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Abstract: Plants are concurrently exposed to biotic and abiotic stresses, including infection by viruses
and drought. Combined stresses result in plant responses that are different from those observed
for each individual stress. We investigated compensatory effects induced by virus infection on the
fitness of hosts grown under water deficit, and the hypothesis that water deficit improves tolerance,
estimated as reproductive fitness, to virus infection. Our results show that infection by Turnip mosaic
virus (TuMV) or Cucumber mosaic virus (CMV) promotes drought tolerance in Arabidopsis thaliana and
Nicotiana benthamiana. However, neither CMV nor TuMV had a positive impact on host reproductive
fitness following withdrawal of water, as determined by measuring the number of individuals
producing seeds, seed grains, and seed germination rates. Importantly, infection by CMV but not
by TuMV improved the reproductive fitness of N. benthamiana plants when exposed to drought
compared to watered, virus-infected plants. However, no such conditional phenotype was found
in Arabidopsis plants infected with CMV. Water deficit did not affect the capacity of infected plants
to transmit CMV through seeds. These findings highlight a conditional improvement in biological
efficacy of N. benthamiana plants infected with CMV under water deficit, and lead to the prediction
that plants can exhibit increased tolerance to specific viruses under some of the projected climate
change scenarios.

Keywords: water deficit; virus infection; combined abiotic and biotic stresses; reproductive fitness;
tolerance to drought; tolerance to virus; climate changes

1. Introduction

Plants are exposed to a diverse range of biotic and abiotic stresses that do not occur
separately in time but are commonly present simultaneously [1,2]. The outcomes of multiple
stresses can provide either tolerance or increased susceptibility to any of the stresses
depending on the plant species, developmental stage and stress severity [3,4]. Although
plant viruses give rise to many important diseases in crops worldwide, losses in agriculture
due to abiotic stresses such as cold, salinity, heat and drought generally exceed those caused
by viruses [5]. In particular, stress caused by water deficit is one of the major threats that
affect plant physiology and growth, particularly owing to the increase of drought episodes
caused by global warming [6]. Plants have developed a range of approaches to buffer the
negative impact of drought on their physiology [7]. At an early stage of water stress, water
content is kept within relatively narrow limits by increasing water capture and by limiting
water loss from evapotranspiration by partially closing stomata. Stomatal closure reduces
the entry of CO2, consequently decreasing photosynthesis and productive capacity. The
effect of water deficit on plants leads to profound changes in hormones and secondary
metabolites involved in plant defenses [8,9], the outcomes of which for plant resistance to
pathogens are largely unexplored.
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Several lines of evidence show that certain combinations of biotic and abiotic stresses
could confer a positive effect on plant performance by increasing the tolerance to abiotic
stresses. In particular, mechanisms and processes operating in compatible plants–virus
interactions between might offer plants a better performance under abiotic stresses. For
instance, it has been reported that infection by viruses can enhance the tolerance of host
plants to cold and drought [10–15]. In addition, infection of Arabidopsis by different viruses
rendered seeds with improved tolerance to deterioration by elevated temperature [16]. The
reason for this increased tolerance to abiotic stresses in plants infected with viruses might
reside in that plants made use of interlinked signaling pathways to respond to different
environmental stresses, and that several of these responses are common in tolerance against
virus and abiotic stresses [8,17].

On the other hand, abiotic stresses (some of them associated with global warming,
i.e., elevated O3, CO2 and temperature, drought) can modulate plant tolerance toward
pathogens by mechanisms that include changes in the response of plants to changing
environmental conditions [18,19]. For instance, a lower incidence of virus diseases and
severity of symptoms was accompanied by modulated defenses in plants grown at elevated
CO2 [20–22]. Bilgin et al. [23] reported that ozone stress enhanced soybean tolerance to
Soybean mosaic virus. Elevated temperatures have been described to cause a weakening and
even a masking of symptoms in some compatible plant–virus interactions [24]. With regard
to drought, it has been reported that the dynamics of symptoms and virus spread can be
altered by water deficit in Arabidopsis infected with Cauliflower mosaic virus (CaMV) [25,26].
Indeed, survival of plants infected by CaMV grown under water deficit was increased
when compared to plants grown under normal irrigation. However, the vegetative perfor-
mance of CaMV-infected plants under water deficit could not be correlated with a better
performance during the reproductive phase, since none of the infected plants developed
seeds. Heat and drought tolerance mechanisms mediated by an increase in osmolytes may
be common themes in plant tolerance to heat and drought [1].

