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Summary

Sofosbuvir and Daclatasvir are among the direct-
acting antiviral (DAA) medications prescribed for the

treatment of chronic hepatitis C (CHC) virus infection
as combination therapy with other antiviral medica-
tions. DAA-based therapy achieves high cure rates,
reaching up to 97% depending on the genotype of the
causative hepatitis C virus (HCV). While DAAs have
been approved as an efficient and well-tolerated ther-
apy for CHC, emerging concerns about adverse car-
diac side effects, higher risk of recurrence and
occurrence of hepatocellular carcinoma (HCC) and
doubts of genotoxicity have been reported. In our
study, we investigated in detail physiological off-
targets of DAAs and dissected the effects of these
drugs on cellular organelles using budding yeast, a
unicellular eukaryotic organism. DAAs were found to
disturb the architecture of the endoplasmic reticulum
(ER) and the mitochondria, while showing no apparent
genotoxicity or DNA damaging effect. Our study pro-
vides evidence that DAAs are not associated with
genotoxicity and highlights the necessity for adjunc-
tive antioxidant therapy to mitigate the adverse effects
of DAAs on ER and mitochondria.

Introduction

Hepatitis C virus (HCV) is a liver-infecting RNA virus that
belongs to the family Flaviviridae. Over 100 million people
are chronically infected around the world, with the major
complications of HCV infection being liver cirrhosis and
emergence of hepatocellular carcinoma (Mohd Hanafiah
et al., 2013; Blach et al., 2017). Egypt has the sharpest
worldwide prevalence rates of HCV infection, with at least
15% of the population infected (Sievert et al., 2011). Cur-
rent guidelines recommend HCV treatment with direct-
acting antivirals (DAAs)-based regimen for all HCV-
infected patients, irrespective of the degree of liver fibrosis
(World Health Organization, 2018). Sofosbuvir (SOF) is a
novel nucleotide analogue prodrug that selectively inhibits
the HCV non-structural protein 5B (NS5B), an RNA-
dependent RNA polymerase crucial for the replication of
HCV (Fung et al., 2014). SOF is a component of the first
oral, interferon (IFN)-free treatment authorized for a treat-
ment of CHC infection (Asselah, 2014; Falade-Nwulia
et al., 2017). Daclatasvir (DCV) is one of the new DAAs
that interfere with other stages of the HCV life cycle
(Belema and Meanwell, 2014; Lim and Gallay, 2014). It is
the first selective inhibitor of HCV non-structural protein
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5A (NS5A), and interference with this replication complex
limits viral multiplication (Fung et al., 2014; Degasperi
et al., 2015). The combination of both drugs with or with-
out ribavirin provoked sustained virological response
(SVR) in patients in different stages of advanced liver dis-
eases (Sulkowski et al., 2014; Wyles et al., 2015; Moshyk
et al., 2016; Boglione et al., 2017; Pol et al., 2017).
Although DAAs initially showed significant promise

when introduced to the market, subsequent studies
noted a few limitations and deleterious side effects of
these treatments. Therefore, a detailed investigations to
explore interventions of DAAs with molecular pathways,
cellular physiology and subcellular organelles are
required (Maciocia et al., 2016; Abouelkheir Abdalla
et al., 2017; Kim et al., 2017; Andrade et al., 2018; Hir-
ose et al., 2019; Kogiso et al., 2019). Researchers were
particularly concerned over the possible increase in inci-
dence and relapse of HCC recorded in HCV patients
after DAA therapy (Giovannini et al., 2020; Lithy et al.,
2020; Muzica et al., 2020; Pop et al., 2020).
The budding yeast Saccharomyces cerevisiae is rou-

