroxidase (9%), total antioxidants (14%), and proline (35%) levels that helped the plants to sustain
normal growth through scavenging of hydrogen peroxide (11%) and malondialdehyde (26%). The
carbohydrate metabolic enzymes such as aldolase (36%), phosphoglucomutase (12%), UDP-glucose
pyrophosphorylase (25%), vacuolar invertase (33%), glucose-6-phosphate-dehydrogenase (68%), and cell
wall invertase (17%) were decreased significantly; however, transgenerational seeds produced under e[CO2] showed a considerable
increase in their activities in drought-stressed wheat plants. Moreover, transgenerational e[CO2] exposed seeds under drought stress
caused a marked increase in leaf Ψw (15%), chlorophyll a (19%), chlorophyll b (8%), carotenoids (12%), grain spike (16%), hundred
grain weight (19%), and grain yield (10%). Hence, transgenerational seeds exposed to e[CO2] upregulate the drought recovery
metabolic processes to improve the grain yield of wheat under drought stress conditions.

1. INTRODUCTION
As a staple food, wheat (Triticum aestivum L.) is the world’s
most demanded cereal crop that provides protein, carbohy-
drates, vitamins, and vital nutrients to human diet.1 The
worldwide climate variability has drastically reduced wheat
production and raised serious concerns of food security.
Hence, the world’s need of wheat grains for the global
population has become a huge challenge for future climate
change scenarios.2,3 The climate change induced by increased
greenhouse gases, in particular, carbon dioxide (CO2)
concentrations, causes extreme temperature fluctuations,
warming climate, changing rainfall pattern, and water balance
that extremely affects the ecological processes and crop
yield.4−6 The severity of drought spells as the main
consequence of climate variability has been considered the
most critical factor posing severe threats to agricultural
production.7,8

Drought prevalence in plants instigated by limited water
supply causes severe reduction in leaf surface expansion by
wilting and curling of leaves, membrane and chlorophyll
degradation, and disruption of enzyme functions.9 More
specifically, several cellular and metabolic processes such as

stomatal conductance, RuBisCO enzyme activity, photo-
synthetic apparatus, photosynthetic CO2 fixation and assim-
ilation, nutrient uptake, and plant water status are negatively
affected due to drought stress, consequently reducing the plant
development seriously.10,11 The drought stress in plants also
disturbs the effective translocation of assimilates from source
to sink that, further, limits the normal development of grains.12

Under mild to severe drought, overgeneration of reactive
oxygen species (ROS) such as H2O2, O2

−, and OH− due to
imbalance between biochemical and photochemical functions
predominantly causes peroxidation to nucleic acids, proteins,
lipids, and cellular structures, thereby leading to electrolyte
leakage and inhibiting photosynthetic efficiency in plants.13

The drought exposure is also conducive to reduce the activity
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of certain enzymes such as invertases,14 ADP-glucose
pyrophosphorylase,15 and sucrose synthase,16 thus disrupting
metabolic and physiological mechanisms with a subsequent
decrease in optimum growth and development.

The rapidly elevated CO2 (e[CO2]) concentration in the
atmosphere is the extreme effect of climate change and is
expected to increase globally from 420 to 1300 ppm.17 As
predicted, the varied responses of plants to e[CO2] depend on
the CO2 exposure that the maternal or offspring plant
experiences. It is well known that plants exposed to e[CO2]
for two or three generations show a higher growth response
than those grown for one generation in an e[CO2] environ-
ment.18,19 The positive effect of e[CO2] of promoting the net
photosynthetic efficiency, which subsequently increased the
crop yield and quality, have been shown in numerous
studies.20,21 A prominent increase in leaf area expansion with
e[CO2] under drought stress is associated with enhanced CO2
assimilation and improved water use efficiency by reducing the
stomatal density and transpiration rate, therefore leading to
higher crop growth and productivity.22,23 Moreover, e[CO2]
could possibly decrease the oxidative damage to plants by
reducing the ROS levels via maintenance of a higher
antioxidant potential, which successively helps the plants to
survive in drought environments.24 An e[CO2] environment
also assists the plants in synthesizing carbohydrates and starch
contents through upregulation of the antioxidant metabolism,
hence contributing to a higher grain weight and yield under
drought conditions.3

Multiple studies have focused on the positive responses of
plants to e[CO2] for an increased potential of drought
resistance within a single generation or over multiple
generations; however, the potential metabolic processes
involved in stress memory regulation for drought recovery in
wheat seeds produced overtransgenerational exposure to
e[CO2] are not well described. In this study, wheat seeds
that were produced continuously for four generations under
ambient CO2 (a[CO2], 400 μmol L−1) and elevated CO2
(e[CO2], 800 μmol L−1) concentrations were grown under
natural CO2 conditions to explore the effects of transgenera-
tional exposure to e[CO2] on stress memory regulation in
plants. However, we hypothesize that wheat seeds produced
from overgenerational exposure to e[CO2] memorize the stress

memory to increase the drought resistance in the next
generation of plants through upregulation of metabolic
processes when regrown under natural CO2 environments.

