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Abstract

The study of oral disease progression, in relation to the accumulation of subgingival biofilm

in gingivitis and periodontitis is limited, due to either the ability to monitor plaque in vitro.

When compared, optical spectroscopic techniques offer advantages over traditional

destructive or biofilm staining approaches, making it a suitable alternative for the analysis

and continued development of three-dimensional structures. In this work, we have devel-

oped a confocal Raman spectroscopy analysis approach towards in vitro subgingival plaque

models. The main objective of this study was to develop a method for differentiating multiple

oral subgingival bacterial species in planktonic and biofilm conditions, using confocal

Raman microscopy. Five common subgingival bacteria (Fusobacterium nucleatum, Strepto-

coccus mutans, Veillonella dispar, Actinomyces naeslundii and Prevotella nigrescens) were

used and differentiated using a 2-way orthogonal Partial Least Square with Discriminant

Analysis (O2PLS-DA) for the collected spectral data. In addition to planktonic growth,

mono-species biofilms cultured using the ‘Zürich Model’ were also analyzed. The developed

method was successfully used to predict planktonic and mono-species biofilm species in a

cross validation setup. The results show differences in the presence and absence of chemi-

cal bands within the Raman spectra. The O2PLS-DA model was able to successfully predict

100% of all tested planktonic samples and 90% of all mono-species biofilm samples. Using

this approach we have shown that Confocal Raman microscopy can analyse and predict the

identity of planktonic and mono-species biofilm species, thus enabling its potential as a tech-

nique to map oral multi-species biofilm models.

Introduction

Oral diseases, like gingivitis and periodontitis, are primarily caused by the accumulation of

dental biofilm in the subgingival region [1,2]. Socransky et al. defined a model which explained

the inter-relationship of bacterial species within an subgingival biofilm, associating specific

organisms with health and disease status and placing these consortia into ‘Socransky’s com-

plexes’ [3]. Examples of the Socransky complexes described that prevalence of A. naeslundii in

the microbiota of a healthy periodontal region, whereas the prevalence of Veillonella was more
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associated with the plaque present in periodontitis. Abusleme et al. also identified subgingival

species in periodontal healthy patients and patients with periodontitis [2].

Subgingival biofilms consist of a variety of species in nature, with a different composition

and abundance of species found in varied locations within the biofilm [4,5]. It has been dem-

onstrated that microorganisms cluster within a subgingival biofilm creating specific ‘hotspots’

of high bacterial densities of certain species [6,7].

Although biofilm architecture and dynamics are well understood, there is only a limited

amount of research on the composition and development of bacteria within these biofilms

using spectroscopic analysis techniques.

To this day, the most common technique to display the architecture of oral biofilms is the

use of fluorescence in-situ hybridization (FISH) combined with confocal laser scanning

microscopy (CLSM) [8–10]. While this technique shows good resolution and characterization

within a biofilm, the main limitations are the complex preparation procedure, the cost and

time associated with these measurements [11].

Optical spectroscopy techniques nowadays offer the opportunity to identify chemical com-

pounds in high spectral resolution [12], combining the power of 3D sample analysis with

focused chemical composition. One of these techniques is Confocal Raman Microscopy

(CRM) that utilizes a laser beam with known wavelength to analyze a sample. By measuring

the scattered radiation and energy shift, Raman is able to use the acquired information of a

cell’s chemical characteristics to differentiate species [13]. This should allow for a quick, afford-

able and unaltered evaluation of biofilm samples with a spatial resolution of 1 μm.

Previously, CRM has been successful in the spatial resolution of biomedical environments

like tissue samples or bacterial cells [14–18]. However, the acquired signals from these biomed-

ical components are highly complex [19–21]. Therefore, differentiation based on Raman spec-

tra has significant limitations so far [16,22–25]. To the best of our knowledge, only a few

studies employed the use of CRM for environmental biofilms [26,27], but there has been very

limited information in the field of oral biofilm mapping [23,28]. While surface enhanced

Raman scattering (SERS) remains promising in combination with Raman microscopy

[13,29,30] with the potential for higher levels of discrimination spectra, this study focuses on

the analysis of chemically un-modified biofilm samples. The bacteria used for our studies were

selected considering Socransky’s complexes and Abusleme’s analysis in the evaluation of sub-

gingival biofilm species [2,3].

