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Abstract: We developed a computer-aided detection (CADe) system to detect and localize colorectal
lesions by modifying You-Only-Look-Once version 3 (YOLO v3) and evaluated its performance
in two different settings. The test dataset was obtained from 20 randomly selected patients who
underwent endoscopic resection for 69 colorectal lesions at the Jikei University Hospital between
June 2017 and February 2018. First, we evaluated the diagnostic performances using still images
randomly and automatically extracted from video recordings of the entire endoscopic procedure at
intervals of 5 s, without eliminating poor quality images. Second, the latency of lesion detection by
the CADe system from the initial appearance of lesions was investigated by reviewing the videos. A
total of 6531 images, including 662 images with a lesion, were studied in the image-based analysis.
The AUC, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy
were 0.983, 94.6%, 95.2%, 68.8%, 99.4%, and 95.1%, respectively. The median time for detecting
colorectal lesions measured in the lesion-based analysis was 0.67 s. In conclusion, we proved that the
originally developed CADe system based on YOLO v3 could accurately and instantaneously detect
colorectal lesions using the test dataset obtained from videos, mitigating operator selection biases.

Keywords: artificial intelligence; computer-aided detection; colonoscopy; colorectal lesions;
deep learning

1. Introduction

Population-based programs for screening colorectal cancer (CRC) have been widely
adopted in several countries, owing to the high prevalence of CRC [1]. Colonoscopy is
the most sensitive and reliable examination for detecting CRC and precursor lesions [2]. It
also facilitates the immediate prophylactic removal of early neoplastic lesions. A series of
cohort and case-control studies demonstrated that colonoscopy with prophylactic lesion
removal could reduce the incidence and mortality of CRCs [3–6]. It is reported that most
post-colonoscopy CRCs (PCCRCs) are mainly caused by lesions missed during previous
colonoscopies [7]. The insufficient quality of an examination substantially increases the risk
of PCCRC and mortality of CRC [8]. The adenoma detection rate (ADR) is considered the
most reliable indicator of an endoscopist’s ability to detect neoplastic lesions [9]. The ADR
of endoscopists is known to vary even amongst the experts, and the risk of PCCRC can
increase if the examination is performed by an endoscopist with ADR < 20% [10]. Although
an array of novel imaging technologies has been developed and the imaging quality of
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colonic lesions has been consequently improved, their effectiveness for improving the
detectability of colorectal lesions is still insufficient [11–13].

Image recognition based on deep learning (DL) has been increasingly applied in medi-
cal imaging analysis [14,15]. Various DL-based computer-aided detection (CADe) systems
for colonoscopy have been developed to aid in the detection of colorectal adenomatous
lesions. Pioneering studies have demonstrated that CADe could accurately detect colorec-
tal lesions with a sensitivity of over 90% [16–19]; however, the diagnostic performance of
CADe, including sensitivity and specificity, has been evaluated retrospectively in most
studies, using readily available representative still images and edited video clips stored
in a medical record. This involves a substantial risk of selection bias associated with the
unavoidable manipulation of the rate of the presence of objects [20,21]. In addition, the
accuracies could be overrated in the retrospective settings without evaluating the latency
of the detection by CADe from the initial appearance of lesions or human detection. Mean-
while, the advantage of assistance from a DL-based CADe system over non-assisted human
perception has already been demonstrated in several randomized controlled trials (RCTs),
including our study evaluating ADR or the adenoma miss rate (AMR) as the primary out-
come. The result was confirmed in a series of meta-analyses, some of which analyzed the
outcomes of RCTs [22–25]. However, RCT demands a significant amount of effort and time;
retesting each updated DL-based algorithm using RCT may be suboptimal as a reference
to set the direction of algorithmic developments. Therefore, it is imperative to establish
a simpler and more reliable evaluation standard for the unit testing to retrospectively
evaluate the diagnostic performance of CADe by mitigating the risks of selection bias [26].

In this study, we originally developed a CADe system to detect and localize colorectal
lesions by modifying You-Only-Look-Once version 3 (YOLO v3). The aim of this study
was primarily to assess the performance of the CADe system for colorectal lesions in
fair testing settings, eliminating operator selection biases by automatically sampling a
validation dataset from unedited videos of endoscopic observations without excluding
low-quality images in the image-based analysis. Furthermore, the latency of the detection
by CADe from the initial appearance of lesions was conducted by reviewing the videos of
the entire colonic inspection in the same cohort.