2. MATERIALS AND METHODS
2.1. Seed Material and Site. Four generation seeds of

wheat crop (T. aestivum L. “var. Lianmai 6”) were obtained
from plants continuously grown under climate-controlled
conditions of a[CO2] (400 μmol L−1) and e[CO2] (800
μmol L−1) concentrations during 2014 to 2017. The seeds of
all four generations (F1 to F4) were grown for four growing
seasons, i.e., F1 generation from February 15 to July 15, 2014;
F2 generation from September 15 to January 31, 2015; F3
generation from October 01 to February 20, 2016; and F4
generation from November 20 to April 25, 2017.1 The study
was conducted at the Research Area of University of Poonch
Rawalakot, Azad Jammu and Kashmir, Pakistan (N 25.61°, E
55.94°).
2.2. Cultivation Conditions. F4 generation seeds were

initially tested for their viability. The randomly selected
uniform, mature, and physically pure seeds were disinfected
with NaOCl solution (10%, sodium hypochlorite) for 5 min,
rinsed thoroughly with distilled water to remove the traces of
NaOCl and then air-dried up to their original moisture
content. Six seeds were sown at the top soil (3 cm depth) in
earthen pots of 4 L with 21 cm diameter, 20.5 cm height, and
one central drainage hole. The pots were filled with 3.5 kg of
air-dry, ground, and screened (2 mm mesh) soil mixture
comprising loam soil and peat material (3:1, w/w). The
textural class and physio-chemical characteristics of the
experimental soil were determined by following standard
procedures.25,26 The soil was characterized as follows: sand
40%, silt 40%, clay 20%, pH 6.5, organic matter 3.12%,
electrical conductivity 0.47 mS cm−1, nitrogen 0.14%, calcium
10.66 mg kg−1, sodium 107.31 mg kg−1, chloride 0.74 mg kg−1,
phosphorus 78.21 mg kg−1, and potassium 0.05 mg kg−1. The
nutrient demands for NPK fertilizers were determined using
the optimum rates of urea (120 kg ha−1), diammonium
phosphate (60 kg ha−1), and potassium sulfate (50 kg ha−1)
corresponding to 210, 105, and 88 mg pot−1, respectively. All
P, K, and 1/third N were mixed with the top soil layer (0−15
cm) during filling of pots, whereas the remaining 2/third N

Figure 1. Meteorological conditions of the experimental site during the growth period of wheat.
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was top-dressed in two series with each 1/third at 5 leaf
(Zadoks code 15) and flag leaf ligule visible (Zadoks code 39)
stages.27 All plants were kept in a wire house equipped with a
portable rain-protected plastic sheet under natural conditions
for 153 days during the growth period of 2020−21 (October
23rd to March 24th). The climatic conditions of the
experimental site such as average air temperatures (min and
max) and relative humidity during the cultivation period are
described in Figure 1. Water was applied to the plants daily to
retain the soil mix at optimum moisture content (i.e., 100%
FC, field capacity). At the emergence of the fourth leaf
(Zadoks code 14), 3 plants were left in each pot by thinning.
The pots were rotated randomly within each block for every 1
week. Weeds were removed manually in each pot when
required.
2.3. Experimental Setup. F4 generation seeds collected

from continuously grown plants separately in a[CO2] and
e[CO2] concentrations for four generations were raised under
natural CO2 conditions (without e[CO2] exposure). At the
anthesis stage (Zadoks code 61), plants were subjected to
drought by keeping the soil moisture content at 60% FC level,
whereas the 100% FC level in the soil mix served as well-
watered treatment (normal). All plants received normal
watering at the end of the drought stress (i.e., after 28 days
of drought imposed). In total, this study had 4 treatments
based on drought stress and CO2 environments (two drought
levels × two transgenerational CO2-treated seeds). Each
treatment was repeated 3 times and arranged randomly
under a CRD factorial design. Leaf samples were taken from
each treatment (pot) after termination of drought stress (28
days after the drought was imposed) for physiological and
enzymatic analysis. The experiment ended at physiological
maturity.
2.4. Assay for Antioxidative Enzymes. The fresh leaf

sample (1 g) was homogenized in 50 mM potassium
phosphate buffer (pH 7.0), 1 mM dithiothreitol (DTT), and
0.1 mM EDTA and centrifuged for 20 min at 13,000 rpm.28

Catalase (CAT) activity was measured in an assay solution
(3 mL) containing 50 mM phosphate buffer (pH 7.0), 5.9 mM
H2O2, and 0.1 mL of enzyme extract. The decrease in
absorbance for every 20 s was recorded at 240 nm and
absorbance change of 0.01 units min−1 was defined as one unit
CAT activity.29

Peroxidase (POD) activity was assessed from the reaction
mixture containing 0.1 mL of enzyme extract, 50 mM
phosphate buffer (pH 7.0), 40 mM H2O2, and 20 mM
guaiacol. Absorbance was recorded at 470 nm and 1 unit POD
activity was defined as an absorbance change of 0.01 unit
min−1.30

The superoxide dismutase (SOD) activity of the reaction
mixture (3 mL) comprising 13 mM methionine, 2 μM
riboflavin, and 75 μM p-nitroblue tetrazolium chloride (NBT)
was measured spectrophotometrically by illuminating under
500 μmol m−2 s−1 PPFD.31

Total antioxidants were determined using trolox equivalent
antioxidant capacity.32

2.5. Carbohydrate Metabolic Enzyme Determination.
Leaf material (500 mg) was extracted in a buffer (1 mL)
comprising Tris−HCl (40 mM, pH 7.6), PMSF (0.1 mM),
EDTA (1 mM), MgCl2 (3 mM), β-mercaptoethanol (14 mM),
benzamidine (1 mM), and NADP (24 μM) with a semi-high-
throughput analytical platform.33 An aliquot (25 μL) of the
extract supplemented with the individual enzyme mixture (i.e.,

total reaction volume of 160 μL) was incubated in a 96-well
plate reader for 40 min at 30 °C in ultraviolet (UV)-
transmissive flat-bottom 96-well plates.