tinely used as a model organism to resolve biological
pathways and evolutionary processes conserved
between yeast and higher eukaryotes, and more recently
as a platform to investigate newly synthesized therapeu-
tics (Parsons et al., 2006). The simple culture conditions
and easy genetic manipulation of the yeast genome
facilitate its extensive usage in various lines of biological
research. Additionally, S. cerevisiae was the first unicel-
lular eukaryote with a complete sequenced genome. The
yeast genome has been completely sequenced since
1996 and comprises 6.275 genes organized on 16 chro-
mosomes; the function of more than 92% of yeast genes
has been identified (Botstein et al., 1997). Comparative
genomic analysis revealed that nearly 40% of yeast
genes share conserved primary structure with at least
one structural or functional homolog of human protein-
coding genes (Parsons et al., 2003). Moreover, 30% of
human genes with identified function in genetic and
pathological disorders have yeast orthologs (Foury,
1997). Due to this remarkable homology in the genome
and the extreme conservation of basic cellular pathways,
studies in yeast have facilitated the analysis of major
cellular processes, such as mRNA translation and decay
(Sonenberg et al., 2000; Coller and Parker, 2004), DNA
repair mechanisms (Tsukuda et al., 2005) and the cell
cycle regulation (Hartwell and Kastan, 1994). In this
study, we used budding yeast for a detailed inspection
of the adverse effects of DAAs on cell physiology, gen-
ome stability, and on subcellular organelles’ architecture
and integrity. Our chemical-genetic and organelle biology
approach of our study revealed apparent effects on the
dynamics of ER and mitochondria, while excluding any
DNA damaging or genotoxic effects of DAAs.

Results

Susceptibility of budding yeast to SOF and DCV

We initially determined the minimum inhibitory concentra-
tion (MIC) of SOF (Fig. 1A) and DCV (Fig. 1B) in bud-
ding yeast cells. SOF and DCV were dissolved in
DMSO, and twofold serial dilutions were prepared and
added to the liquid culture of budding yeast adjusted to
the same optical density. The effect of both drugs in dif-
ferent concentrations on growth and survival was moni-
tored by reading the optical density after 16 h
incubation. We found that the concentration of 64 µM
DCV was sufficient to inhibit the yeast growth compared
with mock-treated control cells (Fig. 1C), whereas con-
centrations higher than 100 µM of SOF were required to
induce growth inhibition (Fig. 1D). These results indicate
that DCV is less tolerated by budding yeast than SOF.
In the same context, isogenic sets of polyploid yeast
exhibited similar growth pattern to haploid strain when
plated on plates containing inhibitory concentrations of
each drug that were deduced from the growth curve of
haploid yeast (Fig. 1E).

Exposure of budding yeast to DAAs perturbs cell volume

Perturbation of budding volume and morphology of bud-
ding yeast reflects several cellular stress signals and
serves as an discernible phenotype of physiological
aberrations, such as unfolded protein response (UPR),
stress signals and cell cycle deregulations including cell
cycle arrest and ageing (Scrimale et al., 2009; Moreno
et al., 2019). Pathways that disturb cell volume are
tightly linked to cell cycle progression, efficient protein
folding machinery and DNA quality control pathways.
Previously, fundamental regulators and genetic networks
that control cell size in yeast and their homologs in
mammalian cells were identified using systematic
screens of yeast mutants that shift the size profile to
smaller, or larger volume distributions (Jorgensen et al.,
2002; Zhang et al., 2002; Ohya et al., 2005; Dungrawala
et al., 2012; Soifer and Barkai, 2014; Yahya et al.,
2014). To explore the effect of SOF or DCV on budding
yeast volume, we grew budding yeast in presence of
sublethal doses of each drug and compared them with
identical cultures grown with drugs known to induce ER
stress (Dithiothreitol, DTT) (Hamdan et al., 2017), UPR
(Tunicamycin; TN) (Zhao et al., 2019), and genotoxic
stress (Hydroxyurea, HU) (Soriano-Carot et al., 2012).
As a control, we grew budding yeast with a vehicle of
the tested drugs. Additionally, a yeast mutant (Dcln3)
(Yahya et al., 2014) with a large cell volume due to a
deletion of the G1 cyclin and another mutant (Dsfp1) with
a small budding volume due to a deletion of SFP1, the
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master transcription factor of ribosomal biogenesis, were
analysed (Fig. 2A) (Sudbery, 2002; Cipollina et al., 2008;
Albert et al., 2019). Budding yeast treated with DAAs
showed significantly enlarged budding volume compared
with control cells (CT (control): 48.87 � 13.28;
SOF:71.3 � 28.37 (P < 0.0001); DCV: 78.01 � 34.17
(P < 0.0001)), although not as large as in cells treated
with DTT (116.0 � 34.83 (P < 0.0001)), TN
(112.2 � 34.80 (P < 0.0001)), HU (90.30 � 31.13
(P < 0.0001)) or Dcln3 (100.7 � 44.91 (P < 0.0001)),

while the control Dsfp1 showed the expected small vol-
ume (32.69 � 12.36 (P < 0.0001)) (Fig. 2B). The promi-
nent effects of DAAs on cell volume denote possible
effects on cellular organelles and cell physiology.

