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Peritoneal fibrosis contributes to ultrafiltration failure in peritoneal dialysis (PD) patients and
thus restricts the wide application of PD in clinic. Recently we have demonstrated that
histone deacetylase 6 (HDAC6) is critically implicated in high glucose peritoneal dialysis
fluid (HG-PDF) induced peritoneal fibrosis, however, the precise mechanisms of HDAC6 in
peritoneal fibrosis have not been elucidated. Here, we focused on the role and
mechanisms of HDAC6 in chlorhexidine gluconate (CG) induced peritoneal fibrosis and
discussed the mechanisms involved. We found Tubastatin A (TA), a selective inhibitor of
HDAC6, significantly prevented the progression of peritoneal fibrosis, as characterized by
reduction of epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM)
protein deposition. Inhibition of HDAC6 remarkably suppressed the expression of
matrix metalloproteinases-2 (MMP2) and MMP-9. Administration of TA also increased
the expression of acetylation Histone H3 and acetylation a-tubulin. Moreover, our results
revealed that blockade of HDAC6 inhibited alternatively M2 macrophages polarization by
suppressing the activation of TGF-b/Smad3, PI3K/AKT, and STAT3, STAT6 pathways. To
give a better understanding of the mechanisms, we further established two cell injured
models in Raw264.7 cells by using IL-4 and HG-PDF. Our in vitro experiments illustrated
that both IL-4 and HG-PDF could induce M2 macrophage polarization, as demonstrated
by upregulation of CD163 and Arginase-1. Inhibition of HDAC6 by TA significantly
abrogated M2 macrophage polarization dose-dependently by suppressing TGF-b/
Smad, IL4/STAT6, and PI3K/AKT signaling pathways. Collectively, our study revealed
that blockade of HDAC6 by TA could suppress the progression of CG-induced peritoneal
fibrosis by blockade of M2 macrophage polarization. Thus, HDAC6 may be a promising
target in peritoneal fibrosis treatment.
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INTRODUCTION

It has been reported the prevalence of end-stage kidney diseases
(ESKD) is continually increasing (1), and peritoneal dialysis
(PD) is an alternative way of renal replacement therapy for
patients with ESKD (2). Despite the similar outcome with
hemodialysis (3), PD is still not the first choice for most
patients with chronic kidney disease stage 5. Only about 13%
dialysis patients in European and about 10% dialysis patients in
the USA receive PD (4). The clinical application of PD as a renal
replacement therapy is limited by the occurrence of
ultrafiltration failure (UFF), which can result in withdrawal
from dialysis. Some studies revealed the prevalence of UFF in
long-term PD patients may exceed 30% (5). The decline of the
ultrafiltration capacity (the ability to remove the excess water and
metabolic waste products) is ascribed to many complicated
reasons. Among the causes of UFF, peritoneal fibrosis must
not be overlooked.

The mechanisms by which regulate peritoneal fibrosis have
been a hot point in PD field for a long time, including the chronic
peritoneal inflammation state (6), angiogenesis, epithelial-to-
mesenchymal (EMT) and so on (7, 8). The interplay between
these processes plays a great role to promote the pathophysiology
process of peritoneal fibrosis. Recently, inflammation has
become increasingly important in the process of peritoneal
fibrosis, and inflammatory microenvironment can accelerate
the development of angiogenesis and EMT (8, 9). Several
inflammatory pathways are involved in the peritoneal fibrosis
such as NOD-like receptor protein 3 (NLRP3), Toll-like receptor
(TLR), NF-kB, interleukin (IL)-1b, IL-6, IL-17, and other
cytokines (8). Moreover, immune cell infiltration is also
reported to participate in peritoneal fibrosis, which includes
the alternative activation of macrophages (M2) (10, 11).