Because bacteria in subgingival biofilms live in the same habitat, they show similar chemical

compositions. While differences in spectral fingerprint patterns of oral bacteria have been

shown to be minor, they still allow differentiation between species to be made [22,31]. Given

these differences it is therefore important to apply statistical models to spectral data to discrim-

inate between species. Some of the major statistical approaches for spectral analysis are Princi-

ple Component Analysis (PCA) and multiple variations of Partial Least Square (PLS) analysis.

In analytical statistics, PCA treats all variables in a database the same and uses high-dimen-

sional points for classification but does not consider assigned classifications of variables

[14,18,20,32–34]. In comparison, PLS uses these annotated classifications to maximize inter-

class variance [35–38]. For that reason, PCA is normally used for simple and linear dimension-

ality reduction while PLS is used for classification of different sample groups.

In this research, we hypothesize that Raman spectroscopy coupled with prediction models

can differentiate common oral bacteria from several different Socransky complexes which are

also part of the core subgingival microbiome described by Abusleme et al (Fusobacterium
nucleatum, Streptococcus mutans, Veillonella dispar, Actinomyces naeslundii and Prevotella
nigrescens) [2,3]. We have used planktonically grown microbes to develop reference spectra

and then used these to interrogate the identity of both planktonically and biofilm grown
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organisms. Combining the model with multivariate analysis can provide the opportunity to

perform biofilm mapping with a non-invasive, high resolution approach. Due to resolution

limitations of 1μm of the instrument’s laser beam it may not be possible to differentiate single

cells in a biofilm model. However, ‘hotspots’ of high mono-species densities of size bigger than

the detection limit should allow identification of species in multi-species biofilm models in the

future. The purpose of this study is to lay the groundwork for using CRM in in-vitro research

for subgingival biofilm models with the analysis of different oral subgingival species and its

application to artificial subgingival mono-species biofilm models.

Materials and methods

Planktonic sample preparation

Laboratory stocks of S.mutans (ATCC35668), A.naelsundii (ATCC12104), V.dispar (ATCC

17748), F.nucleatum (ATCC 25586) and P.nigrescens (ATCC33563) were cultured in Falcon

tubes with Brain Heart Infusion Medium (Sigma-Aldrich) and incubated under anaerobic

conditions (80% N2, 15% CO2, 5% H2). Each bacterial stock was diluted in fresh media, sepa-

rated into three samples that were inoculated for a total of 96h.

For calibration spectra, every 24h 1,5 mL of the sample was put in Eppendorf tubes and was

centrifuged at 5000rpm for 5min. After centrifugation, the supernatant was removed. Samples

were then resuspended in saline (0.9% NaCl w/v) and centrifuged for an additional 5min.

After centrifugation, the supernatant was removed and the bacterial pellet was spread on a

borosilicate glass slide (VWR) for confocal Raman spectral analysis. For the calibration spec-

tra, the same experimental and total of nine samples per organisms were used.

Biofilm sample cultivation

Mono-species biofilms were grown on CDC reactor glass coupons (Biosurface Technologies

Corporation, Bozeman, MN, USA) in 24-well polystyrene cell culture plates (Nunc A/S, Ros-

kilde, Denmark) using similar materials and methods of biofilm formation presented else-

where [39]. Wells with glass coupons were filled with a mixture of PBS at pH 7.2 (800μL),

modified fluid universal medium (mFUM, 800μL) and had a final glucose concentration of

0.15% (w/v) [39,40]. Wells were inoculated with bacterial species (200 μL) and incubated

anaerobically at 37˚C. The medium was renewed after 17h and 41h and glass coupons were

dip washed three times in saline solution (0.9% NaCl w/v) after 17h, 25h, 41h and 49h to simu-

late saliva flow and to remove planktonic cells from the coupons. Biofilm coupons were

removed from the wells after 65h, dip-washed in a saline (0.9% NaCl w/v) solution three times,

and placed on glass slides (VWR) to be dried at 50˚C for 30min.