The enzyme activities of fructose-1,6-bisphosphate aldolase
(Ald), phosphoglucomutase (PGM), UDP-glucose pyrophos-
phorylase (UGPase), vacuolar invertase (vacInv), glucose-6-
phosphate-dehydrogenase (G6PDH), cell wall invertase
(cwInv), hexokinase (HXK), fructokinase (FK), sucrose
synthase (SuSy), and ADP-glucose pyrophosphorylase (AG-
Pase) were determined.33

2.6. Detection of H2O2 and MDA. Fresh leaf material (0.5
g) was ground in 0.1% trichloroacetic acid solution (5 mL).
The extract was homogenized at 12,000 rpm for 15 min, and
an aliquot of the supernatant (0.5 mL) was mixed with 1 M
potassium iodide (1 mL) and 10 mM potassium phosphate
buffer (0.5 mL, pH 7.0). The absorbance of the mixture was
noted at 390 nm using a spectrophotometer (Hitachi-120,
Japan) to determine the hydrogen peroxide (H2O2) con-
tents.34

For determining malondialdehyde (MDA) contents in fresh
leaves, the weighed sample (0.5 g) was homogenized in
trichloroacetic acid solution (0.1%) and centrifuged at 12,000
rpm for 15 min at 4 °C. The supernatant (2 mL) was
thoroughly mixed with 0.6% thiobarbituric acid (2 mL)
solution prepared in 10% trichloroacetic acid. After incubation
at 95 °C for 30 min, the mixture was centrifuged at 10,000 rpm
for 10 min and used to record the absorbance at 532 and 600
nm. An extinction coefficient of 155 mM−1 cm−1 was used to
measure the MDA contents.35

2.7. Estimation of Proline and Leaf Ψw. The
homogenized fresh leaf material (0.5 g) with a 3% aqueous
solution of sulfosalicylic acid (10 mL) was filtered to 2 mL and
incubated at 100 °C for 1 h after mixing with a glacial acetic
acid and acid ninhydrin solution (2 mL). After terminating the
reaction in the ice bath, toluene (4 mL) was used to extract the
reaction mixture, which formed a chromophore. A continuous
air stream was then passed through the reaction mixture to
isolate the aqueous phase from the chromophore containing
toluene. The isolated colored phase was allowed to stand at
room temperature for 2−3 min and used to measure its
absorbance spectrophotometrically at 520 nm.36

mol proline g FW

( g proline mL mL toluene)/115.5

/ (g sample)/5

1

1= [ × ]

[ ]

Leaf water potential (Ψw) was estimated using a Scholander
type pressure chamber (Model 1000, PMS New York).
2.8. Measurement of Chlorophyll Content. Fresh leaf

material of 0.5 g was ground in 80% acetone solution and
allowed to extract overnight at 4 °C. The mixture was adjusted
to 5 mL using acetone solution and further centrifuged at
10,000 rpm for 5 min. The filtered supernatant was then used
to record the absorbance at 645, 647, and 663 nm using a
spectrophotometer (Hitachi-120, Japan) for estimating the
chlorophyll a (Chla), chlorophyll b (Chlb), and carotenoid
(Car) contents.37

A A V WChl (mg g ) (12.7 2.69 ) /1000a
1 663 645= × ×

A A V WChl (mg g ) (22.9 4.68 ) /1000b
1 645 663= × ×
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A a

b

Car (mg g ) 1000 (1.82 Chl. )

(85.02 Chl. )/198

1 470=

2.9. Determination of Yield and Yield Attributes. At
physiological maturity (Zadoks code 90), crop plants from
each pot were harvested to record the data of the number of
grains per spike, hundred grain weight, and grain yield
following standard procedures.
2.10. Statistical Analysis. The linear model analysis of

variance (ANOVA) technique for two-factor analysis was
employed using Statistix 8.1 to test the significance of water,
CO2-treated seeds, and their interaction treatments on the
measured traits. The treatments’ means were compared using
Tukey’s HSD test (p = 5%). Pearson’s correlation analysis was
done using the ggcorrplot function. A heatmap for all traits was
developed using the R-package (Version 4.2.6 software). In
order to investigate the research hypothesis, the structural
equation model (SEM) was developed to analyze the structural
relationships between the variables and underlying constructs.
The coefficients of this model are calculated using the
Maximum Likelihood Technique, accompanied by standard
errors and scaled statistics, combining the elements of Factor
Analysis and Multiple Regression Analysis. Additionally, we
examined modification indexes and residuals to determine
whether to include or exclude the variables. The fit of the
model was evaluated using a variety of metrics, such as chi-
square test, Goodness of Model Fit, and Standard Root Mean
Square Residuals within the framework of the structural
equation model. Within this framework, enzymatic and yield-
contributing parameters were treated as latent variables, while
grain yield was treated as an observable variable.

3. RESULTS
3.1. Antioxidative Enzyme Activities. Drought caused a

remarkable increase in CAT, POD, and SOD activities,
whereas transgenerational seeds produced under e[CO2]
considerably increased the antioxidative capacity of CAT and
TA activities, while it had no significant (p < 0.05) effect on
the POD and SOD potential under drought stress (Table 1). A
substantial increase in CAT, POD, SOD, and TA activities by
23, 37, 19, and 14% was exhibited in drought-stressed plants
grown with seeds produced by overtransgenerational exposure
to a[CO2]. Plants of transgenerational seeds exposed to
e[CO2] showed notable increase in the CAT, POD, and SOD
activities by 24, 9, and 16%, respectively, when subjected to
drought stress (Figure 2a−c). Overgenerational e[CO2]
exposure to wheat seeds markedly increased the TA activity
by 35 and 14% when raised under both normal and drought
conditions, respectively (Figure 2d).
3.2. Carbohydrate Metabolic Enzymes. Transgenera-

tional e[CO2] exposure under drought stress had significant (p
< 0.05) effects for Ald, PGM, HXK, FK, cwInv, vacInv, and
AGPase enzymes, while UGPase, SuSy, and G6PDH enzymes
showed no significant responses for their activities (Table 1).
Multiple-generation a[CO2]-treated seeds grown under
drought conditions markedly reduced the enzymatic activities
of Ald, PGM, UGPase, vacInv, and G6PDH, whereas a notable
decline by 36, 12, 25, 33, and 68%, respectively, was recorded
in wheat plants as compared to normal plants. Quite the
reverse, overgenerational e[CO2]-exposed seeds showed
improved Ald, PGM, UGPase, vacInv, and G6PDH activities
in the leaves of wheat plants by 20, 38, 16, 57, and 57%,

respectively, compared to plants raised with transgenerational
a[CO2]-treated seeds upon subjecting to drought stress
(Figure 3a−e). Similarly, drought exposure caused a profound
decline in cwInv activity as the highest decrease by 17% was
exhibited in plants of overgenerational a[CO2]-exposed seeds.
Transgenerational e[CO2]-exposed seeds resulted in a further
decrease in the cwInv activity of plants by 7 and 35%
compared to a[CO2]-grown seeds under either normal or
drought conditions, respectively (Figure 3f).