The preferential survival of virus-infected plants under water deficit represents an
advantage in biological efficacy (fitness) only if the survivors can subsequently produce
offspring at higher rates than infected plants grown under watered conditions [12,27]. In
this sense, it has been reported that virus-induced tolerance to drought was not always
correlated with an increase in fecundity, with virulence being detrimental to reproductive
fitness (defined as the relative success of an individual to pass on its genes to the subsequent
generations) [10,28]. In addition, enhanced survival of the infected plants under water
deficit could represent an advantage for the virus through increased opportunities to spread
in the plant population, either by an increased duration of the vegetative phase or via
propagation by seeds [26]. In this study, we utilized Cucumber mosaic virus (CMV) and
Turnip mosaic virus (TuMV), and Arabidopsis thaliana and Nicotiana benthamiana. Both viruses
are commonly found in wild populations of Arabidopsis, indicating that the Arabidopsis–
TuMV and Arabidopsis–CMV pathosystems are significant in nature [29]. N. benthamiana
has been adopted as a model plant by virologists due to its general susceptibility to virus
infection. It is an allotetraploid species from the Suaveolentes section, resulting from the
hybridization of a maternal progenitor of section Noctiflora, and a member of section
Sylvestres as a paternal subgenome donor [30]. Transmission of CMV through seeds in
N. benthamiana and Arabidopsis and of TuMV in Arabidopsis has been well established [31],
but no data have been reported on seed transmission of TuMV in N. benthamiana. The aim of
this work was to investigate compensatory effects induced by virus infection on host fitness
when grown under water deficit, and to test the hypothesis that water deficit improves
tolerance, estimated as reproductive fitness, to virus infection. In addition, we also analyzed
the effect of water deficit on virus transmission through seeds. Our results show that
infection by TuMV or CMV promoted drought tolerance in Arabidopsis and N. benthamiana.
More importantly, infection by CMV but not by TuMV improved the reproductive fitness
of N. benthamiana when exposed to drought compared to watered, virus-infected plants.
However, no such conditional phenotype was observed in Arabidopsis plants infected
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with CMV. Water deficit did not affect seed transmission of CMV in N. benthamiana and
Arabidopsis plants.

2. Results
2.1. Tolerance to Drought in Virus-Infected N. benthamiana Plants

N. benthamiana plants were mock-inoculated or inoculated with TuMV and CMV.
Virus-infected and mock-inoculated plants were normally irrigated or deprived of watering
at 12 days after inoculation (dai) resulting in stress caused by water deficit. The damaging
effect caused by viral infection on the biomass of watered plants was higher for TuMV
than for CMV at 19 dai (Figure 1A). After withholding water, drought symptoms in mock-
inoculated plants first appeared as drooped, curled, or wilted leaves. The prolonged water
deficit eventually led to plant collapse and death (Figure 1B). In plants infected with TuMV
and CMV, the onset of drought symptoms was delayed by several days and they clearly
maintained a reduced wilting appearance compared to mock-inoculated plants throughout
the experiment. Water content, stomatal conductance and the relative soil water content
(RSWC) are valuable tools for providing information about plant responses to water deficit.
The water content of virus-infected and mock-inoculated plants growing under watered
and drought conditions was compared at 19 dai, i.e., 7 days after the water was withdrawn
(daww). Under drought conditions, average water content was higher in plants infected
with TuMV and CMV compared to mock-inoculated plants, indicating that infections by
TuMV and CMV promote drought tolerance in N. benthamiana (Figure 1C). A similar water
content was found in watered plants infected with TuMV and CMV compared to mock-
inoculated plants (Figure 1C). Comparative analysis of virus accumulation before and after
the water was withdrawn by western blot revealed that the level of CMV CP and TuMV CP
in plants grown under drought was similar to that in plants grown under normal irrigation
at 19 dai (Figure 1D).

Because a decrease in transpiration rate is an important trait of plant tolerance to
drought, measurements of stomatal conductance were calculated in both watered and
drought-stressed plants at 15 dai (3 daww) (Figure 1E). Under normal irrigation, infection
by CMV and TuMV caused a decrease in conductance compared to mock-inoculated plants.
After several days without watering, leaves of mock-inoculated plants showed a sharp drop
in stomatal conductance compared to watered plants, whereas leaves of plants infected
with either CMV or TuMV exhibited only a smaller reduction in conductance. To determine
whether water is similarly depleted in pots of virus-infected and mock-inoculated plants
under drought stress, the water content of the soil was measured in both watered and
drought-stressed plants at the end of the water deficit period (7 daww; 19 dai). An obvious
difference in the RSWC was observed under the two water regimes assayed (Figure 1F).
Moreover, a small but statistically significant higher level of RSWC was observed in virus-
infected plants compared with mock-inoculated plants under drought stress. Thus, relative
differences in soil moisture were correlated with differences in stomatal conductance before
the water was withdrawn and tolerance to drought in virus-infected N. benthamiana plants.