2. Materials and Methods
2.1. DL-Based Algorithm to Assist Lesion Detection and Localization

The CADe system evaluated in this study was developed by modifying YOLO v3 to
assist the detection and localization of colorectal lesions during a standard colonoscopy
in real time. YOLO v3 is a DL-based image recognition algorithm that enables real-time
object detection while ensuring a processing speed superior to other convolutional neural
networks (CNNs). The developed system achieves a fast processing speed, which is
partially improved using YOLO v3. The system is compatible with routinely used imaging
techniques, including white light imaging (WLI), chromoendoscopy (CE), and narrow-band
imaging (NBI).

We trained an object detection model based on YOLO v3, which contains several
CNN architectures. The weights of the architectures were initialized through training
on an ImageNet data corpus [27] before training on our data. Each architecture shared
similar components—convolutional layers, activation functions, batch normalization [28],
up-sampling, and skip connections [29,30]. We used the leaky rectified linear unit [31] as
the activation function. The model did not contain a fully connected layer or a pooling
layer; this enabled it to process images of all sizes.

In the final convolutional layer, the positions of the objects and objectness were output
using logistic regression, and class predictions were output using independent logistic
classifiers. Using the stochastic gradient descent optimizer, we optimized two types of
losses during training—squared error loss for object positions and cross-entropy loss for
objectness and class predictions. For implementation, the darknet software libraries (http:
//pjreddie.com/darknet/ accessed on 18 October 2018) were used. Data augmentation was

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
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applied to avoid overfitting of the training data and to generate additional data by applying
random transformations to the images during training. Random mirroring, distortion,
shift, and resizing were used for this purpose. Additionally, in the lesion-based analysis, to
reduce false positive detection, a bounding box was set to appear on a monitor when the
CADe system detects the presence of a lesion in at least 3 of any 5 sequential frames. This
setting was determined via trial-and-error.

2.2. Objectives for Training and Validation

We trained the CADe system with stored still images and images extracted from
videos recorded at Jikei University between July 2013 and March 2018. The total number of
cases included in the dataset was 4080 (3544 still images, 536 from videos), which contained
26,462 lesions (24,860 still images, 1602 from videos). All images and video clips were
obtained under a standard colonoscopy setting (endoscopes used: PCF-H290I, PCF-H290ZI,
CF-HQ290I, CF-Q260AI, PCF-Q260AI, PCF-Q260AZI, CF-H260AZI, and PCF-Q260JI, Olym-
pus Optical Co., Tokyo, Japan; video processors used: EVIS LUCERA CV-260 and VIS
LUCERA ELITE system, Olympus, Tokyo, Japan). The CADe system was eventually
trained with 84,550 images (79,079 images with lesions and 5471 without lesions).

Validation of the CADe system was retrospectively conducted by collecting and
reviewing videos of the colonoscopies of patients who underwent endoscopic resection,
excluding those who underwent endoscopic submucosal dissection (ESD) of colorectal
lesions between June 2017 and February 2018 at the Jikei University Hospital. Cases that
did not record the intubation or withdrawal of the scope as well as cases used for CADe
training were excluded from the analysis. Then, we selected 20 cases from that period for
evaluation using a random number table, as we assumed that 2000–4000 images would
be necessary for validation in reference to preceding research, and 100–200 images could
be obtained for each case. Subsequently, we evaluated the performance of the CADe
system by performing two analyses—an image-based analysis to calculate the diagnostic
performances using automatically sampled still images from videos, and a lesion-based
analysis using video clips to measure the latency in the detection of lesions from their
initial appearance. The study was approved by the ethics committee of the Jikei University
School of Medicine, Tokyo, Japan (no. 30-173(9194)), and it conforms to the provisions of
the Declaration of Helsinki. As a retrospective study, informed consent was obtained in the
form of opting out on the website.

2.3. Image-Based Analysis to Calculate Diagnostic Performance Using Automatically Sampled
Still Images

The still images for the validation dataset to calculate the diagnostic performance of
the CADe system were automatically and blindly extracted from the video clips, including
insertion to withdrawal of the scope at intervals of 5 s, without eliminating poor quality
images. Then, we excluded any images with (1) the outside of the colorectum; (2) colorectal
lesions and ulcers after resection; (3) imaging modes other than WLI, CE, and NBI; (4) ar-
tificial objects (endoscopic devices); (5) submucosal fluid bleb following needle injection;
(6) more than two colorectal lesions.