Under drought conditions, HXK and FK activities were
increased by 31 and 27%, respectively, in plants of overgenera-
tional a[CO2]-exposed seeds in contrast to normal plants
raised with exposed seeds of a[CO2]. Overgenerational
exposure of e[CO2] to seeds considerably decreased the
HXK and FK activities by 25 and 17%, respectively, in
drought-prone plants compared to a[CO2] treatment. On the
contrary, HXK activity was improved by 56% in plants grown
with overgenerational e[CO2]-treated seeds under normal
water supply conditions (Figure 3g,h). SuSy and AGPase
activities were increased by 35 and 38%, respectively, in plants
of transgenerational a[CO2]-exposed seeds under drought

Table 1. Significance (p-Values) for Antioxidants,
Carbohydrate Metabolism, Oxidative Destruction
Compounds, Proline, Ψw, Chlorophyll Content, and Yield-
Related Traits of Wheat at 95% Confidence Interval of
Meana

variables drought (D) CO2 treatments (CO2) D × CO2 interaction

CAT <0.0001 0.0018 0.0205
POD 0.0002 0.0333 0.6312
SOD 0.0019 0.0399 0.3444
TA 1.0000 0.0001 0.0125
Ald <0.0001 0.0680 0.0037
PGM 0.3229 0.0001 0.0070
UGPase 0.0005 0.0137 0.7443
vacInv 0.2326 <0.0001 0.0001
G6PDH <0.0001 0.0001 0.2392
cwInv <0.0001 0.0006 0.0121
HXK 0.0063 0.0017 <0.0001
FK <0.0001 <0.0001 0.0246
SuSy <0.0001 0.0047 0.7452
AGPase 0.5138 <0.0001 0.0023
H2O2 <0.0001 0.0115 0.9553
MDA 0.0001 0.0044 0.0196
Proline <0.0001 <0.0001 0.0041
Ψw 0.0004 0.0516 0.2861
Chl. a 0.0001 0.0015 0.5045
Chl. b <0.0001 0.0012 0.0423
Car <0.0001 0.0004 0.0202
G/S <0.0001 0.0028 0.5767
HGW 0.0001 0.0037 0.5989
GY <0.0001 0.0001 0.0380

ap-values for D, CO2, and D × CO2 interaction indicate statistical
significance at p < 0.05. CAT, catalase; POD, peroxidase; SOD,
superoxide dismutase, TA, total antioxidants; Ald, fructose-1,6-
bisphosphate aldolase; PGM, phosphoglucomutase; UGPase, UDP-
glucose pyrophosphorylase; vacInv, vacuolar invertase; G6PDH,
glucose-6-phosphate-dehydrogenase; cwInv, cell wall invertase;
HXK, hexokinase; FK, fructokinase; SuSy, sucrose synthase; AGPase,
ADP-glucose pyrophosphorylase; H2O2, hydrogen peroxide; MDA,
malondialdehyde; Ψw, water potential; Chl. a, chlorophyll a; Chl. b,
chlorophyll b; Car, carotenoids; G/S, grains per spike; HGW,
hundred grain weight; GY, grain yield.
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stress. Overgenerational seeds exposed to e[CO2] revealed a
significant improvement in SuSy and AGPase activities by 15
and 54%, respectively, in plants as compared to the plants of
multigenerational a[CO2]-exposed seeds (Figure 3i,j).
3.3. H2O2 and MDA. Overgenerational e[CO2]-exposed

seeds under drought stress showed remarkably (p < 0.05)
reduced MDA contents in wheat plants, while the interaction
effect for H2O2 was not significant (Table 1). H2O2 content
was increased significantly in plant leaves subjected to drought
stress compared to normal plants. A marked increase in H2O2
content was found by 35% in plant leaves grown with
transgenerational a[CO2]-exposed seeds while treated with
drought stress. Plants raised with treated seeds of transgenera-
tional e[CO2] showed the H2O2 content significantly reduced
by 11% compared to a[CO2]-exposed seeds subjected to
drought stress conditions. Similarly, the H2O2 content was
decreased by 18% with e[CO2] treatment under normal water
conditions (Figure 4a).

Likewise, MDA content was increased significantly by 34%
in transgenerational a[CO2]-exposed seeds under drought
stress than under normal conditions. Under normal water
supply conditions, overgenerational e[CO2]-treated seeds
showed a slight decrease in leaf MDA content by 5% than
control (a[CO2]-exposed seeds). A notable decline in MDA
content by 26% was observed in plants grown with

transgenerationally treated seeds of e[CO2] in parallel to the
plants of a[CO2]-exposed seeds under drought stress
conditions (Figure 4b).
3.4. Proline and Leaf Ψw. Transgenerational exposure of

e[CO2] to wheat seeds significantly (p < 0.05) affected the
proline content under drought stress conditions; however, the
effects of drought stress on leaf Ψw were only significant (Table
1). Proline content was increased markedly in drought-prone
plants by 38% in parallel to normal plants grown with
overgenerational a[CO2]-induced seeds. A marked increase in
proline content was found in plants raised with transgenera-
tional e[CO2]-treated seeds under either normal or drought
conditions. The combination of transgenerational e[CO2]-
exposed seeds with drought stress improved the proline
content by 35% in drought-stressed plants in comparison to
the plants grown with overgenerational a[CO2]-treated seeds
(Figure 5a).