Macrophages are immune cells that can be polarized into
different subtypes by various stimuli and microenvironment
(12). Generally, the classically activated macrophages (M1) can
be induced by lipopolysaccharide (LPS) and interferon-g (IFN-
g), while the alternative activation of macrophages (M2) can be
induced by IL-4 and IL-13 (12–14). It has been demonstrated
that M2 macrophage polarization is related to fibrotic
remodeling and tissue repair of multiple internal organs,
including heart, kidney, liver, gastrointestinal tract and lung
(15, 16). Recent studies identified that microenvironment
stimulates macrophage M2 polarization mostly through
activation of TGF-b/Smad, IL4/STAT6, PI3K/AKT signaling
pathways (17–20). We used to find CD68-positive macrophage
cells in the thickened sub-mesothelial area in our murine
peritoneal fibrosis model (21). Meanwhile, M2 macrophages
are considered to participate in peritoneal fibrosis and the
depletion of M2 macrophages in peritoneum could mitigate
the peritoneal fibrosis in the previous research (22). However,
the underlying mechanisms to regulate M2 macrophage
polarization during peritoneal fibrosis are still not clear.

On the other hand, several studies have shown the critical role
of epigenetic regulation in fibrotic diseases in recent years.
Acetylation is one of the ways of post-translational
modifications, and the histone deacetylase [HDAC; also named
Frontiers in Immunology | www.frontiersin.org 2
as lysine deacetylases (KDACs)] family is a group of key factors
regulating the acetylation in a series of physiological and
pathological activities (23, 24). HDAC6, which is mainly
located in the cytoplasm, is a unique member of the HDAC
family and has effects on both histone and nonhistone
acetylation. The main nonhistone substrates of HDAC6
include a-tubulin, cortactin and HSP90 (25). In addition to its
involvement in tumor proliferation, invasion and metastasis
(25), HDAC6 also plays an important role in cardiac fibrosis
(26), renal fibrosis (27), peritoneal fibrosis and many other
fibrotic diseases. Except for HDAC6, another subtype of
HDAC family, HDAC1 from class I has also been confirmed
to be associated with peritoneal fibrosis (28). HDAC1 was
reported to induce mesothelial to mesenchymal transition
(MMT)-related marker gene expression in mesothelial cells
isolated from effluent of PD patients. Thus, this research
pinpointed a role for HDAC1 as a new player in the regulation
of peritoneal fibrosis (28). In our previous study, we found an
elevated expression of HDAC6 in peritoneum and dialysis
effluent from PD patients (29). Moreover, we demonstrated
that HDAC6 was indispensable in interleukin-6 induced EMT,
proliferation and migration of peritoneal mesothelial cells (30).
However, the link between HDAC6 and M2 polarization in PF
remains unclear.

In this study, we explored the role of HDAC6 in M2
macrophage polarization in a chlorhexidine gluconate (CG)-
induced peritoneal fibrosis model by using a selective HDAC6
inhibitor Tubastatin A (TA). We further established two cell
injured models in Raw264.7 cells by using IL-4 and high glucose
peritoneal dialysis fluid (HG-PDF), and explored the relevant
regulatory mechanisms, including TGF-b/Smad, IL4/STAT6,
and PI3K/AKT signaling pathways. This study will further
clarify the role and mechanism of HDAC6 in M2 macrophage
polarization, and recommend HDAC6 as a potential target for
therapy of peritoneal fibrosis in the future.
MATERIALS AND METHODS

Antibodies and Reagents
Tubastatin A was purchased from Selleckchem (Houston, TX,
United States). Antibodies to HDAC6 (#7612), Acetyl Histone
H3 (Lys9) (#9649), Histone H3 (#9717), Acetyl a-Tubulin
(Lys40) (#5335), a-Tubulin (#3873), Smad3 (#9523), p-Smad3
(#9520), TAK1 (#5206), p-TAK1 (#9339), Snail (#3879), PI3K
(#4257), p-PI3K (#17366), AKT (#4691), p-AKT (#4060),
STAT3 (#9139), p-STAT3 (#9138), CTGF (#86641), E-
cadherin (#14472), STAT6 (#5397) and p-STAT6 (#56554)
were purchased from Cell Signaling Technology (Danvers, MA,
United States). Antibodies to Fibronectin (ab2413), MMP2
(ab37150), MMP9 (ab38898) were purchased from Abcam
(Cambridge, MA). Antibody to Twist (A3237) was purchased
from ABclonal (Wuhan, China). Antibodies to GAPDH (sc-
32233), Collagen I (A2) (sc-28654), CD68 (sc-20060), TGFbRI
(sc-399) were purchased from Santa Cruz Biotechnology (San
Diego, CA, United States). Antibodies to Arginase-1 (GB11285)
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and CD163 (GB11340) were purchased from Servicebio (Wuhan,
China). IL-4 protein was purchased from R&D Systems
(Minneapolis, MN, United States). Peritoneal dialysate was
purchased from Baxter Healthcare (Guangzhou, China).
Antibody to a-SMA (A2547), chlorhexidine gluconate (C9394)
and all other chemicals were obtained from Sigma-Aldrich (St.
Louis, MO, United States).