DAAs disrupt the integrity and the morphology of ER

To further dissect the effects on cellular organelles and
other physiological aspects that are affected by tested
drugs, we investigated the effect of DAAs on ER

Fig. 1. Minimal inhibitory concentration (MIC) determination of Sofosbuvir and Daclatasvir. Chemical structures of (A) Sofosbuvir (SOF) and (B)
Daclatasvir (DCV). (C) Dose–response curve of twofold serial dilutions of Daclatasvir (mean � SD; n = 3 independent biological replicates). (D)
Dose-response curve of twofold serial dilutions of Sofosbuvir (mean � SD; n = 3 independent biological replicates). (E) Representative drop
dilution of exponentially growing isogenic series of yeast strain of different ploidy on YPD plates supplemented with 128 µM Sofosbuvir (SOF)
or 64 µM Daclatasvir (DCV). Plates were imaged after 48 h of incubation at 30 �C.
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architecture. As a positive control, we used tunicamycin
that is known to disturb ER integrity (Schuck et al.,
2009; Austriaco, 2012) in a background expressing
Sec63-GFP, a subunit of the Sec62/Sec63 complex
involved in post-translational translocation of proteins to
ER and commonly employed to evaluate the ER integrity
(Schuck et al., 2009; Chaillot et al., 2015). Sec63 is an
essential ER translocation protein required for protein
import to ER that localizes to both cortical ER (cER) and
nuclear ER (nER). ER organization as judged micro-
scopically by Sec63-GFP distribution and

compartmentalization was assessed in cells challenged
with DAAs and in control cells. The control cells exhib-
ited a clear and well-characterized ER organization with
the nER around the nuclear compartment, the cER adja-
cent to plasma membrane at the cell periphery and few
cytoplasmic ER tubes (Fig. 3A). However, in cells trea-
ted with tunicamycin, the ER became fragmented, and
the GFP signal was diffused in the cytoplasm. The nER
integrity was moderately or entirely disrupted in some
cells (Fig. 3A). Cells treated with DAAs contained large
cytoplasmic foci, possibly representing collapsed ER

Fig. 2. Sofosbuvir and Daclatasvir enlarge budding volume.
A. Representative bright-field images of haploid yeast cell grown for 4–6 h in YPD media (control; CT), or media supplemented with 64 µM
Sofosbuvir (SOF), 32 µM Daclatasvir (DCV), or other drugs that affect cell volume (5 mM Dithiothreitol; DTT, 5 µM Tunicamycin; TN and
200 mM Hydroxyurea; HU). Δcln3 mutant was used as a control for large cell volume and Δsfp1 for small cell volume. Scale bar: 5 lm.
B. Quantification of individual volumes at budding of (A) yeast cells (box plots represent 25th percentile, median, 75th percentile, the whiskers
extend to the minimum and maximum values; n = 400 cells; 3 independent biological replicates). The statistical analysis was done using one-
way ANOVA and Tukey–Kramer post hoc test (***P < 0.001).
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(Fig. 3A). Taken together, these findings indicate that
DAAs disrupt ER organization. DAAs-treated cells also
showed enhanced upregulation (relative to untreated
cells) of Hsp26 (CT: 0.56 � 0.15; SOF:1.77 � 0.15
(P < 0.0001); DCV: 1.50 � 0.1 (P < 0.0001)), a small
cytosolic heat shock protein (sHSP) with a molecular
chaperone function (Petko and Lindquist, 1986; Carmelo
and S�a-Correia, 1997), albeit to a lower level than in
cells treated with TN (3.03 � 0.20 (P < 0.0001)) (Fig. 3B
and C). The altered ER morphology and upregulated
markers of UPR response indicate that DAAs induce ER
stress and accumulation of unfolded protein.