Exposure of wheat seeds to transgenerational e[CO2] caused
a positive gain in the leaf Ψw of normal or drought-stressed
plants. A more positive gain in leaf Ψw by 15% was exhibited in
drought-affected plants grown with overgenerational e[CO2]-
treated seeds than plants of a[CO2]-exposed seeds. Similarly, a
positive gain in leaf Ψw by 5% was found in plants raised with
multigenerational e[CO2]-treated seeds under normal water
conditions (Figure 5b).

Figure 2. Response of catalase (CAT) (a), peroxidase (b), superoxide dismutase (SOD) (c), and total antioxidants (d) in wheat plants grown from
transgenerational seeds exposed to ambient CO2 (a[CO2], 400 μmol L−1) and elevated CO2 (e[CO2], 800 μmol L−1) concentrations under normal
(N) and drought (D) conditions. Means ± SE (n = 3) with different lower-case letters indicate significant differences following HSD Tukey’s test
(p < 0.05). N, normal water supply; D, drought stress.
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Figure 3. Response of fructose-1,6-bisphosphate aldolase (Ald) (a), phosphoglucomutase (PGM) (b), UDP-glucose pyrophosphorylase (UGPase)
(c), vacuolar invertase (vacInv) (d), glucose-6-phosphate-dehydrogenase (G6PDH) (e), cell wall invertase (cwInv) (f), hexokinase (HXK) (g),
fructokinase (FK) (h), sucrose synthase (SuSy) (i), and ADP-glucose pyrophosphorylase (AGPase) (j) in wheat plants grown from
transgenerational seeds exposed to ambient CO2 (a[CO2], 400 μmol L−1) and elevated CO2 (e[CO2], 800 μmol L−1) concentrations under normal
(N) and drought (D) conditions. Means ± SE (n = 3) with different lower-case letters indicate significant differences following HSD Tukey’s test
(p < 0.05). N, normal water supply; D, drought stress.
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3.5. Chlorophyll Content. Chlorophyll contents (Chl. a,
Chl. b, and Car) were considerably (p < 0.05) affected under
drought stress and transgenerational e[CO2] exposure (Table
1). Chl. a and Chl. b contents were decreased sharply in plants
subjected to drought stress. A marked reduction in Chl. a and
Chl. b contents by 27 and 21%, respectively, was found in
drought-stressed plants over normal plants. Overgenerational
treated seeds with e[CO2] showed enhanced leaf Chl. a and
Chl. b contents by 19 and 8%, respectively, compared to plants
of a[CO2]-treated seeds subjected to drought stress conditions
(Figure 6a,b). Drought also caused a prominent decline in Car
content; however, a notable decline of 24% was exhibited in
plants produced under transgenerational a[CO2]. Plants grown
with overgenerational e[CO2]-exposed seeds revealed a highest
increase in Car content by 12% than a[CO2]-treated seeds
subjected to drought conditions (Figure 6c).
3.6. Yield and Yield-Related Parameters. Exposure to

drought stress resulted in a significant (p < 0.05) reduction in
yield and yield-related attributes; however, transgenerational

e[CO2] exposure to seeds enhanced the yield of wheat (Table
1). Plants grown with transgenerational seeds exposed to
a[CO2] showed a notable decline in G/S, HGW, and GY by
29, 33, and 22, respectively, when subjected to drought
conditions in contrast to normal plants. Overgenerational
seeds exposed to e[CO2] markedly increased the G/S and
HGW by 16 and 19%, respectively, compared to a[CO2]-
treated seeds under drought stress conditions. Similarly, a
remarkable increase in GY by 10% was found in plants grown
with transgenerational e[CO2] exposed to drought stress
conditions (Figure 7a−c).
3.7. Correlation of Antioxidants, Carbohydrate

Metabolic Enzymes, H2O2, MDA, Proline, Leaf Ψw, and
Chlorophyll with Grain Yield and Yield-Related Traits.
The association of Ald, UGPase, and G6PDH enzymes with G/
S, HGW, and GY was determined to be strong and positive,
whereas HXK was positively correlated with the GY and Car of
wheat subjected to transgenerational e[CO2] exposure under
drought stress. Chlorophyll contents (Chl. a, Chl. b, and Car)

Figure 4. Response of hydrogen peroxide (H2O2) (a) and malondialdehyde (MDA) (b) in wheat plants grown from transgenerational seeds
exposed to ambient CO2 (a[CO2], 400 μmol L−1) and elevated CO2 (e[CO2], 800 μmol L−1) concentrations under normal (N) and drought (D)
conditions. Means ± SE (n = 3) with different lower-case letters indicate significant differences following HSD Tukey’s test (p < 0.05). N, normal
water supply; D, drought stress.

Figure 5. Response of proline (a) and water potential (Ψw) (b) in wheat plants grown from transgenerational seeds exposed to ambient CO2
(a[CO2], 400 μmol L−1) and elevated CO2 (e[CO2], 800 μmol L−1) concentrations under normal (N) and drought (D) conditions. Means ± SE
(n = 3) with different lower-case letters indicate significant differences following HSD Tukey’s test (p < 0.05). N, normal water supply; D, drought
stress.
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showed a positive correlation with GY, G/S, and HGW. On
the contrary, H2O2, MDA, and leaf Ψw were negatively
correlated with the G/S, HGW, and GY of wheat (Figure 8).
3.8. Clustered Heatmap of Antioxidants, Carbohy-

drate Metabolic Enzymes, H2O2, MDA, Proline, Leaf Ψw,
Chlorophyll, and Grain Yield. CAT, POD, and SOD were
positively clustered for D (e[CO2]), whereas a strong
association for TA was found in N (e[CO2]). A positive and
strong association for PGM, VacInv, and Susy was observed
with D (e[CO2]). The enzymes like UGPase, G6PDH, HXK,
and AGPase were clustered positively in N (e[CO2]), while a
strong and positive relationship of Ald and cwInv was depicted
with N (a[CO2]). H2O2, MDA, FK, and WP were clustered
positively with D (a[CO2]), whereas proline was strongly
correlated with D (e[CO2]). A strong positive association of
Chl. a, Chl. b, Car, G/S, HGW, and GY was revealed with N
(e[CO2]) (Figure 9).
3.9. Structural Equation Modeling (SEM). The path