Instrumentation and data acquisition

The instrument used for analysis was a ThermoFisher Scientific DXR2xi, which was equipped

with a 50x long working distance objective, a 532nm filter and a 532nm laser to capture a full

spectral range of 50-3500cm-1. Data acquisition was performed using a 25μm confocal pinhole

setup, 5.0mW laser power, 0.25s exposure time, 100 scans, a low baseline correction and a

spectral detection range from 600-1800cm-1, also referred to the ‘fingerprint region’. For every

spread sample of planktonic cells four random points were chosen on the bacteria-coated glass

slide for spectra to be taken, resulting in 12 samples for every time point. For the biofilm sam-

ples, five random points were selected and spectra were acquired from six coupons for every

species.
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Data analysis

Spectra were pre-corrected using low baseline correction of the ThermoFisher Scientific

DXR2xi instrument. All spectral analyses and reprocessing were performed using Renishaw

WiRE 5.2 (Renishaw plc, Wotton-under-Edge, UK). Each spectrum was pre-processed in the

same way to reduce noise effects and spectral variations due to spectral sample collection.

First, cosmic ray removal and baseline subtraction using intelligent polynomial algorithms was

used to delete baseline noise from the borosilicate background. Then, noise filtering was

applied taking into consideration all spectra from one organism. To additionally reduce noise,

a 10 point Savitzky-Golay algorithm was applied to the spectra. All spectra were then normal-

ized on a scale from 0 to 1.

After data acquisition and processing, the planktonic bacterial spectra data were divided

into two groups–a calibration group for every species (21 samples with the selection of four

random point spectra, 84 spectra) and a validation group (9 samples with the selection of 4

random point spectra, 36 spectra). Six samples with the selection of five random point spectra

were chosen for the prediction of biofilm species.

The SIMCA Analysis (Umetrics, Umea, Sweden) was used for statistical proof. Two-Way

Orthogonal Partial Least Square with Discriminant Analysis (O2PLS-DA) of the first deriva-

tive of the spectra was applied to differentiate species and cross-validate the model. O2PLS-DA

is an analysis technique that allows differentiate systematic variation by correction their

orthogonal variation in the X and Y matrices. The technique then decomposes the X and Y

matrices into a joint, orthogonal and noise system. By using these systems, discriminant analy-

sis is then able to consider and differentiate species based on their unique characteristics, dis-

criminating the bacterial spectra into a two-dimensional score plot.

Results

Bacterial spectra for five different oral species

Spectra of five different bacterial strains were analyzed using CRM as described in Materials

and Methods. Fig 1 shows the plots of averaged Raman spectra (a total of 84 spectra per strain).

While many vibrational bands were similar in the acquired spectra, several unique bands

could be assigned to each of the individual bacterial species (S1 Table) that have been assigned

previously. By selecting these unique band patterns, it is possible to discriminate between the

individual species. Using a reference database of Raman spectra, it was previously shown that

it is possible to identify predominant chemical signature patterns in similar and distinct spec-

tral bands [18,41,42]. The presence of proteins is indicated by Amide I and Amide III bands

that are most significant at ~1250 cm-1 (Amide III) and ~1660 cm-1 (Amide I). Amino acids

are identified as Phenylalanine at ~1000 cm-1 and C-N and C-C stretches (specific for proteins)

are found at ~1125 cm-1. CH2 deformations at ~1450 cm-1 are the result of lipids in the cell.

Our results for Streptococci species are identical with the results from Berger et al. [31], who

previously identified components in S.mutans and S.sanguinis (Amide I at 1651 cm-1, C-H2

deformation at 1457 cm-1, C-N and C-C stretch at 1127 cm-1, phenylalanine at 1005 cm-1;

Raman shift can appear due to the use of a different Raman analysis setup).