Yeasts treated with DAAs show no apparent genotoxicity

The major concerns about any new drug arise from pos-
sible mutagenic or genotoxic effects. To investigate pos-
sible genotoxic effects of DAAs, we monitored the
phosphorylation status of Rad53, an essential protein
kinase required for DNA damage signalling (Cord�on-

Preciado et al., 2006). Upon exposure to DNA damaging
agent, Rad53p amplifies initial signals through modifying
the phosphorylation state of downstream protein targets
that recognize DNA damage and block replication (Allen
et al., 1994; Weinert et al., 1994). Yeast cultures
arrested in G1 by alpha factor were released into media
with the tested drugs or a vehicle; as a positive control
for DNA damage, we treated yeast culture with HU.
Cells treated with HU showed a dramatic increase of
Rad53 protein levels (2.00 � 0.26 (P < 0.0001)) and
noticeable shift to high phosphorylated forms, while
yeasts cells treated with DAAs (SOF: 0.45 � 0.12
(P = n.s.); DCV: 0.44 � 0.14 (P = n.s.)) or the control
(CT: 0.42 � 0.22) show no change in the level or in the
phosphorylation status of Rad53 (Fig. 4A and B); in the
same experiment we monitored the budding index as an
indicator of the cell cycle progression, cells treated with
DAAs were able to pass G1, enter S phase and normally
behave as control cells while HU-treated cells clearly
arrested in S phase (Fig. 4C). Drugs that interfere with

Fig. 3. Effect of Sofosbuvir and Daclatasvir on ER architecture.
A. Representative fluorescence images of Sec63-GFP localization in control cells (CT), cells treated with 64 µM Sofosbuvir (SOF), 32 µM
Daclatasvir (DCV) or 5 µM Tunicamycin (TN) as a positive control for ER stressing agent for 4–6 h. Cortical (cER) and nuclear ERs (nER) are
labelled. Scale bar, 5 µm.
B. Expression analysis of heat shock protein Hsp26. Cells expressing Hsp26-6HA were exponentially grown for 4–6 h in YPD media supple-
mented with DMSO, 64 µM Sofosbuvir (SOF), 32 µM Daclatasvir (DCV) or 5 µM Tunicamycin (TN). Levels of Hsp26-6HA were analysed by
Western blot, and Rps23 was used as a loading control.
C. Relative abundance quantification of Hsp26-6HA in (B). Mean � SD (3 independent biological replicates). The statistical analysis was done
using one-way ANOVA and Tukey–Kramer post hoc test (***P < 0.001).
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microtubule dynamics and tubulin polymerization, for
example benomyl, are highly genotoxic and lead to ane-
uploidy due to incorrect segregation of sister chromatids
(Georgieva et al., 1990; Mailhes and Aardema, 1992). A
sensitive assay to record correct segregation was used,
where segregation of chromosome 4 labelled by tetO/
TetR-GFP system near centromeres was monitored in

cells released from mitotic arrest into media with or with-
out the tested drugs (He et al., 2000). Again, no signifi-
cant changes were observed in cells treated with DAAs
(SOF: 93.0 � 2.64 (P = n.s.) and DCV: 92.0 � 4.00
(P = n.s.)) compared with control cells (CT:
92.33 � 3.05), while the benomyl treated cells showed
clear signs of chromosomes mis-segregation (Benomyl:

Fig. 4. Sofosbuvir and Daclatasvir cause no genotoxic stress.
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55.0 � 7.55 (P < 0.0001)) (Fig. 4D and E). Together,
these results suggest no genotoxic effects of the DAAs.

DAAs reduce the integrity and quantity of mitochondrial
DNA

To evaluate possible effects of DAAs on mitochondrial
DNA, we stained DNA of live cells growing in the pres-
ence of DAAs with DAPI (Fig. 5A). Treated cells showed
a decrease in the mitochondrial DNA. We quantified the
mtDNA content relative to genomic DNA using qPCR
with specific primers that target COX3, a gene encoded
in the mitochondrial DNA and the housekeeping ACT1 in
the genomic DNA. As a control, we used a yeast rho0

strain lacking the mtDNA. The distribution of mtDNA was
significantly altered after the treatment, as DAAs-treated
cells showed a significant decrease of mtDNA compared
with control cells (CT: 1.00 � 0.0; SOF: 0.71 � 0.01
(P < 0.0001); DCV: 0.74 � 0.04 (P < 0.0001)) (Fig. 5B).
Additionally, we evaluated mitochondrial Cox2 protein
levels by Western blot and observed a significant
decrease (SOF: 0.65 � 0.01 (P < 0.0001); DCV:
0.76 � 0.06 (P < 0.0001)) compared with control cells
(CT: 1.54 � 0.19, Fig. 5C and D)). As a negative con-
trol, we treated cells with chloramphenicol (CHL) that
inhibits mitochondrial translation and thus reduced Cox2
protein levels (0.44 � 0.09 (P < 0.0001)). These results
show that DAAs reduced the levels and the integrity of
mtDNA.