diagram represents the structural relationships, including
causality, covariance, and variances, between the observed
and latent variables in the SEM model. As illustrated in Figure
10a, the estimated regression coefficient of GY on EA and YC
is 0.02 and 0.09, respectively, with a covariance −11.77

between both variables. All of the nonenzymatic and yield-
contributing traits have positive direct and indirect effects on
wheat grain yield. Likewise, in Figure 10b, enzymatic and yield-
contributing traits have positive relationships with grain yield
with an estimated regression coefficient of GY on EA of 0.02
and on YC of 0.29, and with a covariance of −1.21 between
both variables. Additionally, as shown in Figure 10c, yield-
promoting traits have positive relationships with grain yield in
wheat with an estimated regression coefficient of GY on GP of
4.13 and on YC of 0.13, with a covariance of −0.72 between
both variables, indicating that they are directly related to each
other.

4. DISCUSSION
Drought is the worst challenge of climatic change causing
massive losses to crop yield globally.38 Drought exposure is
generally considered to cause disturbances in metabolic and
physiological processes such as reduction of water relations,
limiting of stomatal conductance and carbon assimilation,
curling and wilting of leaves, inhibition of cell division, and
oxidative damage to nuclei, cellular membranes and chlor-
ophyll pigments, consequently reducing the normal growth of
plants.39,40 The gradual increase in environmental CO2 is the

Figure 6. Response of chlorophyll a (Chl. a) (a), chlorophyll b (Chl. b) (b), and carotenoids (Car) (c) in wheat plants grown from
transgenerational seeds exposed to ambient CO2 (a[CO2], 400 μmol L−1) and elevated CO2 (e[CO2], 800 μmol L−1) concentrations under normal
(N) and drought (D) conditions. Means ± SE (n = 3) with different lower-case letters indicate significant differences following HSD Tukey’s test
(p < 0.05). N, normal water supply; D, drought stress.
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main consequence of climate variability that interacts with
drought to influence the ecological and physiological systems
in plants.6 It is evident that an increased concentration of CO2
is involved in alleviating the drastic effects of drought via
accelerating the cytoplasmic accumulation of osmolytes,
protecting the photosynthetic system, and by improving the
water use efficiency.3,41,42 In the present study, the positive
effects of transgenerational exposure of seeds to e[CO2] on the
metabolic processes involved in stress memory regulation for
inducing drought tolerance in wheat are of interest.

Drought stress is the complex and extreme effect of climate
change that severely affects the growth of plants.43 During the
initial periods of drought, plants frequently adopt certain
physiological adjustments like cellular accumulation of solutes,
elimination of ROS through enhanced activity of antioxidative
enzymes, and reduced transpiration by deposition of the waxy
layer on leaf surfaces, but work for a short duration during
droughts.9 Numerous studies have suggested that e[CO2] may
enhance the carbon to nitrogen ratio and leaf surface area for
higher photosynthesis, and leaf water contents, thereby
contributing to better crop growth and grain yield.3,20 In the
present study, transgenerational seed exposure to e[CO2] was
found to largely improve the drought tolerance potential in
wheat plants through the increased capacities of CAT, POD,

and SOD. The increased activities of such antioxidative
enzymes may effectively upregulate the defense system of
plants for scavenging of ROS, causing peroxidation to
membranes, proteins, and DNA, eventually enhancing the
crop growth and yield under drought situations.44 A prominent
increase in CAT, POD, and SOD activities has also been
described in Selaginella tamariscina,45 Helianthus annuus,9

Medicago sativa,7 and Ilex verticillata,40 suggesting that plants
mostly avoid drought abnormalities by scavenging of ROS-free
radicals via stimulating the antioxidant enzyme activities. As a
defensive role of antioxidants, particularly, SOD is actively
involved in detoxifying the O2

− and preserving the cellular
membranes from oxidative injuries, hence protecting the plants
from the toxic effects of ROS instigated by drought.47

Likewise, the upregulation of CAT was indicated in drought-
stressed wheat plants raised from transgenerational seeds
exposed to e[CO2], which could potentially maintain a higher
net photosynthesis and grain yield via removal of H2O2
radicals.3,48 Furthermore, CAT was also involved in increasing
the level of ROS through its active reaction with certain
hydroperoxides like methyl hydrogen peroxide, thus resulting
in the enhanced potential of drought resistance in plants.49

As an abundant energy source for normal plant growth and
physiological processes, the disturbed activities of enzymes

Figure 7. Response of grains per spike (G/S) (a), hundred grain weight (HGW) (b), and grain yield (GY) (c) in wheat plants grown from
transgenerational seeds exposed to ambient CO2 (a[CO2], 400 μmol L−1) and elevated CO2 (e[CO2], 800 μmol L−1) concentrations under normal
(N) and drought (D) conditions. Means ± SE (n = 3) with different lower-case letters indicate significant differences following HSD Tukey’s test
(p < 0.05). N, normal water supply; D, drought stress.
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involved in carbohydrate metabolism were ascribed to
drought-prone plants.50 In the current results, drought stress
caused a prominent decrease in carbohydrate metabolic
enzymes such as Ald, PGM, UGPase, vacInv, G6PDH, and
cwInv, which might be associated with upregulation of proteins
related to α-amylase and β-amylase enzymes. Overexpression
of such enzymes is normally responsible for degradation of
starch into soluble sugars to increase the cellular accumulation
of osmoregulators, thus providing a large amount of energy to
plants for optimal cell division and metabolism under drought
stress.51,52 A prompt increase in the activities of carbohydrate
metabolic enzymes such as Ald, PGM, UGPase, vacInv,
G6PDH, and cwInv in wheat plants raised from transgenera-
tional seeds exposed to e[CO2] is strongly related to the key
role of e[CO2] in suppressing the upregulation of the lichenase
enzyme responsible for degradation of carbohydrates within
the plant system under drought stress.53 It is also evident that
carbohydrate metabolic enzymes like Ald, PGM, UGPase,
vacInv, G6PDH, and cwInv have essential roles in drought
tolerance in plants.54 In previous reports, Ald and PGM have
been described to increase under e[CO2] concentration and to
have key functions in glycolysis, starch-biosynthesis, cytoplas-
mic gluconeogenesis, and carbon dioxide fixation. The increase
in Ald activity could enhance the carbon flow via the calvin
cycle, however, stimulating the amino acids and sucrose