2.2. CMV-Infected N. benthamiana Plants Improved Their Reproductive Fitness When Exposed
to Drought

The effect of virus infection on the reproductive fitness of both drought-stressed and
watered N. benthamiana plants was determined by the number of infected plants producing
seeds and the seed grains per plant, and by comparing them with those produced by mock-
inoculated plants. Under watering conditions, infection by TuMV and CMV conferred
a severe detrimental effect on the number of seed-producing plants and on seed grain
per plant compared to mock-inoculated plants (Figure 2A,B). Under drought conditions,
infection by CMV led to a decrease in the number of plants producing seeds compared to
mock-inoculated controls, albeit less severe than under the watered regime. Remarkably, the
number of CMV-infected plants grown under drought that produced seeds was statistically
higher than that observed in plants infected with CMV under normal irrigation (Figure 2A).
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By contrast, no statistical differences were observed in the number of TuMV-infected plants
producing seeds when grown under watered or drought conditions (Figure 2A). On the
other hand, infection by either TuMV or CMV caused a statistical significant reduction on
seed grain per plant when compared to mock-inoculated plants, under drought conditions
(Figure 2B). However, no significant differences in seed grains were observed between
CMV-infected plants that were irrigated or deprived of irrigation (Figure 2B).
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Figure 1. Comparison of tolerance to drought in mock-inoculated, Cucumber mosaic virus (CMV)- 
and Turnip mosaic virus (TuMV)-infected Nicotiana benthamiana plants. (A) Biomass of watered (W) 
plants at 19 days after inoculation (dai). (B) Seven days after the water was withheld (daww) 
(upper panel), representative plants were photographed together with their watered counterparts 
(bottom panel). (C) Water content percentage in virus-infected and mock-inoculated plants grown 
under W or drought (D) conditions at 19 dai (7 daww). (D) Western blot analysis of protein 
extracts from plants infected with CMV (upper panels) or TuMV (lower panels) grown under W 
or D conditions at 12 or 19 dai, using antibodies against CMV CP or TuMV CP. Two independent 
pooled samples were analyzed for each inoculum. The lower panels show the Ponceau S-stained 
membrane after blotting, as a control of loading. (E) Effect of drought on stomatal conductance in 
virus-infected and mock-inoculated plants grown under W or D conditions at 3 daww. (F) The 
relative soil water content (RSWC) was measured in each pot of plants grown under W or D 
conditions. Data represent the means ± standard errors of 18 plants that received the same 
treatment. Statistical comparisons between means were made among treatments (i.e., Mock, CMV 
and TuMV) within each watering condition (i.e., watered, drought) by employing Scheffé’s 
multiple range test (A,E,F) and a Mann–Whitney U test with a Bonferroni correction for multiple 
comparisons of α to α = 0.016 (C). Different letters indicate significant differences (p < 0.05). For 
pairwise comparisons, an asterisk indicates the statistical significance of drought-stressed plants 
compared to watered plants (p < 0.05). 
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Figure 1. Comparison of tolerance to drought in mock-inoculated, Cucumber mosaic virus (CMV)-
and Turnip mosaic virus (TuMV)-infected Nicotiana benthamiana plants. (A) Biomass of watered (W)
plants at 19 days after inoculation (dai). (B) Seven days after the water was withheld (daww) (upper
panel), representative plants were photographed together with their watered counterparts (bottom
panel). (C) Water content percentage in virus-infected and mock-inoculated plants grown under W
or drought (D) conditions at 19 dai (7 daww). (D) Western blot analysis of protein extracts from
plants infected with CMV (upper panels) or TuMV (lower panels) grown under W or D conditions
at 12 or 19 dai, using antibodies against CMV CP or TuMV CP. Two independent pooled samples
were analyzed for each inoculum. The lower panels show the Ponceau S-stained membrane after
blotting, as a control of loading. (E) Effect of drought on stomatal conductance in virus-infected
and mock-inoculated plants grown under W or D conditions at 3 daww. (F) The relative soil water
content (RSWC) was measured in each pot of plants grown under W or D conditions. Data represent
the means ± standard errors of 18 plants that received the same treatment. Statistical comparisons
between means were made among treatments (i.e., Mock, CMV and TuMV) within each watering
condition (i.e., watered, drought) by employing Scheffé’s multiple range test (A,E,F) and a Mann–
Whitney U test with a Bonferroni correction for multiple comparisons of α to α = 0.016 (C). Different
letters indicate significant differences (p < 0.05). For pairwise comparisons, an asterisk indicates the
statistical significance of drought-stressed plants compared to watered plants (p < 0.05).
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 Figure 2. Effect of TuMV and CMV infection on the number of Nicotiana benthamiana plants producing
seeds, seed grain, seed weight and seed viability. (A) Virus-infected and mock-inoculated plants
were grown under watered and drought conditions, and the number of plants producing seeds
was recorded. (B) Seeds were weighted separately after threshing and recorded as seed grain per
plant. (C) Effect of virus infection on the weight of individual seeds. Seed weight was estimated
after determining the weight of 80 seeds derived from each of four to seven plants per treatment.
(D) Effects of virus infection on seed viability. Seed viability was measured as the germination
percentage of approximately 100 seeds per plant, using 3 to 6 individuals per treatment. Statistical
comparisons between means were made among treatments within each watering condition by em-
ploying Fisher’s exact test with a Bonferroni correction for multiple comparisons of α to α = 0.016 (A)
and Scheffé’s multiple range test (B–D). Different letters indicate significant differences. For pairwise
comparisons, asterisks indicate significant differences between treatments (Student’s t-test, p < 0.05);
NS: not significative.