2.3.1. Receiver Operating Characteristic (ROC) Curve Drawing to Determine the
Optimal Threshold

An expert endoscopist reviewed the still images, and labeled lesions contained in the
images were framed with a rectangular bounding box (ground truth bounding box).

The CADe system separately analyzed the still images, and bounded boxes (predicted
bounding boxes) were drawn around detected lesions in various probability thresholds.

Thereafter, the still image dataset with ground truth bounding boxes and CADe-
predicted bounding boxes were compared for calculating sensitivity and specificity in
various probability thresholds based on the definitions of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN), as described in Section 2.3.2. ROC curves
were plotted for each imaging modality (Overall, WLI, CE, or NBI) by varying the probability
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thresholds from 0.01 to 0.99 at intervals of 0.01. We defined the optimal cutoff value of the
probability threshold for each modality when it was at the maximum Youden index [32].

2.3.2. Definitions of True Positive, True Negative, False Positive, and False Negative

In the image-based analysis, we primarily evaluated if the CADe system could demon-
strate lesion-positive frames with bounding boxes in order to calculate the diagnostic
performances, that is, AUC, sensitivity, specificity, PPV, NPV, and accuracy as binary vari-
ables in a 2 × 2 table. Therefore, TP, TN, FP, and FN in this study were defined as follows:
Cases in which both ground truth bounding boxes and the CADe bounding boxes were
in the same image were defined as TP, regardless of their overlapping. Cases without
either ground truth bounding boxes or the CADe bounding boxes were solely defined as
TN. When the CADe bounding boxes existed in an image without ground truth bounding
boxes, the case was categorized as FP, regardless of the number of the CADe bounding
boxes. Cases were defined as FN when the CADe system failed to place bounding boxes
on an image with ground truth bounding boxes (Figures 1 and 2).
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Figure 1. Schematic presentation of the definition of TP, TN, FP, and FN in the image-based analysis.
White bounding box: ground truth bounding box provided by expert endoscopist. Green bounding box:
predicted bounding box provided by CADe. TP, true positive; TN, true negative; FP, false positive.

Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. Ground truth and predicted bounding boxes overlaid on endoscopic images. White box: ground truth bounding 
box provided by expert endoscopist. Green box: predicted bounding box provided by CADe. 

2.3.3. Localization Accuracy for Predicted Bounding Boxes Using Intersection over Un-
ion (IoU) 

Intersection over union (IoU) (the area of overlap between the predicted bounding 
box and the ground truth bounding box) was evaluated for CADe-predicted bounding 
boxes overlapping with ground truth bounding boxes. In order to identify if the CADe 
system could accurately predict the localization of lesions or opportunistically place bond-
ing boxes on images with the ground truth bounding boxes, the IoU > 50 ratio for the 
overlapping boxes was analyzed.  

2.4. Lesion-Based Analysis by Reviewing Videos for Evaluating the Latency of CADe 
Initially, an expert endoscopist identified and defined the initial appearance of all 69 

lesions clinically requiring resection by meticulously reviewing the videos during the 
scope withdrawal from the scene of the cecal bottom or the anastomotic site with the ileum 
to the scene of the anal canal, without CADe assistance for all 20 cases. The median length 
of the videos reviewed was 1589 s (751–3592 s). Then, the CADe system evaluated clipped 
video-recorded scenes around the initial lesion appearance with a median length of 15 s 
(7–48 s). The lesion detection time of the CADe system was assessed for each lesion by 
counting frames between the frame with the initial appearance of a lesion and the time 
when the same lesion was initially detected by the CADe system. When a lesion had not 
been detected by the CADe system for 5 s from the initial appearance, we considered the 
lesion detection by the CADe system as failed.  

2.5. Statistical Analysis  
Medians with range are presented for continuous variables. Frequencies and propor-

tions are provided for categorical variables. The sensitivity, specificity, PPV, NPV, and 
accuracy of the CADe system for lesion detection were calculated using the formulas 
given in Section 2.3.2, and the corresponding two-sided 95% exact confidence intervals 
(CIs) based on the binomial distribution were estimated. The ROC curve of the CADe 
system was plotted, and the AUC was calculated using the trapezoidal rule, and the cor-
responding two-sided 95% exact CI based on the binomial distribution was estimated. The 
Youden index for each probability threshold of the system was calculated, and the value 
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Subsequently, sensitivity, specificity, PPV, NPV, and accuracy were calculated using
the following expressions: Sensitivity = n(TP)/(n(TP) + n(FN))

Specificity = n(TN)/(n(TN) + n(FP))

Accuracy = (n(TP) + n(TN))/(n(TP) + n(FN) + n(FP) + n(TN))

PPV = n(TP)/(n(TP) + n(FP))

NPV = n(TN)/(n(TN) + n(FN)),

where n(TP), n(FN), n(TN), and n(FP) denote the number of images of TP, FN, TN, and FP,
respectively.