synthesis in plants.55,56 In present study, the increased activity
of cwInv in plants of transgenerational seeds exposed to
e[CO2] might be attributed to the overexpression of cwInv
gene (CIN1), which helps the plants to delay senescence,
regulate the source-sink balance, scavenge ROS, and supply
carbohydrates through the apoplastic pathway, thereby leading
to a higher grain yield under drought stress.3 Similarly, the
increased activity of the G6PDH enzyme might be attributed to
the enhanced antioxidative capacity of wheat plants, thus
aggravating plant performance under drought stress.57

HXK, FK, SuSy, and AGPase activities were considerably
increased in wheat plants during drought stress. As the more
stable form of the carbohydrate, sucrose is rapidly phosphory-
lated with increased activity of FK enzyme in the citric acid
cycle, thereby causing poor plant development due to
enhanced respiration rates. Under drought stress, transgenera-
tional seeds produced under e[CO2] revealed much less FK
and HXK activities in wheat plants. The downregulation of FK
activity under e[CO2] may be contributing to suppress or
cause more effective conversion of carbohydrates to sucrose,
which helps the plants to survive during drought stress
periods.53,58 A consistent increase in Susy and AGPase
activities in wheat plants grown with overgenerational seeds
exposed to e[CO2] is concomitant with the increased
accumulation and translocation of starch and sugars for
normal photosynthetic activities.59

Exposure to drought stress caused a substantial increase in
the H2O2 and MDA contents in wheat plants. In fact, H2O2 is a

Figure 8. Correlation coefficients (r) indicating the association
among antioxidants, carbohydrate metabolism, H2O2, MDA, proline,
leaf Ψw, chlorophyll content, and yield-related traits of wheat
following transgenerational seeds’ exposure to ambient CO2
(a[CO2], 400 μmol L−1) and elevated CO2 (e[CO2], 800 μmol
L−1) concentrations under normal (N) and drought (D) conditions.
The variation in color represents the significant differences (p < 0.05).
CAT, catalase; POD, peroxidase; SOD, superoxide dismutase, TA,
total antioxidants; Ald, fructose-1,6-bisphosphate aldolase; PGM,
phosphoglucomutase; UGPase, UDP-glucose pyrophosphorylase;
vacInv, vacuolar invertase; G6PDH, glucose-6-phosphate-dehydrogen-
ase; cwInv, cell wall invertase; HXK, hexokinase; FK, fructokinase;
SuSy, sucrose synthase; AGPase, ADP-glucose pyrophosphorylase;
H2O2, hydrogen peroxide; MDA, malondialdehyde; Ψw, water
potential; Chl. a, chlorophyll a; Chl. b, chlorophyll b; Car,
carotenoids; G/S, grains per spike; HGW, hundred grain weight;
GY, grain yield.

Figure 9. Clustered heatmap of antioxidants, carbohydrate metabo-
lism, H2O2, MDA, proline, leaf Ψw, chlorophyll content, and yield-
related traits of wheat following transgenerational seeds’ exposure to
ambient CO2 (a[CO2], 400 μmol L−1) and elevated CO2 (e[CO2],
800 μmol L−1) concentrations under normal (N) and drought (D)
conditions. The variation in color represents the significant differences
(p < 0.05). CAT, catalase; POD, peroxidase; SOD, superoxide
dismutase, TA, total antioxidants; Ald, fructose-1,6-bisphosphate
aldolase; PGM, phosphoglucomutase; UGPase, UDP-glucose pyro-
phosphorylase; vacInv, vacuolar invertase; G6PDH, glucose-6-
phosphate-dehydrogenase; cwInv, cell wall invertase; HXK, hexoki-
nase; FK, fructokinase; SuSy, sucrose synthase; AGPase, ADP-glucose
pyrophosphorylase; H2O2, hydrogen peroxide; MDA, malondialde-
hyde; WP, water potential; Chl. a, chlorophyll a; Chl. b, chlorophyll b;
Car, carotenoids; G/S, grains per spike; HGW, hundred grain weight;
GY, grain yield.
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highly toxic and reactive ROS that is produced as a
consequence of drought stress through conversion of O2

− to
H2O2. As a byproduct of H2O2-induced peroxidation to
membranes, DNA, lipids, chloroplast and proteins, MDA

compound reduces the integrity and fluidity of the membranes,
thus causing a major loss to crop productivity.48,60,61 In the
current results, plants raised with transgenerational seeds
produced under e[CO2] revealed a marked decline in H2O2
and MDA contents. The supremacy of e[CO2]-exposed seeds
for reducing H2O2 and MDA contents in wheat plants during
drought stress is related to the upregulation of antioxidant-
related differentially expressed genes, indicating their key
functions of increasing Cu and Zn-SOD activity for effective
scavenging of ROS-induced toxic compounds.24 It was recently
suggested that e[CO2]-induced expression of late embryo-
genesis-abundant proteins could be possibly involved in
protecting the membranes, nucleic acids, and enzymes from
the oxidative stress of H2O2 and MDA via promoting the
scavenging potential of antioxidant enzymes.46,62