Differences in band patterns between the five selected species are found mostly in the

region between 700–900 cm-1. This area is specific for nucleotides (DNA and RNA) due to

ring breathing vibrations. Additionally, the area between 1500 and 1625 cm-1 shows bands

that are the results of different amino acid compositions within bacterial species and thus can

be used for differentiation of species.
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Multivariate analysis of spectra

O2PLS-DA was used as an analytical technique for the characterization of complex bacterial

spectra shown in Fig 1. As described above, Spectra were acquired for five individual oral bio-

film species (84 spectra each). Fig 2 shows T-score plots of different scenarios considering the

two greatest variations in the datasets and plotted as X and Y.

Fig 2A shows a plot summary of the results of the O2PLS-DA of the five species. According

to the O2PLS-DA algorithm, every data point shown represents a Raman spectra and also con-

tains information of all measured species. Based on the selection of the two greatest variances,

three clearly distinct clusters can be identified while one cluster shows an overlap of three spe-

cies (A.naeslundii, F.nucleatum, P.nigrescens). Spectra for V.dispar can be found exclusively in

the third quadrant while S.mutans are found in the fourth. Considering the third cluster, P.

nigrescens is found only in the second quadrant and A.naeslundii in the first quadrant. Only F.

nucleatum shows distributions in two quadrants (first and second). Since variance of samples

are based on the average of a specific dataset Fig 2A considers all five species to build the aver-

age which results in insufficient separation of A.naeslundii, F.nucleatum and P.nigrescens
because their calculated variances and thus Raman spectra are too similar.

In order to further analyze the data, Fig 2B was restricted to the analysis of the three most

distinct species in the initial score plot. Based on the calculated variances three clearly sepa-

rated clusters can be found in the same clusters and quadrants as in Fig 2A. Here, data points

are spread less across the t[1]-axis than in Fig 2B but separation of species remains clear in Fig

2A. By further focusing on the analysis of data, Fig 2C shows the O2PLS-DA T-score plot of

the three species that could not be differentiated in the initial five species T-score plot. Here,

Fig 1. Averaged processed Raman signal (84 spectra total) from five different subgingival species of the calibration group with standard deviations. A.

naeslundii (An), S.mutans (Sm), V.dispar (Vd), F.nucleatum (Fn) and P.nigrescens (Pn). Areas of differences in bands between species are indicated (700–900

cm-1, 1275–1425 cm-1, 1500–1625 cm-1).

https://doi.org/10.1371/journal.pone.0232912.g001
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the three overlapping species from Fig 2A could be more clearly discriminated because the

analysis now considers the average of the spectra of A.naeslundii, F.nucleatum and P.nigrescens

Fig 2. O2PLS-DA analysis of selected oral bacteria show the distribution of the first derivative of spectra (84

spectral samples for each strain) after discriminant analysis in a score plot. A) T-score plot of five species: A.

naeslundii (red circles), S.mutans (blue square), V.dispar (green triangle), F.nucleatum (purple triangle) and P.

nigrescens (orange diamond). B) T-score plot of three species that showed distinct clusters in the five species score plot:

A.naeslundii (red circles), S.mutans (blue square) and V.dispar (green triangle). C) T-score plot of three species that

showed one cluster in the five species score plot: A.naeslundii (red circles), F.nucleatum (purple triangle) and P.

nigrescens (orange diamond).

https://doi.org/10.1371/journal.pone.0232912.g002
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for the calculation of variation. This change allows the separation of species because their two

greatest variations change due to a recalculation of their average.

In order to set up an appropriate calibration dataset it is necessary to select species that

show the highest degree of variance. In this work we selected A.naeslundii, V.dispar and S.

mutans to set up our calibration dataset.