Next, we examined the effect of drought on the weight of individual seeds and seed
viability of plants infected with TuMV and CMV compared to mock-inoculated plants
(Figure 2C,D). The water regime did not affect the seed weight or rate of germination,
regardless if seeds were derived from mock-inoculated or virus-infected plants. Although
infection by CMV reduced seed germination by ca. 40% relative to non-infected plants, the
viability of seeds and the weight of individual seeds derived from virus-infected plants
grown under drought conditions was not differentially affected when compared to those
grown under normal irrigation. Altogether, water deficit improved the reproductive fitness
of CMV-infected N. benthamiana plants, but not that of plants infected with TuMV, when
compared to watered, virus-infected plants.

2.3. Tolerance to Drought in Virus-Infected Arabidopsis Plants

Arabidopsis seedlings were either mock-inoculated or inoculated with TuMV or
CMV. Virus-infected and mock-inoculated plants were normally watered or subjected to
water stress resulting from water withholding at 16 dai. The damaging effect of viral
infection on the biomass of watered plants was higher for TuMV than for CMV at 30 dai
(Figure 3A). After water deprivation, TuMV- and CMV-infected plants wilted more slowly
and displayed milder drought-related symptoms than mock-inoculated plants (Figure 3B).
At 30 dai (14 daww), the water content of virus-infected and mock-inoculated plants was
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compared (Figure 3C). The average water content was higher in TuMV- and CMV-infected
plants than in mock-inoculated plants under non-watered growth conditions, indicating
that infection by TuMV and CMV promotes tolerance to drought in Arabidopsis. Indeed,
the water content in plants infected with TuMV grown under water deficit was similar to
that observed in TuMV-infected plants grown under watered conditions.
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Figure 3. Comparison of tolerance to drought in mock-inoculated, CMV- and TuMV-infected Ara-
bidopsis plants. (A) Biomass of watered plants at 30 days after inoculation. (B) Twelve daww
(upper panel), representative plants were photographed next to their watered counterparts (bottom
panel). (C) Water content percentage in virus-infected and mock-inoculated plants at 14 daww.
Data represent the means ± standard errors of at least 18 plants that received the same treatment.
Statistical comparisons between means were made among treatments within each watering condition
by employing a Mann–Whitney U test with a Bonferroni correction for multiple comparisons of α to
α = 0.016. For pairwise comparisons, asterisks indicate the statistical significance of drought-stressed
plants compared to watered plants (Mann–Whitney U test, p < 0.05).
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In our growth conditions, infection by TuMV in both watered and drought-stressed
Arabidopsis plants affected several plant developmental traits, including flower and silique
viability, which eventually led to sterility. Thus, the effect of CMV infection on the re-
productive fitness of both watered and drought-stressed plants was studied. Infection
by CMV did not affect the number of Arabidopsis plants producing seeds compared to
mock-inoculated controls, regardless of whether plants were grown under drought or
under watered conditions (Figure 4A). By contrast, seed grains per plant were reduced
in plants infected with CMV compared to those of mock-inoculated plants when grown
under watered conditions. However, negligible differences were observed in seed grains
between CMV- and mock-inoculated plants when grown under drought (Figure 4B). In-
fection by CMV did not affect the viability of Arabidopsis seeds regardless of the water
regime (Figure 4C). Thus, infection by CMV did not improve the reproductive fitness of
Arabidopsis plants exposed to drought when compared to that of plants infected by CMV
grown under watered conditions.

2.4. The Effect of Drought on the Transmission of CMV through N. benthamiana and
Arabidopsis Seeds

To analyze the effect of water deficit on CMV transmission through seeds, progenies
derived from infected plants grown under watered or drought treatments were germinated
in vitro. Seeds were sterilized to ensure that any positive detection was not the result of
virus contamination on the seed coat, but rather the existence of embryonic infection. Four
pools of seedlings derived from each of three CMV-infected N. benthamiana plants grown
under watered and drought conditions were analyzed by real-time quantitative reverse
transcription (RT-qPCR), using seedlings derived from non-infected plants as a negative
control. CMV was detected in all of the pools of seedlings analyzed, regardless of whether
the progenitors were grown under watered or drought conditions (Figure 5A). On average,
the relative level of CMV in progenies derived from watered plants tended to be higher
than in drought-stressed plants, although there was no statistical significance due to the
variability of the samples (Figure 5B). To confirm the above results, pools of seedlings
derived from a subset of the progenies analyzed above were assayed by western blot
analysis. The CMV CP was detected in most of the progeny pools derived from infected
plants grown under watered or drought conditions (Figure 5C, arrows).