Animal Model and Experimental Design
Animal experiments were reviewed and approved by the
Institutional Animal Care and Use Committee at Tongji
University (Shanghai, RP China). C57/black mice (provided by
Shanghai Super-B&K Laboratory Animal Corp. Ltd, Shanghai,
PR China) that weighed 20-25g were maintained in a pathogen-
free facility under a 12 h light-dark cycle with abundant food and
water supplied. All animal work was performed in Tongji
University school of medicine. The mouse model of PF was
established by intraperitoneal injection of 0.1% chlorhexidine
gluconate (CG) (10 ml/kg) dissolved in saline every other day for
21 days as previously described (21). On the other hand, several
mice in TA treatment group were injected intraperitoneally with
a single dose of TA (70 mg/kg) in DMSO every day to investigate
the therapeutic effects (31). Mice were randomly divided into
four groups with 6 mice per group: (1) sham: mice injected with
an equivalent amount of saline intraperitoneally and DMSO; (2)
sham + TA: mice injected with an equivalent amount of saline
intraperitoneally and 70 mg/kg TA; (3) CG: mice injected with
0.1% CG intraperitoneally and an equivalent amount of DMSO;
(4) CG + TA: mice injected with 0.1% CG intraperitoneally and
70 mg/kg TA. At the end of 21 days, all mice were killed by
exsanguination under anesthesia with inhaled 5% isoflurane in
room air and the parietal peritoneum was collected from each
mouse for further experiments.

Macrophage Culture
Raw264.7 cells were obtained from American Type Culture
Col lect ion and maintained in RPMI-1640 medium
supplemented with 10% FBS, 1% penicillin and streptomycin in
an atmosphere of 5% CO2 and 95% air at 37°C. We established
two cell injured models in Raw264.7 cells in this study. (1) IL-4-
stimulated model: IL-4 (10 ng/ml) was used to stimulate the
transformation of Raw264.7 murine macrophage into M2
macrophage. Raw264.7 cells were starved for 12 hours and then
exposed to IL-4 (10 ng/ml) for 12 hours in the presence or absence
of different doses of TA (1µM, 5µM, 10µM) before cell harvesting.
(2) HG-PDF-stimulated model: Different peritoneal dialysis fluid
(HG-PDF, containing 1.5%, 2.5%, 4.25% glucose) was mixed with
the cell culture medium (1:1 mix), then was used to stimulate the
transformation of Raw264.7 murine macrophage into M2
macrophage. Raw264.7 cells were starved for 12 hours and then
exposed to the HG-PDF for 36 hours in the presence or absence of
different doses of TA (1µM, 5µM, 10µM) before cell harvesting. All
of the in vitro experiments were repeated at least three times.

Immunoblot Analysis
Cell samples and peritoneal tissue samples were prepared and
determined total protein concentration (mg/ml) for clarified
Frontiers in Immunology | www.frontiersin.org 3
homogenates by bicinchoninic acid (BCA) assay, according to
the manufacturer’s instructions (ThermoFisher). Proteins were
separated by SDS-PAGE Gel electrophoresis (8%-12%) in 120V
for 90 minutes and transferred to 0.2 mm nitrocellulose
membranes (80V for 80 minutes). After incubation with 5%
nonfat milk for 1 hour at room temperature, the membranes
were incubated with primary antibodies overnight at 4°C and
then incubated with appropriate horseradish peroxidase-
conjugated secondary antibodies for 1 hour on the shaker at
room temperature. Membranes were washed three times with
prewarmed TBST in 10 minutes. Bound antibodies were
visualized by chemiluminescence detection. Densitometry
analysis of immunoblot results was conducted by using Image
J software.