DAAs cause distinct mitochondrial fragmentation and
impair mitochondrial respiration

Mitochondria are cellular organelles with a main function
to generate energy. In addition to this role, mitochondria
are involved in maintenance of calcium homeostasis,
metabolism of amino acid and nucleotides, and biosyn-
thesis of iron–sulphur clusters, haeme and ubiquinone
(Young, 2017). Yeast strains that were cultured in growth

media supplemented with DAAs showed enhanced frag-
mentation of mitochondria similar to the pattern exhibited
by yeast strain depleted of mitochondrial DNA, whereas
control cultures exhibited the typical network morphology
of mitochondria, when mitochondrial integrity was exam-
ined by microscopy (Fig. 6A). To test a direct effect of
altered mitochondrial integrity and loss of mtDNA, we
tested oxygen concentration is well-established indicator
for mitochondrial function. Indeed, yeasts treated with
DAAs showed significantly reduced oxygen concentra-
tion and lower basal respiration (Fig. 6B).

Discussion

DAAs display high performance and satisfactory safety
profile in patients since their introduction into drug mar-
kets for the control of Hepatitis C. DAAs have dramati-
cally changed the HCV treatment landscape, with
elevated sustained virologic response (SVR), potential
benefits in CHC treatment and improved compliance
(Asselah, 2014; Virlogeux et al., 2016; Shiha et al.,
2018; Heffernan et al., 2019). DAAs-based therapy of
HCV infections has achieved high virologic cure rates
(>90%) superior to the interferon-based therapy [inter-
feron (INF) plus ribavirin (RBV)], with a low SVR not
exceeding 50% (Seo et al., 2017). Common side effects
of DAAs are fatigue, nausea, dizziness and anaemia.
However, with the wide application of DAAs combination
regimens, recent clinical studies indicated unwanted side
effects and development of certain types of cancer,
which raises concerns about possible effects of
DAAs on genome stability and other aspects of cellular
physiology.

DAAs display no signs of genotoxicity

Yeast-based screens have been well established for var-
ious chemical biology studies to monitor genotoxicity and
cytotoxicity, identify DNA damaging agents, determine

A. Cells expressing Rad53-6HA were exponentially grown in YPD media, arrested in G1 phase with a-factor and then released into YPD media
supplemented with DMSO, 64 µM Sofosbuvir (SOF), 32 µM Daclatasvir (DCV) or 200 mM Hydroxyurea (HU) as a positive control for genotoxic
stress. Samples were collected at time 0 and after 2 h post-treatments. Basal levels and phosphorylation of Rad53-6HA were analysed by Wes-
tern blot. Ponceau staining was used as a loading control.
B. Relative abundance quantification of Rad53-6HA (relative to time 0 before treatment) in (A). Mean � SD (3 independent biological repli-
cates). The statistical analysis was performed using one-way ANOVA and Tukey–Kramer post hoc test (***P < 0.001).
C. Budding index for the respective cells in (A), samples were collected at the indicated time points, budding index was calculated after micro-
scopic examination (at least 200 cells per count were scored). Mean � SD is shown from 3 independent biological replicates.
D. Chromosome segregation (centromeres of chromosome 4 labelled by CEN4-tetO/TetR-GFP; in green) in cells grown in media supplemented
with DMSO, 64 µM Sofosbuvir (SOF) 32 µM Daclatasvir (DCV) or benomyl (10 lg ml�1). Spc29-RFP stains the spindle pole bodies; in red.
Scale bar, 5 µm.
E. Percentage (mean � SD) of correct chromosome segregation of cells in (D); (correct segregation was identified as a distribution of the 2
chromatids between mother and daughter cells, while existence of two dots in one cell was scored as a mis-segregation event, at least n = 300
cells for each experiment were counted; 3 independent biological replicates). The statistical analysis was done using one-way ANOVA and
Tukey–Kramer post hoc test (***P < 0.001).
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the underlying mechanisms and configure side effects of
the newly synthesized drugs on functional organelles
and metabolism (Kock et al., 2009; dos Santos, 2012;
van Bui et al., 2015; Zhou et al., 2016; Fasullo et al.,
2017; Delerue et al., 2019). Polyploid yeast shows
prominent sensitivity compared with haploid or diploid

yeasts when challenged with drugs and chemicals that
induce genotoxicity or interfere with chromosome mainte-
nance or organization, including DNA damaging and
microtubule depolymerizing drugs (Storchov�a et al.,
2006; Yahya et al., 2021). In case of DAAs, both haploid
and polyploid yeasts exhibited similar sensitivity profile