We also measured the efficiency of seed transmission of CMV in progenies derived
from infected Arabidopsis plants grown under watered or drought conditions. Pools of
progenies derived from each of three CMV-infected plants grown under watered and
drought conditions were analyzed by western blot. Two out of three progeny pools in each
group of plants accumulated CMV CP (Figure 5D, arrows). Altogether, our data showed
that water deficit did not significantly affect seed transmission of CMV in N. benthamiana
and Arabidopsis plants.

After several attempts to detect TuMV in progenies derived from watered and drought-
stressed N. benthamiana plants, we could not detect seed transmission of TuMV by RT-qPCR
and western blot analyses (Figure S1).
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Figure 4. Effect of CMV infection on the number of Arabidopsis plants producing seeds, on seed grain
and on seed viability. (A) Virus-infected and mock-inoculated plants were grown under watered and
drought conditions, and the number of plants producing seeds was recorded. (B) Seeds were weighted
separately after threshing and recorded as seed grain per plant. (C) Effect of CMV infection on seed
viability. Seed viability was measured as the germination percentage of approximately 100 seeds per
plant, using six individuals per treatment. Statistical comparisons between means were made among
treatments within each watering condition by employing Student’s t-test (B,C, p < 0.05) and Fisher’s
exact test with a Bonferroni correction for multiple comparisons of α to α = 0.025 (A). Different letters
indicate significant differences. For pairwise comparisons, asterisks indicate significant differences
between treatments (Student’s t-test, p < 0.05); NS: not significative.
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Figure 5. Effect of drought on CMV seed transmission. (A) CMV relative levels estimated by RT-
qPCR in four pools of Nicotiana benthamiana seedlings derived from each of three progenitor plants
grown under W and D conditions. (B) Average level of CMV estimated by RT-qPCR in progenies
derived from watered and drought-stressed N. benthamiana plants. NS: not significative (Student’s
t-test, p < 0.05). Western blot analysis of protein extracts derived from pools of N. benthamiana (C) and
Arabidopsis (D) seedlings, using antibodies against CMV CP. The lower panel shows the Ponceau
S-stained membrane after blotting, as a control of loading. Lane C+ corresponds to an extract from a
CMV-infected plant diluted 1:500. Lane C- corresponds to an extract from non-infected seedlings.
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3. Discussion

Infection by either TuMV or CMV promotes drought tolerance in Arabidopsis and
N. benthamiana plants, as reported previously for CMV in Arabidopsis [14] and
N. benthamiana [15], and TuMV in Arabidopsis [32]. In a previous work, infection with
Plum pox virus (PPV), Potato virus X (PVX), a genetically engineered PPV recombinant ex-
pressing the PVX RNA silencing suppressor protein P25 (PPV–P25), and mixed PPV/PVX
infection supported a positive association between virulence and tolerance to drought [10].
Estimates of virus effects on biomass, reproductive performance and water content in
drought-stressed Arabidopsis plants infected with TuMV and CMV shown in this study
were also consistent with a positive correlation between virulence and tolerance to drought;
that is, infection by TuMV conferred an enhanced drought-tolerant phenotype compared to
infection with CMV. However, no such correlation was observed in N. benthamiana.

Several works have shown that virus infections influence stomatal development in
Nicotiana spp. and in Arabidopsis, which was associated with a reduction in transpiration
rates [10,33]. In this study, infection by CMV and TuMV caused a decrease in stomatal
conductance in N. benthamiana under watered conditions, which was correlated with a less
pronounced decline in soil water content compared to mock-inoculated plants following
withdrawal of water. A reduction of stomatal conductance could facilitate tolerance to
drought induced by virus infection, as a reduced transpiration rate is an important survival
strategy in the response of plants to drought stress [7]. Plants with decreased stomatal
conductance are expected to consume soil water more slowly, avoiding the detrimental con-
sequences of low water potential, and thereby may became more tolerant to water deficit.
Nevertheless, other mechanisms not mutually exclusive such as osmotic adjustment, root
architecture, responses to abscisic acid (ABA) or effects on salicylic acid (SA)-mediated
signaling might also play a role in virus-induced drought tolerance [10,14,15]. In addi-
tion, imaging techniques, such as thermal or spectral sensors, could be adopted as high-
throughput and non-invasive tools for evaluating drought tolerance in virus-infected plants
in breeding programs, when large numbers of genotypes and viruses have to be tested.