Morphologic Studies of Peritoneum
The fixed peritoneum tissues were embedded in paraffin, cut into
3-mm-thick sections, and sectioned onto slides. The slides were
stained with Masson’s trichrome staining and Sirius red staining
to evaluate the degree of fibrosis and collagen deposits. The
staining was performed according to the protocol provided by
the supplier (Sigma-Aldrich). The positive area of Masson’s
trichrome staining and Sirius red staining were quantitatively
measured using Image Pro-Plus software (Media-Cybernetics,
Silver Spring, MD, USA) by drawing a line around the perimeter
of positive staining area, and the ratio to each microscopic field
was calculated and graphed. Slides were captured with a Nikon
Eclipse 80i microscope equipped with a digital camera (DS-Ri1,
Nikon, Shanghai, China).

Immunohistochemical and
Immunofluorescence Staining
Immunohistochemical and immunofluorescence staining were
carried out according to the procedure described in our previous
study (32, 33). FFPE sections (3 mm) were rehydrated and
incubated with primary antibodies against a-SMA (1:100,
ab5694, Abcam), Twist (1:100, ab175430, Abcam), HDAC6
(1:100, A11259, ABclonal), CD163 (1:100, GB11340-1,
Servicebio), Collagen I (1:400, GB11022-3, Servicebio), CD68
(1:100, sc-20060, Santa Cruz Biotechnology) and Arginase-1
(1:100, #93668, Cell Signaling Technology), and then
secondary antibodies (Invitrogen). Slides were captured with a
Nikon Eclipse 80i microscope equipped with a digital camera
(DS-Ri1, Nikon, Shanghai, China).

Statistical Analysis
All the experiments were conducted at least three times. Data
depicted in graphs are expressed as means ± S.E.M. for each
group. Student’s t-test was employed for comparisons between
two groups and one-way analysis of variance (ANOVA) followed
by Tukey’s post-test for multiple comparisons was used for
groups of three or more. All tests were two-tailed. The p-value
less than 0.05 was considered statistically significant and was
marked in each graph. P<0.05 was considered significant. The
statistical analyses were conducted by using IBM SPSS Statistics
20.0 (Version X; IBM, Armonk, NY, USA).
June 2022 | Volume 13 | Article 899140
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RESULTS