Fig. 5. Sofosbuvir and Daclatasvir affect integrity and copy number of mitochondrial DNA.
A. Mitochondrial nucleoid signals in control cells, 64 µM Sofosbuvir (SOF), 32 µM Daclatasvir (DCV) and cells depleted of mitochondrial DNA
(rho0) as a negative control. Cells were grown to mid-logarithmic growth phase (6–8 h) in YPG media and stained with DAPI to visualize DNA.
Scale bar, 5 µm.
B. Quantification of mitochondrial DNA copy number by qPCR for the respective cells in (A). Total DNA was extracted from respective cells,
and qPCR was performed using primers for COX3 (mitochondrial DNA locus) and ACT1 (housekeeping chromosomal DNA locus). Mean � SD
(n = 3 independent biological replicates). The statistical analysis was done using one-way ANOVA and Tukey–Kramer post hoc test
(***P < 0.001).
C. Cox2 protein levels analysed by Western blot in control cells, 64 µM Sofosbuvir (SOF), 32 µM Daclatasvir (DCV) or with 50 µg ml�1 Chlo-
ramphenicol (CHL) as a negative control.
D. Relative abundance quantification of Cox2 in (C). Mean � SD (3 independent biological replicates). The statistical analysis was done using
one-way ANOVA and Tukey–Kramer post hoc test (***P < 0.001).
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at the same inhibitory concentration of DAAs. Moreover,
cells treated or untreated with DAAs displayed similar
budding profile and segregated their duplicated chromo-
somes with the same efficiency. Additionally, DAAs-
treated yeast did not accumulate high phosphorylated
forms of Rad53, a well-known marker of genotoxic stress
response. All these results suggest that DAAs treatment
has negligible genotoxic effects.

DAAs disturb the architecture of ER and mitochondria

ER has been frequently reported as a nonspecific target
of several antiviral agents (Ganta and Chaubey, 2019).
Therefore, we tested the global effect of DAAs on orga-
nelles integrity. Indeed, yeast cells treated with DAAs
showed discernible signature of ER disturbance in the
form of fragmented or collapsed ER, accompanied with
upregulation of cytosolic heat shock protein Hsp26, pos-
sibly in response to UPR provoked by ER stress.
Previous studies showed that the antiviral nucleoside

analogues, such as zidovudine (AZT), can generate
mitochondrial toxicity upon long-term treatment (Sun
et al., 2014; Jin et al., 2017). Our study found that

mitochondria were strongly affected in response to
DAAs. Treated cells suffered from alterations of mito-
chondrial dynamics, accumulated fractured mitochondria
and showed distortion of the network pattern of healthy
mitochondria. Moreover, DAAs-treated cells displayed
significant loss of mtDNA. The exact role of DAAs in
disturbing the mitochondrial physiology and organization
has not been investigated in detail, although mitochon-
drial toxicity triggered by antiviral drugs and DAAs has
been previously recognized (Lewis and Dalakas, 1995;
Kakuda, 2000; Kim et al., 2017). The undesirable
effects of DAAs on mitochondrial morphology and the
level of mtDNA likely caused the reduced oxygen con-
sumption and lower basal respiration rate. Our observa-
tion may provide a mechanistic explanation for the
clinical side effects that include fatigue and dizziness
observed in most patients. In the same context, drugs
that interfere with mitochondrial homeostasis were
found to promote alterations of cardiac physiology
(Varga and Pacher, 2018). Together with our findings,
this may explain the reported cardiac toxicity associated
with DAAs (Ucciferri et al., 2017; El Missiri et al.,
2020).