Studies on reproductive performance have previously shown that tolerance to drought
in plants infected with viruses was not necessarily associated with an increase in host
fitness. For instance, infection caused by the virulent recombinant PPV–P25 was detrimental
to reproductive fitness, whereas infection showing moderate virulence (PPV) was able
to increase fitness of Arabidopsis plants grown under severe drought conditions [10].
Similarly, the wheat–Barley yellow dwarf virus pathosystem shifted from pathogenic to
beneficial along gradients of water stress intensity and duration [12]. Nevertheless, caution
must be taken when comparing distinct experimental approaches, such as plant species,
stress intensity and developmental stage, to assess the effect of virus infection on host
fitness under water deficit, as physiological outcomes in different pathosystems are far
from unique. Here we employed the experimental approach described by Aguilar et al. [10]
for stress imposition. Neither CMV nor TuMV had a positive impact on reproductive
fitness following withdrawal of water, as determined by measuring seed grains, seed
germination and the number of individuals producing seeds in virus-infected vs. mock-
inoculated Arabidopsis plants or N. benthamiana plants. By contrast, the damaging effect
caused by CMV and TuMV on host reproductive fitness with regard to mock-inoculated
plants overcame any beneficial effect associated with virus-induced tolerance to drought
in N. benthamiana, as previously reported for the virulent recombinant PPV–P25 [10]. In
Arabidopsis, seed grains did not decrease following infection with CMV under drought
conditions, as it happened when plants were grown under watered conditions. Thus,
virus-induced drought tolerance could compensate for decreased production of progeny on
Arabidopsis infected with CMV. Nevertheless, an improved reproductive fitness in terms
of increased seed grain under drought conditions is not an inevitable outcome of infection
in every virus–host pathosystem. An extreme case of detrimental effect on host fitness was
that caused by TuMV in Arabidopsis. It has been reported that a striking characteristic of
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plants infected with the UK 1 strain of TuMV was that most of them failed to develop a
flower stalk, and the few flowers were abnormal and mostly nonfertile [34].

Although it could be anticipated that exposures to abiotic stresses would weaken
plant defenses and thus make the plants more vulnerable to pathogen infection, there
are examples involving different plant–virus combinations where abiotic stresses can
modulate plant tolerance toward viruses [20–23,26]. Here, we experimentally tested the
hypothesis that water deficit increases tolerance, estimated as reproductive fitness, of
Arabidopsis and N. benthamiana plants infected with CMV and TuMV when compared to
watered, virus-infected plants. Notably, the number of CMV-infected N. benthamiana plants
grown under drought that produced seeds increased by 67%, with a 35% increase in total
seed grain, compared to plants infected with CMV under normal irrigation, whereas no
significant differences were observed upon infection with TuMV. Moreover, no differences
in germination frequency were observed in progenies derived from CMV-infected plants
when they were grown under watered and drought conditions, albeit CMV reduced seed
viability under the two water regimes. A lower seed survival rate has been reported in
plants infected with CMV, suggesting that the localization of the virus in the seed reduces
its viability [35]. Taken together, these findings highlight a conditional improvement
in biological efficacy of N. benthamiana plants infected with CMV under water deficit.
However, no such conditional phenotype was observed in Arabidopsis plants infected with
CMV. From the pathogen side, the increased number of individuals infected with CMV that
produce seeds under drought conditions could improve virus fitness through an increased
chance of spread in the plant population.

Abiotic stress conditions such as drought have been reported to influence the occur-
rence and spread of pathogens, and directly affect host–pathogen interactions by altering
plant physiology and defense responses [36]. In Arabidopsis, the spread of CaMV infection
throughout the host slowed down under water deficit conditions [25]. In this study, a
comparative analysis of virus accumulation revealed that the level of CMV in virus-infected
plants was similar under the two water regimes, suggesting that the drought-enhanced
host tolerance to CMV was not likely due to decreased virus accumulation. In this re-
spect, both CMV and TuMV behaved as tolerant to drought in terms of accumulation
in systemic tissues. Plant responses to drought might also have additional side effects
on plant tolerance to pathogens. For instance, signaling pathways induced in response
to drought may act as a priming stimulus and provide enhanced tolerance against virus
infection via activation of interlinked pathways, such as those mediated by reactive oxygen
species (ROS) and plant hormones. ABA is a key hormone in plant responses to drought
stress [7,17], and, together with SA, it has been shown to promote plant resistance to several
viruses, including CMV [37–39]. Even more, infection of N. benthamiana by CMV induced
ABA levels and activated the SA and ABA pathways, thereby disrupting the antagonist
interplay between these two signaling pathways [40]. Besides that, deregulation of host
metabolism by water deficit increases the generation of ROS, which in turn alter the cellular
redox status [41]. Although potentially toxic, ROS would also play a role as secondary
signals through the interaction with hypothetical redox-sensing proteins leading to retro-
grade signaling and changes in the expression of genes associated with virus tolerance.
In this sense, increased mitochondrial ROS levels activate the mitochondrial respiratory
enzyme alternative oxidase (AOX), and it is known that SA-induced virus resistance is
modulated by AOX in Arabidopsis and N. benthamiana [42]. Montes et al. have previously
shown that tolerance to CMV was associated with increased seed yield, whereas tolerance
to TuMV was attained through changes in the plant developmental schedule [43]. It is
tempting to speculate that water deficit regulates plant stress responses (hormonal and/or
physiological) that would induce resource reallocation from growth to reproduction, and
thereby lead to tolerance to CMV. Future work should address how signaling pathways
responsible for drought tolerance in plants are interlinked to activate routes and processes
responsible for conferring tolerance to viruses.
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Several findings derived from this work might have practical implications for crops
under a climate change scenario. Infection by CMV improved the reproductive fitness
of N. benthamiana plants when exposed to drought compared to watered, virus-infected
plants. However, virus infection still caused a detrimental effect on host performance
when compared to healthy plants even under water deficit. Thus, inoculation with virulent
pathogens would not be indicated as a prophylactic measure to control losses in crops
caused by viruses under a climate change scenario. However, the isolation of attenuated,
or less virulent, viral variants could provide some benefits under drought conditions
while preventing the detrimental effects that virulence imposes to plant fitness [44]. Virus
seed transmission has a profound impact in plant virus epidemiology. It represents a
significant source of primary inoculum that also allows for the long-distance dispersal
of the pathogen [45]. Our data indicate that water deficit does not affect the capacity
of infected plants to transmit CMV through seeds in the two model hosts used in this
study. As total seed grain increased in plants infected with CMV under drought conditions
compared to normal irrigation, water deficit would confer a selective advantage for virus
dispersal in the plant population via seed transmission and the subsequent transmission
by vectors. Although the range of virus–host combinations in this study is limited, our
findings would lead to the hypothesis that plants will experience increased tolerance to
specific viruses under some of the projected climate change scenarios. This would affect
the dynamics between plants and viruses and, eventually, their coevolutionary relationship
in both agricultural and natural ecosystems, as the ability to spread through seeds is a
major determinant of virus fitness. Furthermore, our study investigated drought-induced
alterations in plant–virus interactions in two experimental model hosts. Therefore, further
field studies focused on the evaluation of vegetative and reproductive performance should
be undertaken in plants with agronomic interest to assess the epidemiological consequences
of virus infection under water stress.