Administration of TA Effectively
Suppresses HDAC6 Expression and CG-
Induced Peritoneal Fibrosis
To better clarify the role of HDAC6 in peritoneal fibrosis, we
establ i shed a murine per i toneal fibros is model by
intraperitoneally injecting 0.1% CG every other day for 21
days. In addition, we used TA, a selective inhibitor of HDAC6,
to explore the effects of HDAC6 inhibition in this study. In the
group of mice that only accepted CG injection, we found a
relatively higher expression of HDAC6 companied with the
down-regulation of Acetyl Histone H3 and Acetyl a-Tubulin.
This trend, however, could be effectively reversed by TA
treatment (Figures 1A–F). The Masson’s Trichrome staining
and Sirius Red staining showed the mice that accepted the
treatment of TA had a slighter morphological change in
peritoneum compared to their counterparts which only
received intraperitoneal injection of CG (Figure 1G). We also
performed the morphometric quantification of the positive area
and thickness of the peritoneum (Figures 1H–J), further
confirming the anti-fibrogenic effect of TA. All the data
showed us that HDAC6 overexpressed in the CG-induced
peritoneal fibrosis and the degree of peritoneal fibrosis injury
could be ameliorated by inhibition of HDAC6.
TA Inhibits CG-Induced EMT and ECM
Protein Deposition in the Fibrotic
Peritoneum
To further explore the role of HDAC6 in the process of EMT
and ECM protein deposition, we analyzed protein levels of a-
SMA, Collagen I, Fibronectin and E-cadherin in the mice
peritoneum. We observed elevated levels of a-SMA, Collagen
I, Fibronectin, and decreased level of E-cadherin in the CG-
injected group, while TA treatment effectively up-regulated
the E-cadherin expression and down-regulated several
ECM proteins, including Collagen I and Fibronectin
(Figures 2A–E). To confirm this observation, we next
conducted immunofluorescence staining for a-SMA and
immunohistochemical staining for Collagen I. The results
(Figures 2F, G) also demonstrated that TA prominently
decreased a-SMA and Collagen I in CG-injured peritoneum
tissues. Several previous studies have reported that MMP2 and
MMP9, two members of matrix metalloproteinases, are linked
to EMT and ECM protein deposition (34, 35). The inhibition
of the MMP2 was reported to decrease cardiac fibrosis (36).
So, we detected the expression levels of MMP2 and MMP9 in
the mice’s peritoneum. After comparing the protein levels in
different groups, we found that administration of TA reduced
the MMP2 and MMP9 levels in CG-induced fibrotic
peritoneum (Figures 2H–J). Collectively, these results
showed that inhibition of HDAC6 by TA could block the
EMT process of peritoneal mesothelial cells and ECM protein
deposition within the peritoneum.
Frontiers in Immunology | www.frontiersin.org 4
Inhibition of HDAC6 Prevents Macrophage
Infiltration and Alternatively Activated
Macrophages (M2) Polarization in CG-
Induced Mouse Model
Considering the importance of macrophage in peritoneal fibrosis,
we further observed the infiltration and polarization of macrophage
in a mouse peritoneal fibrosis model established by CG. The results
of immunoblotting and immunohistochemistry suggested that
macrophages infiltrated heavily in the fibrotic peritoneal tissue
with the increased expression level of CD68 (the cell marker of
macrophages) (Figures 3A–D). TA treatment significantly down-
regulated the expression of CD68 and reduced CD68-positive cells
in the thickened peritoneum (Figures 3A–D). The enhanced M2
macrophage polarization has been taken as the pro-fibrotic factor in
various fibrotic diseases, including peritoneal fibrosis. To assess
whether the inhibition of HDAC6 by TA affected the M2
polarization, we again analyzed the levels of characteristic markers
of M2 macrophages in peritoneum. The Arginase-1 [a functional
marker of M2 phenotype (37)] and CD163 [a cell-surface marker of
M2 phenotype (37)] expressed relatively higher in the CG group,
while TA treatment could effectively decrease the expression of
Arginase-1 and CD163 (Figures 3E–G). The immunofluorescence
staining of Arginase-1 also showed that TA could reduce the
Arginase-1 positive cells in peritoneum after CG injection
(Figure 3H). Taken together, these results suggested that M2
macrophage polarization was involved in the process of peritoneal
fibrosis, and inhibition of HDAC6 by TA could not only prevent the
macrophage infiltration but also M2 polarization, resulting in
amelioration of peritoneal fibrosis.