Prediction of planktonic and mono-species biofilm cells

In a second step, species predictions of known samples were made. The acquired spectra from

Fig 2B for planktonically grown microbes, were used to create calibration datasets for every

individual species. This dataset was then used for prediction of mono-species planktonic and

biofilm spectra using cross validation with the O2PLS-DA model. As a result of this prediction,

spectra were associated to one of the three strains based on their similarities of spectral pat-

terns to the calibration set. Two sets of predictive analysis were carried out using this training

data set: 1. predict the identity of planktonically grown organisms and 2. predict the identity of

biofilm grown organisms.

Prediction of unknown, planktonically grown isolates. Fig 3 shows the score plot for

planktonic cell spectra for three species when analyzed with O2PLS-DA. The distribution in

each of the quadrants is the same as the calibration spectra but the spectra are more spread in

the score plot. After the spectra were collected for prediction, they were compared to the

Fig 3. O2PLS-DA analysis of planktonic cell spectra for three species shows the distribution of spectra (36 spectra for each strain) after discriminant

analysis in a 2D sphere; A.naeslundii (red circles), S.mutans (blue squares) and V.dispar (green triangles).

https://doi.org/10.1371/journal.pone.0232912.g003
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model that has been set up with calibration spectra (Fig 2B) for cross validation. Table 1 shows

the comparison of predicting planktonic cells using the O2PLS-DA model. The diagonal, bold

values show the spectra that agree with the calibration spectra while the other values represent

the errors of classification. Here, none of the spectra we misclassified by the model which

results in a prediction accuracy of 100% for a total of 36 spectra for each strain.

Predicting the identity of biofilm grown isolates. Fig 4 shows the score plot for mono-

species biofilm cell spectra for three species when analyzed with O2PLS-DA. The distribution

into quadrants is the same as for the calibration spectra. In Fig 4, the V.dispar cluster was dis-

tributed between the second and third quadrant. In comparison to the O2PLS-DA plot from

the planktonic spectra, clusters are more defined here and closer together. For the prediction

of species, spectra were also compared to the model that has been set up with calibration spec-

tra (Fig 2B) for cross validation of the model. Table 2 shows the comparison of predicting

mono-species biofilm cells using the O2PLS-DA model. While using the training set of data

enabled the correct identification of more than 76% if S.mutans, more than 90% of V.dispar
and 100% of A.naeslundii, the approach seems less sensitive from a prediction point of view.

Discussion

In this study we developed CRM methods, including data analysis tools to identify individual

bacterial species in mono-species biofilm models. Due to their similar genetic and metabolic

characteristics, the chemical composition in a bacterial cell between the tested subgingival oral

bacteria showed limited but unique differences in their Raman-spectra. However, using

O2PLS-DA we were able to distinguish several species. Similar results were obtained for

Uncaria species in a different application as described in Feng et al. [35] when O2PLS-DA was

applied. We were able to identify S.mutans and V.dispar and A.naeslundii grown in suspension

and in mono-species biofilms after establishing a calibration set of spectra generated from

planktonically grown cells, both in cells derived from planktonic cells and from biofilms [3].

The three species examined were found to coincide within the different complex groups

described by Socransky, indicating significant chemotypic differences between these species.

P.nigrescens and F.nucleatum, on the other hand, can be found within the same Socransky

complex, indicating a close relationship, and consequently show substantial overlap in Raman

spectra.

When performing O2PLS-DA with three selected species from three different Socransky

complexes, it was possible to reliably identify spectral differences enabling species differentia-

tion. Additionally, A.naeslundii, S.mutans and V.dispar could already be distinguished within

the pool of five species. Thus, these three species were chosen for prediction of planktonic and

mono-species biofilm cells.

Table 1. Comparison of the performance of species identification using the O2PLS-DA model for planktonic

cells. The columns indicate the known/calibration species; the rows indicate the prevalence of predicted species using

the O2PLS-DA model of the known/calibrated species spectra.