4. Materials and Methods
4.1. Viruses

The Fny strain of CMV was used as inoculum [46]. A sap extract from CMV-infected
tissue was made in phosphate buffered saline (pH 6.8) at 10% (w/v), aliquoted and kept at
−80 ◦C, and used as the inoculum source for all mechanical inoculations. The binary vector
pCB-TuMV-GFP (GenBank: EF028235.1), which harbors a GFP-tagged cDNA of TuMV
UK1, was provided by J. Carrington [47,48]. Agrobacterium tumefaciens harboring pCAM-
BIA1305.1, which contains a gene encoding β-glucuronidase, was used as a negative control.

4.2. Plant Materials

N. benthamiana plants were grown in 10 cm-diameter pots filled with a mixture of soil
and vermiculite at 3:1 (v/v). Four-week-old plants were inoculated with CMV or agro-
infiltrated with A. tumefaciens bearing TuMV [49]. Plants were grown at 25 ◦C using a 16 h
light photoperiod.

Arabidopsis thaliana plants were inoculated in vitro with the indicated viruses as de-
scribed [50]. At 11 dai, plants were transferred to 5 × 5 cm individual pots filled with
a mixture of soil and vermiculite at 3:1 (v/v), and covered with a plastic bag to avoid
desiccation. Plants were grown at 21 ◦C using a 16 h light photoperiod.

4.3. Drought, Stomatal Conductance and Water Content Measurements

Plants were bottom-watered for 3 h until saturation of the soil at 12 dai (N. benthamiana)
or 16 dai (Arabidopsis), and then subjected to complete water withholding (Figure S2). A
different set of plants were kept watered over the same period as a control. The position of
the trays in the grown chamber was changed twice per week to minimize experimental vari-
ation between samples. Analysis of water content in watered and drought-stressed plants
was performed at 7 daww according to Xu et al. [15]. Aerial tissues of drought-stressed
and watered plants were harvested and fresh weights were measured. Then samples were
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dried over 7 days at 65 ◦C. Dry weight was measured and the weight loss for each plant,
which is a proxy of the water weight, was calculated. The percentage of water content
of each plant was calculated by dividing the water weight by the fresh weight for each
sample. The number of N. benthamiana plants analyzed in three separate experiments were
19 (Mock), 18 (TuMV) and 14 (CMV) for watered conditions; and 17 (Mock), 18 (TuMV) and
15 (CMV) for drought conditions. For Arabidopsis, the numbers of individuals analyzed in
two separate experiments were 18 (Mock), 18 (TuMV) and 20 (CMV) for watered conditions;
and 38 (Mock), 37 (TuMV) and 37 (CMV) for drought conditions.

The RSWC was calculated following the formula: (fresh weight-dry weight)/(initial
weight-dry weight) × 100, as described before [51].

Stomatal conductance was measured using a leaf porometer (SC-1 Decagon-T, Decagon
Devices, Pullman, WA, USA) at 25 ◦C and 65% relative humidity. In brief, attached,
fully expanded leaves of N. benthamiana plants were placed in the chamber and repeat
measurements of conductance from 10 plants per treatment were taken on the abaxial side
of the leaves.