2.3.3. Localization Accuracy for Predicted Bounding Boxes Using Intersection over
Union (IoU)

Intersection over union (IoU) (the area of overlap between the predicted bounding box
and the ground truth bounding box) was evaluated for CADe-predicted bounding boxes
overlapping with ground truth bounding boxes. In order to identify if the CADe system
could accurately predict the localization of lesions or opportunistically place bonding boxes
on images with the ground truth bounding boxes, the IoU > 50 ratio for the overlapping
boxes was analyzed.

2.4. Lesion-Based Analysis by Reviewing Videos for Evaluating the Latency of CADe

Initially, an expert endoscopist identified and defined the initial appearance of all 69
lesions clinically requiring resection by meticulously reviewing the videos during the scope
withdrawal from the scene of the cecal bottom or the anastomotic site with the ileum to
the scene of the anal canal, without CADe assistance for all 20 cases. The median length of
the videos reviewed was 1589 s (751–3592 s). Then, the CADe system evaluated clipped
video-recorded scenes around the initial lesion appearance with a median length of 15 s
(7–48 s). The lesion detection time of the CADe system was assessed for each lesion by
counting frames between the frame with the initial appearance of a lesion and the time
when the same lesion was initially detected by the CADe system. When a lesion had not
been detected by the CADe system for 5 s from the initial appearance, we considered the
lesion detection by the CADe system as failed.

2.5. Statistical Analysis

Medians with range are presented for continuous variables. Frequencies and pro-
portions are provided for categorical variables. The sensitivity, specificity, PPV, NPV, and
accuracy of the CADe system for lesion detection were calculated using the formulas given
in Section 2.3.2, and the corresponding two-sided 95% exact confidence intervals (CIs)
based on the binomial distribution were estimated. The ROC curve of the CADe system
was plotted, and the AUC was calculated using the trapezoidal rule, and the corresponding
two-sided 95% exact CI based on the binomial distribution was estimated. The Youden
index for each probability threshold of the system was calculated, and the value with the
maximum Youden index was defined as the cutoff value. All statistical analyses were
performed using Stata 14.2 (StataCorp LP, College Station, TX, USA).

3. Results

A total of 1062 cases underwent endoscopic resection besides endoscopic submucosal
resection between June 2017 and February 2018 at the Jikei University Hospital (Figure 3).
A total of 738 cases (103 not recorded, 635 used for training) were excluded. From the
remaining 324 cases, 20 cases (16 males and 4 females, median age of 63 (36–80) and one
case after a right side hemicolectomy) were randomly selected and analyzed.
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3.1. Image-Based Analysis Using Automatically Sampled Still Images

Overall, videos were recorded for 20 cases for a total length of 12 h 28 min 9 s, and the
number of still images extracted was 8972. The total number of images analyzed was 6531,
after excluding 2441 images according to the exclusion criteria (Figure 3). The number
of images with ground truth bounding boxes was 662 (662/6531, 10.1%). The analyzed
images contained 5527 WLI images, 824 CE images, and 180 NBI images. The AUC of lesion
detection with the CADe system was 0.983 overall, 0.982 in WLI, 0.986 in CE, and 0.986
in NBI (Figure 4). The probability thresholds regarding the maximum Youden index for
overall, WLI, CE, and NBI were 0.27, 0.22, 0.43, and 0.05–0.06, respectively (Table 1). When
probability thresholds of 0.27 were applied, the sensitivity, specificity, positive predictive
value, negative predictive value, and accuracy were 94.6%, 95.2%, 68.8%, 99.4%, and
95.1%, respectively.

Table 1. Diagnostic performance of computer-aided detection system in image-based analysis with automatically sampled
still images.