As an osmolyte, proline is an effective nonenzymatic
antioxidant that could potentially improve the drought
tolerance in plants via scavenging of ROS, in particular, O2

−

and OH−8. In the present study, proline content was increased
to a significant level in drought-prone wheat plants. In
conformity to our findings, proline is initially accumulated in
plants as an osmoprotectant through upregulation of enzymes
related to proline biosynthesis that maintain the water status of
plants under drought stress.9,63 An increase in proline content
in drought-stressed wheat plants with transgenerational seeds
exposed to e[CO2] indicates its positive role in stimulating the
osmotic adjustment ability through cellular accumulation of
proline, therefore enhancing the drought resistance in plants.21

Drought prevalence also caused a marked decline in the leaf
Ψw of plants. The drought exposure in wheat plants caused a
more negative gain in Ψw, while transgenerational seeds
produced under e[CO2] revealed a more positive leaf Ψw. The
decrease in Ψw in drought-stressed plants was an index of the
enhanced cytoplasmic accumulation of osmoprotectants such
as glycine betaine, proline, sorbitol, sucrose, and fructose to
cope with the drought events via maintaining the osmotic
balance.64 The reduced Ψw in wheat plants also coincides with
the previous reports that drought-induced lipid peroxidation in
plants causes damage to membrane proteins and enzymes
involved in regulating the water channels and transporters for
water movement.48,65 Plants grown from transgenerational
seeds exposed to e[CO2] had a higher Ψw, suggesting its
critical involvement in maintaining the higher abundance of
aquaporin proteins and hydraulic conductance, consequently
improving the water status of plants.66 It is further suggested
that a stimulatory influence of e[CO2] in maintaining higher
leaf water balance might be attributed to its key role in
increasing the abscisic acid level that could effectively regulate
the stomatal conductance for reducing the transpirational
water loss in response to accelerating evaporative demands
during drought.67,68

Chlorophyll content as an active component of photo-
chemical reaction is damaged by drought stress.69 In the
current results, Chl. a, Chl. b, and Car contents were decreased
drastically in drought-induced wheat plants. A substantial
decline in chlorophyll content, i.e., Chl. a, Chl. b, and Car, is
concomitant with the decomposition of chloroplast and
thylakoid structures and light-harvesting pigment proteins via
synthesis of oxygen-free radicals, hence resulting in reduced
chlorophyll pigments.70 Plants grown with transgenerational
seeds exposed to a[CO2] had lower Chl. a, Chl. b, and Car
contents than plants of e[CO2]-treated seeds to drought
conditions. The increase in chlorophyll contents in drought-

Figure 10. Structural equation model showing the direct and indirect
influence of (a, b) enzymatic, nonenzymatic, and yield (c)
contributing traits on wheat grain yield grown from transgenerational
seeds exposed to ambient CO2 (a[CO2], 400 μmol L−1) and elevated
CO2 (e[CO2], 800 μmol L−1) concentrations under normal and
drought conditions. CAT, catalase; POD, peroxidase; SOD, super-
oxide dismutase; Ald, fructose-1,6-bisphosphate aldolase; PGM,
phosphoglucomutase; UGP, UDP-glucose pyrophosphorylase; VAC,
vacuolar invertase; G6PDH, glucose-6-phosphate-dehydrogenase;
cwInv, cell wall invertase; HXK, hexokinase; FK, fructokinase; SuS,
sucrose synthase; AGP, ADP-glucose pyrophosphorylase; H2O2,
hydrogen peroxide; MDA, malondialdehyde; WP, water potential;
Chl. a, chlorophyll a; Chl. b, chlorophyll b; Car, carotenoids; GS,
grains per spike; HGW, hundred grain weight; GY, grain yield.
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stressed plants raised from transgenerational seeds exposed to
e[CO2] may be accredited to the less oxidative damage to
chlorophyll contents via quenching of free radicals.71,72

Drought instigated a considerable decrease in yield and yield
attributes of wheat plants raised with transgenerational
a[CO2]-exposed seeds. Plants of transgenerational seeds
treated with e[CO2] showed a considerably improved grain
yield under drought stress. A dominant effect of overgenera-
tional seeds treated with e[CO2] in alleviating the drought
adversities in terms of higher development is related to the
upregulation of metabolic processes in plants. These results
further indicate the role of e[CO2] in sustaining the grain yield
of wheat during drought conditions.3 These also support the
current finding that antioxidants, chlorophyll, and carbohy-
drate metabolic enzymes were strongly and positively
associated with the grain yield and yield-related traits of
wheat. It is also evident that transgenerational seeds exposed to
e[CO2] maintained higher grain weights of wheat plants due to
efficient utilization of carbon during photosynthesis,42 thus
leading to a higher grain yield under drought stress.

5. CONCLUSIONS
This study provides the first report describing that trans-
generational seeds exposed to e[CO2] memorize stress
memory via upregulation of metabolic processes to mitigate
the drastic effects of drought in wheat. Our findings indicate
that drought stress causes significant losses to leaf water status,
carbohydrate metabolic enzymes, chlorophyll pigments,
antioxidative potential, and finally, the grain yield of wheat.
Nevertheless, transgenerational e[CO2]-exposed seeds showed
alleviated inhibitory effects of drought, which were manifested
through improved leaf Ψw, proline, total antioxidants, and
chlorophyll a, b, and carotenoid contents. The increased
activities of antioxidant enzymes such as superoxide dismutase,
catalase, and peroxidase in plants produced from overgenera-
tional e[CO2]-exposed seeds contributed better to eliminate
the H2O2 and MDA contents, particularly under drought
conditions. Additionally, seeds subjected to transgenerational
e[CO2] exhibited a more pronounced increase in the
functioning of enzymes involved in carbohydrate metabolism,
consequently enhancing the wheat gain yield during drought
periods.
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