4.4. Reproductive Fitness Assays

The number of N. benthamiana and Arabidopsis plants producing seeds and seed
grains per plant were recorded at complete senescence (Figure S2). The number of
N. benthamiana plants analyzed in four separate seed grain experiments were 12 (Mock),
38 (TuMV) and 84 (CMV) for watered conditions; and 12 (Mock), 28 (TuMV) and 58 (CMV)
for drought conditions. For Arabidopsis, the number of individuals analyzed in two sep-
arate seed grain experiments were 20 (Mock) and 20 (CMV) for watered conditions, and
33 (Mock) and 32 (CMV) for drought conditions. Seeds were weighted individually after
threshing and recorded as seed grain per plant. Seed weight was recorded after determin-
ing the weight of 80 seeds derived from each of four (Mock and TuMV) or seven (CMV)
plants per water regimes. Seed viability was estimated as the germination percentage of
approximately 100 seeds per plant. Seeds were washed in a 10% household bleach solution
(3.7% active chlorine) for 12 min and washed five times in sterile water. Seeds were then
placed in Petri dishes containing Murashige and Skoog medium, stratified for three days
at 4 ◦C, and germinated in a growth chamber at 25 ◦C, under 16 h light. Germination
efficiency was determined after 10 days of cultivation. Fifteen days post-stratification
seedlings were pooled in groups of five and tested for the presence of viruses via RT-qPCR
and western blot.

4.5. Protein Gel Blot Analysis

Viral proteins were analyzed by western blot using specific antisera as described pre-
viously [52]. Total proteins were extracted by grounding leaf disks in nitrogen with a pestle,
and adding 400 µL of extraction buffer/0.05 g (0.1 M Tris-HCl pH 8, 10 mM EDTA, 0.1 M
LiCl, 1% β-mercaptoethanol and 1% SDS). Samples were then boiled and fractionated in
15% SDS-PAGE gels. Gels were wet-blotted onto Hybond-P PVDF membranes (Amersham,
GE Healthcare, Buckinghamshire, UK). For the detection of CMV CP, we used a home-made
rabbit polyclonal antiserum (1:1000) [52]. For the detection of TuMV CP, a commercial
rabbit antibody was used (No. 07049S/500; Loewe Biochemica GmbH, Sauerlach, Ger-
many). Blotted proteins were detected using commercial secondary antibodies (1:5000) and
SigmaFast BCIP/NBT substrate tablets (SIGMA Aldrich, Saint Louis, MO, USA).

4.6. Quantitative RT-PCR (qRT-PCR)

For the estimation of viral RNA levels, total RNAs were extracted from five combined
seedlings taken at 15 days post-stratification from progenies derived from drought-stressed
and watered plants. TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to ex-
tract total RNA, and DNA contaminants were removed by treatment with a TURBO
DNA-free kit (Ambion, Austin, TX, USA). A one-step qRT-PCR was performed using
15 µL of a reaction mix that contained 7.5 µL of Brilliant III Ultra-Fast RT-qPCR Mas-
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ter Mix (Agilent, Santa Clara, CA, USA), 1.8 µL of RNase-free water, 0.75 µL of re-
verse transcriptase (Agilent), 0.15 µL of 100 mM dithiothreitol (Agilent), 0.3 µM of each
primer, and 3 µL of total RNA extract (approximately 10 ng RNA/µL). Primers employed
were CMV RNA3-Fw (5’-CTGATCTGGGCGACAAGGA-3´) and CMV RNA3-Rv (5´-
GATAACGACAGCAAAACAC-3´) for RNA 3 of CMV; TuMV CP-Fw (5´-GAAGGAGAA
GAAGGAGAGAGAGA-3´), TuMV CP-Rv (5´-GTGCAACATCCTTGCCTTTC-3´) for CP
of TuMV; and 18S rRNA-Fw (5´-GCCCGTTGCTGCGATGATTC-3´) and 18S rRNA-Rv (5´-
GCTGCCTTCCTTGGATGTGG-3´) for normalization. All RT-qPCR assays were performed
in a Rotor-Gene Q thermal cycler (Qiagen. Venlo, Limburgh, Netherlands) as described
previously [53]. All reactions were performed in triplicate with two replicates of each
sample in each run. The relative quantification of PCR products was calculated by the
comparative cycle threshold (∆∆Ct) method.

4.7. Statistical Analysis

Statistical analyses were conducted in the statistical software IBM SPSS Statistics v.20
(IBM Corp). For each analysis, samples were assessed for normality via the Shapiro–Wilk
test, and for equality of variances using Levene’s test. For analysis with approximately
normally distributed samples of equal variance, one-way ANOVA followed by Scheffé’s
post-hoc test was used. Otherwise, a nonparametric Mann–Whitney U test was employed,
with the Bonferroni correction for multiple comparisons between samples applied. For
comparisons between pairs of means (pairwise comparisons), Student’s t-tests or Mann–
Whitney U tests were employed, depending on the normality of the data. Fisher’s exact
test was employed for differences in proportions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants11091240/s1, Figure S1: Attempts to detect Turnip
mosaic virus (TuMV) in Nicotiana benthamiana. Figure S2: Schemes illustrating the experimental design.
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