Type of Imaging Mode
(No. of Lesions/No. of

Images (Prevalence (%))

Youden
Index

Probability
Threshold

Sensitivity
(95% CI)(%)

Specificity
(95% CI)(%)

PPV
(95% CI)(%)

NPV
(95% CI)(%)

Accuracy
(95% CI)(%)

IoU ≥ 0.5
(TP)(%)

Overall (662/6531
(10.1%)) 0.897 0.27 94.6

(92.6–96.2)
95.2

(94.6–95.7)
68.8

(65.7–71.8) 99.4 (99.1-99.6) 95.1
(94.5–95.6)

97.3
(609/626)

WLI (334/5527 (6.0%))
0.9 0.22 95.5

(92.7–97.5)
94.5

(93.8–95.1)
52.6

(48.5–56.6)
99.7

(99.5–99.8)
94.5

(93.9–95.1)
96.9

(309/319)

0.899 0.27 94.6
(91.6–96.8)

95.3
(94.7–95.8)

56.3
(52.1–60.5)

99.6
(99.4–99.8)

95.2
(94.6–95.8)

97.2
(307/316)

CE (182/824 (22.1%))
0.912 0.43 95.1

(90.8–97.7)
96.1

(94.3–97.5)
87.4

(81.9–91.7)
98.6

(97.3–99.3)
95.9

(94.3–97.1)
97.1

(168/173)

0.909 0.27 96.7
(93.0–98.8)

94.2
(92.1–95.9)

82.6
(76.9–87.5)

99.0
(97.9–99.6)

94.8
(93.0–96.2)

97.2
(307/316)

NBI (146/180 (81.1%))
0.956 0.05-0.06 95.9

(91.3–98.5)
94.1

(80.3–99.3)
98.6

(95.0–99.8)
84.2

(68.7–94.0)
95.6

(91.4–98.1)
96.4

(135/140)

0.859 0.27 91.8
(86.1–95.7)

94.1
(80.3–99.3)

98.5
(94.8–99.8)

72.7
(57.2–85.0)

92.2
(87.3–95.7)

97.0
(130/134)

PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval; TP, true positive; IoU, intersection over union; WLI,
white light imaging; CE, chromoendoscopy; NBI, narrow band imaging.
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Figure 4. Receiver operating characteristic curves of the CADe system for overall, white light imaging,
chromoendoscopy, and narrow-band imaging images in the image-based analysis. (a) Overall
(n = 6531); (b) White light imaging (n = 5527); (c) Chromoendoscopy (n = 824); (d) Narrow band
imaging (n = 180); ROC, Receiver operating characteristic.

The IoU > 50 ratio for the overlapping boxes was 97.3%. The results indicate that the
CADe system could accurately predict the localization of detected lesions.

3.2. Lesion-Based Analysis with Video Reviewing

A total of 69 lesions were endoscopically removed in 20 cases. Of those, 57 lesions
were morphologically classified as elevated lesions and 12 were classified as flat lesions
(morphology of lesions in the Paris classification: 1 lesion of 0-Ip, 56 lesions of 0-Is, and
12 flat lesions (0-IIa)). The median size of the lesions was 5 (2–20) mm (Table S1). The
CADe system found 98.6% of the treated lesions. One diminutive adenomatous lesion
that was 3 mm in size was not identified (Case #14, Lesion #2, Table S1). The median time
between the initial appearance of the lesion and the CADe detection was 0.67 s (0.13–4.53)
(Video S1).