Known Species

A.naeslundii S.mutans V.dispar
Predicted

A.naeslundii 36 (100%) 0 0

S.mutans 0 36 (100%) 0

V.dispar 0 0 36 (100%)

Total Successful Prediction: 108 (100%)

https://doi.org/10.1371/journal.pone.0232912.t001
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Comparing the prediction score plots for both, planktonic and biofilm spectra, we observed

that the clusters generated from planktonic cells is more spread out while the cluster for bio-

film spectra remains compact with little distribution in the plot. This could be the result of big-

ger variance in the planktonic cells, resulting in a higher variance in signals between spectra,

which broadens the cluster. Biofilm spectra on the other hand show less variance, indicating

that the collected biofilm cells have more uniform appearance in Raman spectra.

Nevertheless, we could predict the species A.naeslundii, S.mutans and V.dispar with an

accuracy of 100% if grown planktonically. For biofilm cells we achieved an accuracy of 90%.

Fig 4. O2PLS-DA analysis of mono-species biofilm spectra (30 spectra for each strain) for three species shows the distribution of spectra after

discriminant analysis in a 2D sphere; A.naeslundii (red circles), S.mutans (blue squares) and V.dispar (green triangles).

https://doi.org/10.1371/journal.pone.0232912.g004

Table 2. Comparison of the performance of species identification using the O2PLS-DA model for mono-species

biofilm spectra. The columns indicate the known/calibration species; the rows indicate the prevalence of predicted

species using the O2PLS-DA model of the known/calibrated species spectra.

Known Species

A.naeslundii S.mutans V.dispar
Predicted

A.naeslundii 30 (100%) 0 0

S.mutans 2 (6.6%) 23 (76.7%) 5 (16.7%)

V.dispar 0 2 (6.7%) 28 (93.3%)

Total Successful Prediction: 81 (90%)

https://doi.org/10.1371/journal.pone.0232912.t002
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Because biofilm cells show changes in spectra if compared to planktonic cells (see S1 Fig), pre-

diction of biofilm cells using data from planktonic cells for calibration might be problematic.

This might be the reason for increased misclassification of biofilm cells, indicating the need for

a biofilm based dataset for calibration. The change in Raman signal for biofilm cells is most

likely the result of a change in metabolism when transitioning from a planktonic to a biofilm

state [43].

Even though a total accuracy of 90% for biofilm cells was achieved, especially S.mutans
shows low predictions accuracy (76.7%) compared to A.naeslundii (100%) and V.dispar
(93.3%). S.mutans is known to be a key contributor in the production of exopolysaccharides

(EPS) while A.naeslundii and V.dispar are lacking the ability to form EPS when grown as

mono-species biofilms. Hence, low prediction accuracy can be the result of spectral interfer-

ences from EPS in S.mutans biofilm and needs to be considered in future experiments [44–46].

One of the most significant changes in the spectra is the absence of the 1525 cm-1 band in S.

mutans representing increased amounts of polypeptides in planktonic cells. Due to the absence

of this specific band, differences between V.dispar and S.mutans become much smaller which

leads to several misclassifications of these biofilm spectra. For future experiments, it may be

necessary to consider using biofilm spectra for the calibration O2PLS-DA model because of

the change of band signal between planktonic and biofilm spectra.

High similarities in Raman spectra can be observed for species within the same Socransky

complexes. Additionally, using CRM with higher resolution might improve this limitation in

future experiments.

With this work, we tried to lay the groundwork whether differentiation of subgingival bac-

teria was possible using CRM and to determine if this technique can be applied for 3D biofilm

modelling in the future. We were able to demonstrate that it is possible to differentiate oral

bacterial species based on their Raman spectra using an O2PLS-DA model. It was possible to

predict 100% of planktonic cells and 90% of biofilm cells from three species of three Socransky

clusters. This indicates the possibility to differentiate bacterial clusters with different preva-

lence in orals diseases like periodontitis and gingivitis. In future research, it will be pivotal to

apply this model not only to mono-species subgingival biofilm models but also to assess multi-

species biofilm models. As part of this this development it will be necessary to evaluate the lim-

itations of the technique and how this method behaves in saliva based biofilm models. While it

may not be possible to differentiate all species present, species with higher abundances may be

differentiated in a 3D structure successfully.