Fig. 6. Sofosbuvir and Daclatasvir alter mitochondria integrity and impair mitochondria respiration.
A. Representative fluorescence microscopy images of control cells, 64 µM Sofosbuvir (SOF) or 32 µM Daclatasvir (DCV) and respiratory defi-
cient cells (rho0) as a negative control. Cells harbouring pYX232-mtGFP (a plasmid for expression of mitochondria-targeted GFP in yeast) were
grown to mid-logarithmic growth phase (6–8 h) in YPG, and then subjected to fluorescent microscopy to visualize mitochondria. Scale bar,
5 µm.
B. Oxygen concentration of respective cells in (A). Values are mean oxygen concentration �SD (n = 3 independent biological replicates). The
statistical analysis was performed using Kruskal–Wallis test followed by Dunn post hoc test (***P < 0.001).
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DAAs and hepatitis B reactivation

Due to pharmacological eradication of HCV, DAAs may
possibly reactivate hepatitis B virus (HBV) in formerly
infected patients. Thus, the European Medicines Agency
(EMA) and the United States Food and Drug Administra-
tion (FDA) have recommended checking all HCV
patients for HBV coinfection before starting DAA-based
therapy for HCV to reduce the risk of HBV reactivation
(Cheung et al., 2016; Chen et al., 2017; Holmes et al.,
2017; Loggi et al., 2017; Blackard and Sherman, 2018;
El Kassas et al., 2018; Jiang et al., 2018; Wang et al.,
2019; Miyasaka et al., 2020; Palacios-Baena et al.,
2020). Our findings may present another indirect link
between induction of ER stress and mitochondrial distur-
bance due to DAAs treatment and HBV reactivation,
although this assumption will require further investiga-
tion. It was reported that HBV can induce ER stress and
activate UPR. The HBV-induced ER stress and UPR sig-
nalling increase the folding capacity of the infected cells
by upregulating chaperons as a response to the accu-
mulated unfolded proteins. HBV can employ this folding
protein surplus for processing viral proteins, genome
replication or virion assembly (Lazar et al., 2014). Addi-
tionally, the DAAs-induced ER stress may instigate stim-
uli sufficient for reactivating inactive HBV.

Experimental procedures

Strains, plasmids and growth conditions

Yeast strains and bacterial plasmids used in this study
are listed in Table S1. Yeast strains were based on the
W303 or S288C genetic backgrounds of a mating type
(Winston et al., 1995). Yeast-diluted precultures were
grown exponentially for 4–5 generations in YP (1% yeast
extract, 2% peptone), or in synthetic complete media
(SC; 1.34% yeast nitrogen base, 0.04% complete syn-
thetic mix) supplemented with 2% glucose (YPD or
SDC), or 2% galactose (YPG or SGC), aerated by shak-
ing at 30 �C. Yeast cells were arrested in late G1 by
treating exponential cultures with 5 lg ml�1 a-factor
(Core Facility, Max Planck Institute of Biochemistry,
Martinsried, Germany) for 105 min at 30 �C, or arrested
in mitosis by adding 30 µg ml�1 nocodazole for 3 h at
30°C (Santa Cruz Biotechnology; Dallas, TX, USA).

General genetic methods

Standard protocols were used for DNA manipulations
and transformation of yeast cells. Single null mutants
and epitope fusion to target genes were constructed
using the homologous recombination approach after
PCR amplification of the antibiotic resistance kanMX4
cassettes with short homologous sequences flanking the

gene of interest and selection for geneticin resistance
(Wach et al., 1994; Janke et al., 2004). Gene deletions
were confirmed by PCR analysis. For adding the C-
terminus epitope tags, Phusion DNA Polymerase
(Thermo Fisher Scientific; Waltham, MA, USA) was
used.

Determination of growth sensitivities

Sensitivity assays to DAAs were carried out by spotting
1:10 serial dilutions of exponential cultures onto YPD
plates supplemented with the tested drugs at 30 �C for
48 h (Pijuan et al., 2015).

Minimal inhibitory concentration (MIC) determination

A log phase culture in complete synthetic media was
diluted to 0.02 OD600 as determined in a standard spec-
trophotometer, in a sterile 96-well plate (Thermo Fisher
Scientific) with rounded bottom. Tested drugs were
diluted in the same medium (2-fold serial dilution) start-
ing from a concentration of 512 lM. 100 ll of the diluted
culture was added to 100 ll of diluted chemicals using a
multichannel pipette and mixed three times (3 wells were
mixed with a blank as a control and one well was free
from cells and drug), then covered and incubated at
30 �C for 16 to 20 h with gentle shaking. Plates were
then removed, and OD measurements were monitored
using GloMax� Discover Microplate Reader (Promega;
Madison, WI, USA).