4. Discussion

Preceding retrospective studies on DL-based CADe for colorectal lesions have shown
excellent diagnostic performances with a sensitivity of 90–97.3% and specificity of 63.3–
99% [16–19]. However, the study designs greatly varied, and the terms “sensitivity” and
“specificity” used in these studies may be misleading, implying that they were used as
statistical measures of a binary classification test on a fixed dataset, as is widely used in
studies on endoscopic differential diagnosis. They could be optimal for demonstrating the
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diagnostic performance of CADe in the analysis of stored still images because it is clinically
acceptable to perform the characterization and differentiation of lesions by freezing the
endoscopic motion and selecting the best quality images with a latency time. Meanwhile,
the analysis and feedback of CADe need to be performed in real time to enable endoscopists
to make timely decisions. Therefore, we believe that the binary classification test of selected
stored datasets would be suboptimal to evaluate the diagnostic performance of CADe.
Theoretically, the diagnostic performance of CADe could be analyzed per image, per lesion,
per boundary box, or per pixel at any chronological phase during a colonoscopy. Different
procedures were adopted in previous studies; some studies evaluated specificity using
images that did not contain a lesion separately from the analysis of sensitivity with images
of lesions. The negative clinical impact of false positives by CADe with low PPV tends to
be underestimated in cases where sensitivity and specificity cannot be addressed equally.
In this study, we primarily evaluated whether CADe could demonstrate lesion-positive
frames configuring bounding boxes to calculate the diagnostic performances as binary
variables in a 2 × 2 table. The trade-off between sensitivity and specificity calculated in
a 2 × 2 table enabled an ROC curve to be plotted, and it allowed us to set the reasonable
cutoff value of the probability threshold for each imaging mode at the Youden index. Even
though the validation dataset used in this study was blindly sampled from video clips of
the entire colonoscopy procedure, including poor quality images obtained during scope
intubation, the CADe system still achieved an excellent AUC (0.983 in overall, 0.982 in WLI,
0.986 in CE, and 0.986 in NBI) and desirable diagnostic performances for every imaging
mode. In addition, we found that the comparative diagnostic performances could be
achieved with the same cutoff value of the probability threshold set with the ROC curve
in overall images regardless of the imaging mode. It warranted the usage of the cutoff
value of 0.27 for the lesion-based analysis using videos. However, there was a discrepancy
between WLI and other imaging modes in the PPV. We surmised that it might be explained
by the difference in the situations under which the imaging modes were used. CE and
NBI were mostly used during the withdrawal of the endoscope and more often after the
initial detection of the suspicious area with WLI. The results imply that the PPV could
be a highly sensitive reference for further improving CADe, although the impact of the
prevalence of the test data needs to be considered [33]. The definitions of TP and FP for the
binary data analysis made it impossible to assess if the bounding boxes predicted by CADe
were overlapped on lesions, but the low NPV and high localization accuracy demonstrated
using the IoU analysis indicated that the CADe system could point out the location of
the polyp.

As far as we know, there is no previous study measuring the latency from the initial
appearance of lesions, as we conducted in this study. Hassan et al. evaluated the time gap
in detecting colorectal lesions between CADe and endoscopists and demonstrated CADe
detected lesions faster than endoscopists by an average of 1.27 s [34]. In this study, the
latency of the detection by the CADe system from the initial appearance of lesions had a
median of only 0.67 s, although the measures taken to decrease false positives required the
analysis of five sequential frames to create each bounding box. The results prove that the
CADe system would detect lesions much faster than humans.

There are several limitations to this study. The diagnostic performance in this study
was only tested retrospectively in a small number of therapeutic cases with a high preva-
lence of the disease; screening and surveillance performance should be evaluated using a
testing dataset comprising a different number of lesions. It was also difficult to evaluate
whether the CADe system could find more lesions than those identified by the endoscopist
in this retrospective study. However, the validation data automatically sampled from
the whole endoscopic inspection images during the scope intubation consequently con-
tained a lot of low-quality images, and we confirmed that the CADe system could detect
lesions even in difficult locations in the still image analysis and immediately after the
appearance in the movie analysis. We recognize the need for a prospective controlled
study to clinically analyze validated quality indicators to demonstrate the advantage of
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CADe over non-assisted human diagnosis. Meanwhile, the aim of this study was purely
to conduct performance testing for the CADe system by using readily available stored
videos of colonoscopies, analyzing outcomes, and mitigating operator selection biases.
We believe that such validation methods would be more preferable in a developmental
phase to decide the appropriate direction of research and also to reveal the strengths and
weaknesses of CADe. In fact, a prospective multi-center randomized trial evaluating AMR
as the primary outcome in a tandem study design, in which the CADe-assisted group
achieved better AMR than the non-assisted group, was warranted from the desirable results
of this retrospective trial [23].

In conclusion, the developed CADe system for assisting in lesion detection and
localization achieved high sensitivity and specificity in fair testing settings, mitigating
operator selection biases by automatically sampling a test data set from unedited videos of
endoscopic observations, without eliminating low-quality images. Further, by reviewing
the video clips of lesions, starting with the initial appearance during the colonoscopic
inspection, it was demonstrated that the CADe system could detect most lesions that
required removal in real time. Although the advantage of CADe should be validated in
direct comparison with a human analyzing clinically approved quality indicators of the
examination, such as ADR and AMR, we believe that the retrospective study under the
strictly controlled environment, mitigating biases generally associated with research for
computer-aided diagnosis, is valuable and should be refocused in this rapidly progressing
research field.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11101922/s1, Table S1: Latency of lesion detection using the computer-aided
detection system in lesion-based analysis, Video S1: Colorectal lesion detection by the computer-aided
detection system using video clips.
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