While the specific experiments showed the discrimination of planktonic bacteria and the

prediction of mono-species biofilms, the method presented can be applied to build a spectral

Raman library of subgingival bacteria. This can make it easier to assess and determine spatial

distribution of artificial multi-species biofilm models in the future. For the analysis of mono-

species biofilm models the established method was able to predict species successfully. How-

ever, in a multi-species setup it is necessary to validate and evaluate results from CRM with

other methods like quantitative polymer chain reaction or CLSM. Due to the nature of sample

preparation for CLSM and the increased fluorescent signal it will be essential to use coherent

anti-stokes Raman scattering to omit the signal from FISH in the spectral analysis.

Conclusions

In the present study, confocal Raman microscopy coupled with two-way orthogonal Partial

Least Square with Discriminant Analysis was applied to 1) discriminate between three oral

bacterial species and 2) to develop a prediction model to successfully predict species planktonic

cells and cells in a mono-species biofilm model. It was possible to identify 100% of planktonic

PLOS ONE Confocal Raman microcopy and oral subgingival biofilm models

PLOS ONE | https://doi.org/10.1371/journal.pone.0232912 May 11, 2020 10 / 13

https://doi.org/10.1371/journal.pone.0232912


spectra and 90% of mono-species biofilm spectra correctly. Future work will include the appli-

cation of the model to the discrimination of oral bacteria in a multi-species biofilm. The devel-

oped method should allow spatial prediction of species using the fingerprint region (600-

1800cm-1) of Raman spectra. It is pertinent to note that in order to perform special predictions

(in two or three dimensions) it is necessary to combine batch spectra processing with the

developed multivariate analysis technique in a workflow to use multivariate analysis for multi-

species biofilm imaging.

Supporting information

S1 Table. Summary of specific Raman band assignment found for the three different spe-

cies in planktonic and biofilm samples. Raman shift needs to be considered. Peak assignment

based on Berger et al 2003, Carey et al 2017, Jung et al 2014 and Sil et al 2017.

(TIF)

S1 Fig. Averaged processed Raman signal from mono-species biofilm cell for three differ-

ent subgingival species. The bold line shows the average spectra of the mono-species biofilm

cell. Dotted line is the averaged calibration spectra that is used for the prediction. A.naeslundii
(An), S.mutans (Sm) and V.dispar (Vd).

(TIF)

Author Contributions

Conceptualization: Kevin Wright, Steffen Rupp.

Formal analysis: Lukas Simon Kriem.

Methodology: Lukas Simon Kriem, Renzo Alberto Ccahuana-Vasquez.

Project administration: Lukas Simon Kriem, Steffen Rupp.

Resources: Lukas Simon Kriem.

Software: Lukas Simon Kriem.

Supervision: Kevin Wright, Renzo Alberto Ccahuana-Vasquez, Steffen Rupp.

Validation: Lukas Simon Kriem.

Visualization: Lukas Simon Kriem.

Writing – original draft: Lukas Simon Kriem.

Writing – review & editing: Kevin Wright, Renzo Alberto Ccahuana-Vasquez, Steffen Rupp.

References
1. Tanner A, Kent R, Maiden MFJ, Taubman MA. Clinical, microbiological and immunological profile of

healthy, gingivitis and putative active periodontal subjects. J Periodontal Res. 1996; 31: 195–204.

https://doi.org/10.1111/j.1600-0765.1996.tb00484.x PMID: 8814590

2. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival micro-

biome in health and periodontitis and its relationship with community biomass and inflammation. ISME

J. 2013; 7: 1016–1025. https://doi.org/10.1038/ismej.2012.174 PMID: 23303375

3. Socransky S s., Haffajee A d., Cugini M a., Smith C, Kent RL. Microbial complexes in subgingival pla-

que. J Clin Periodontol. 1998; 25: 134–144. https://doi.org/10.1111/j.1600-051x.1998.tb02419.x PMID:

9495612

4. Shi B, Chang M, Martin J, Mitreva M, Lux R, Klokkevold P, et al. Dynamic Changes in the Subgingival

Microbiome and Their Potential for Diagnosis and Prognosis of Periodontitis. mBio. 2015; 6: e01926–