Oxygen concentration analysis

Cells were grown exponentially in YPG medium. 125 µM
DCV or 500 µM SOF was added, and the cultures were
further grown for 6–8 h. 1 OD600 cells were collected by
centrifugation (5000 g, 5 min, room temperature) and
resuspended in water. An Oxygraph (Hansatech Instru-
ments; Pentney, UK) was calibrated with oxygen-
saturated and oxygen-depleted water, using sodium
dithionite for oxygen removal. Oxygen levels of 900 ll of
saturated growth medium were measured until a plateau
was reached, 100 ll of cell suspension was added and
oxygen levels were measured continuously until they
reached 0 lmol ml–1.

Western blot analysis

Total cell lysate was prepared from cell pellets with 5
OD600, where 15 µl of 5 M urea was added to cell pellet
and boiled for 2 min immediately. An equal volume of
glass beads was added, then cell suspensions were vor-
texed for 8 min at room temperature, and 50 µl of 2%
SDS and 0.125 M Tris–HCl pH 6.8 were then added,
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vortexed for 2 additional min, boiled for 2 min and cen-
trifuged. The protein concentration was determined by
the Micro DC protein assay (Bio-Rad, Richmond, CA,
USA). Total protein was separated in polyacrylamide gel
and blotted to PVDF membranes (GE Healthcare, Chi-
cago, IL, USA). The membranes were blocked with 5%
skim-milk and washed in TBS-0.1% Tween-20 buffer
(25 mM Tris, 50 mM NaCl, 2.5 mM KCl and 0.1%
Tween-20). Afterwards, the membranes were incubated
with the specific primary antibodies overnight at 4 �C.
After three washes, the membranes were incubated with
the secondary antibody coupled to the horseradish per-
oxidase for 2 h at room temperature (Table S2). Mem-
branes were incubated with Amersham ECL Prime
Western Blotting Detection Reagent and visualized by
iBrightTM CL1000 Imaging System (Thermo Fisher Scien-
tific). The intensity of individual bands was measured
using ImageJ software (NIH, Bethesda, MD, USA; http://
rsb.info.nih.gov/ij).

DNA isolation and mitochondrial quantitative PCR
analysis

Total DNA was extracted using YeaStarTM Genomic DNA
Kit (Zymo Research; Irvine, CA, USA) according to the
manufacturer’s instructions from mid-logarithmic growth
cultures. Total DNA was subjected to qPCR using the
iQ-Supermix (Bio-Rad). qPCR reactions were performed
in 96-well plates with 20 ll of volume using MaximaTM

SYBR Green qPCR Master Mix (Thermo Fisher Scien-
tific) according to the manufacturer’s instructions. For
mtDNA and nuclear DNA, loci within the COX3 and
ACT1 were amplified respectively (see Table S2 for pri-
mer sequences). mtDNA levels were calculated relative
to nuclear DNA by the 2�ΔΔCT method (Livak and Sch-
mittgen, 2001).

Immunofluorescence

Differential interference contrast (DIC) and fluorescence
microscopy images were captured from living cells with
Axioscope 2 microscope (Zeiss; Jena, Germany).
Images were acquired with a Cool-SNAP-HQ 12-bit
monochrome digital camera (Roper Scientific; Trenton,
NJ, USA). Yeast cultures were grown exponentially in
liquid growth medium (YPD or YPG) supplemented with
the indicated drugs. Cell samples were collected and
concentrated 10-fold by centrifugation (12 000 g, during
1 min at room temperature); then, cell suspensions were
incubated with 1 lg ml�1 40,6-diamidino-2-phenylindole
(DAPI) for 5 min to stain the DNA. More than 200 cells
from at least three independent experiments were anal-
ysed in each measurement.

Miscellaneous

Cell volume was determined from bright-field images
and measured by BudJ plugin (Ferrezuelo et al., 2012)
using ImageJ; budding index was calculated according
to (Amponsah et al., 2021). All chemical compounds
used in this work are listed in Table S3.

Statistical analyses

Data are presented as mean � standard deviation (SD)
and box plots showing the median, box edges [25th–
75th percentiles], and the whiskers prolonged to the min-
imum and maximum values. Statistical significance was
assessed by application of the Kolmogorov–Smirnov nor-
mality test followed by one-way ANOVA and Tukey–Kra-
mer post hoc test (parametric test), or Kruskal–Wallis
test followed by Dunn post hoc test (non-parametric
test). P-values are indicated by asterisks *P < 0.05;
**P < 0.01; ***P < 0.001. All statistical tests were con-
ducted using GraphPad Prism software v.8.0.2 (Graph-
Pad; La Jolla, CA, USA).
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