14. https://doi.org/10.1128/mBio.01926-14 PMID: 25691586

PLOS ONE Confocal Raman microcopy and oral subgingival biofilm models

PLOS ONE | https://doi.org/10.1371/journal.pone.0232912 May 11, 2020 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232912.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232912.s002
https://doi.org/10.1111/j.1600-0765.1996.tb00484.x
http://www.ncbi.nlm.nih.gov/pubmed/8814590
https://doi.org/10.1038/ismej.2012.174
http://www.ncbi.nlm.nih.gov/pubmed/23303375
https://doi.org/10.1111/j.1600-051x.1998.tb02419.x
http://www.ncbi.nlm.nih.gov/pubmed/9495612
https://doi.org/10.1128/mBio.01926-14
http://www.ncbi.nlm.nih.gov/pubmed/25691586
https://doi.org/10.1371/journal.pone.0232912


5. Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Comparison of the microbiota of supra- and subgingi-

val plaque in health and periodontitis. J Clin Periodontol. 2000; 27: 648–657. https://doi.org/10.1034/j.

1600-051x.2000.027009648.x PMID: 10983598

6. Guggenheim B, Gmür R, Galicia JC, Stathopoulou PG, Benakanakere MR, Meier A, et al. In vitro

modeling of host-parasite interactions: the “subgingival” biofilm challenge of primary human epithelial

cells. BMC Microbiol. 2009; 9: 280. https://doi.org/10.1186/1471-2180-9-280 PMID: 20043840

7. Zijnge V, Ammann T, Thurnheer T, Gmür R. Subgingival Biofilm Structure. 2012. https://doi.org/10.

1159/000329667 PMID: 22142954

8. Xiao J, Hara AT, Kim D, Zero DT, Koo H, Hwang G. Biofilm three-dimensional architecture influences in

situ pH distribution pattern on the human enamel surface. Int J Oral Sci. 2017; 9: 74–79. https://doi.org/

10.1038/ijos.2017.8 PMID: 28452377

9. Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium Species and Subspecies Differen-

tially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models. Front Micro-

biol. 2019; 10: 1716. https://doi.org/10.3389/fmicb.2019.01716 PMID: 31417514

10. Kommerein N, Stumpp SN, Müsken M, Ehlert N, Winkel A, Häussler S, et al. An oral multispecies bio-

film model for high content screening applications. PLOS ONE. 2017; 12: e0173973. https://doi.org/10.

1371/journal.pone.0173973 PMID: 28296966

11. Pantanella F, Valenti P, Natalizi T, Passeri D, Berlutti F. Analytical techniques to study microbial biofilm

on abiotic surfaces: pros and cons of the main techniques currently in use.: 12.

12. Rzhevskii A. The Recent Advances in Raman Microscopy and Imaging Techniques for Biosensors. Bio-

sensors. 2019; 9: 25. https://doi.org/10.3390/bios9010025 PMID: 30759840

13. Chao Y, Zhang T. Surface-enhanced Raman scattering (SERS) revealing chemical variation during bio-

film formation: from initial attachment to mature biofilm. Anal Bioanal Chem. 2012; 404: 1465–1475.

https://doi.org/10.1007/s00216-012-6225-y PMID: 22820905

14. Gualerzi A, Niada S, Giannasi C, Picciolini S, Morasso C, Vanna R, et al. Raman spectroscopy uncov-

ers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells. Sci

Rep. 2017; 7: 9820. https://doi.org/10.1038/s41598-017-10448-1 PMID: 28852131

15. Cals FLJ, Bakker Schut TC, Caspers PJ, Baatenburg de Jong RJ, KoljenovićS, Puppels GJ. Raman spec-

troscopic analysis of the molecular composition of oral cavity squamous cell carcinoma and healthy tongue

tissue. The Analyst. 2018; 143: 4090–4102. https://doi.org/10.1039/c7an02106b PMID: 30083685
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