Inhibition of HDAC6 by TA Prevents M2
Macrophage Polarization via Suppressing
TGF-b/Smad3 Signaling Pathway In Vivo
TGF-b1/Smad3 signaling pathway is proved to be critical in the
pathology studies of peritoneal fibrosis (38, 39), and recent research
reports that exposure to TGF-b1 can induce the M2 polarization in
macrophages (40). We wondered whether the inhibition of
HDAC6 manipulated the TGF-b1/Smad3 in M2 macrophage
polarization. In this study, the intraperitoneal injection of CG
induced upregulation of TGFbRI and connective tissue growth
factor [CTGF, an important downstream mediator of TGF-b1 in
fibrotic process (41)], as well as promoted the phosphorylation of
Smad3 and TAK1 (Figures 4A–G). In the treatment group, TA
could inhibit TGF-b1/Smad3 signaling pathway and its
downstream signal, TAK1 and CTGF (Figures 4A–G). We
further detected the expressions of Twist and Snail, which are
two key nuclear transcription factors of TGF-b1 signal (42). Both of
them were almost not expressed in the sham group with/without
TA injection, while CG prolonged exposure markedly increased
their expressions in fibrotic peritoneal tissue. TA treatment had the
ability to reduce expression levels of Twist and Snail, and decrease
the Twist positive cells in immunofluorescence staining
(Figures 4H–L). Therefore, TA could inhibit TGF-b1/Smad3
signaling pathway, and then prevent M2 macrophage
polarization in peritoneal fibrosis.
June 2022 | Volume 13 | Article 899140
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FIGURE 1 | TA effectively suppresses HDAC6 expression and CG-induced peritoneal fibrosis. (A) Western blot analysis showed the protein levels of HDAC6, Acetyl Histone
H3, Histone H3, Acetyl a-Tubulin, a-Tubulin, and GAPDH in peritoneum from different groups of mice. Expression levels of (B) HDAC6, (C) Acetyl Histone H3, (D) Histone H3,
(E) Acetyl a-Tubulin, and (F) a-Tubulin in different groups were quantified by densitometry and normalized with GAPDH, Histone H3, and a-Tubulin respectively. (G)
Representative micrographs of Masson’s Trichrome staining and Sirius Red staining of the peritoneum from different groups of mice. (H) The positive area of Masson’s
Trichrome staining-positive submesothelial area (blue). (I) The thickness of peritoneum according to Masson’s Trichrome staining. (J) The positive area of Sirius Red-positive
submesothelial area (red). Data were expressed as means ± SEM. *P<0.05, **P<0.01, ****P<0.0001. All scale bars = 20 mm. NS: P≥0.05.
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Inhibition of HDAC6 by TA Prevents M2
Macrophage Polarization via Suppressing
PI3K/AKT, STAT3 and STAT6
Signaling In Vivo
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/
AKT) signaling pathway is one of the important signaling
Frontiers in Immunology | www.frontiersin.org 6
pathways manipulating proliferation, metabolism, and
survival. In pulmonary fibrosis, AKT can induce M2
macrophages to produce pro-fibrotic cytokines promoting
fibrosis (43). Furthermore, PI3K activation is supposed to
enhance M2 polarization in bleomycin lung fibrosis (44). To
determine whether HDAC6 regulated M2 polarization process
B

C D E
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G
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A

FIGURE 2 | TA inhibits CG-induced EMT and ECM protein deposition in the fibrotic peritoneum. (A) Western blot analysis showed the protein levels of a-SMA, Collagen I,
Fibronectin, E-cadherin, and GAPDH in peritoneum from different groups of mice. Expression levels of (B) a-SMA, (C) Collagen I, (D) Fibronectin, and (E) E-cadherin in
different groups were quantified by densitometry and normalized with GAPDH. (F) Representative micrographs of immunofluorescence staining of a-SMA and quantization
count of a-SMA-positive cells. (G) Representative micrographs of immunohistochemical staining of Collagen I and quantization of Collagen I-positive area (%). (H) Western blot
analysis showed the protein levels of MMP2, MMP9, and GAPDH in peritoneum from different groups of mice. Expression levels of (I) MMP2 and (J) MMP9 in different groups
were quantified by densitometry and normalized with GAPDH. Data were expressed as means ± SEM. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. All scale bars = 20 mm.
NS: P≥0.05.
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through PI3K/AKT signaling pathway, we detected levels of p-
PI3K, PI3K, p-AKT, and AKT in the peritoneum from different
groups. CG-injection in mice up-regulated the phosphorylation
of PI3K and AKT, compared with the sham group, while TA
treatment could decrease the ratio of p-PI3K/PI3K and p-AKT/
AKT (Figures 5A–E). This meant inhibition of HDAC6 by TA
Frontiers in Immunology | www.frontiersin.org 7
blocked the activation of PI3K/AKT signaling pathway.
Numerous studies have suggested that the activated STAT6
and STAT3 enhance the M2 polarization and suppress the M1
polarization (45–47). According to our results, the
phosphorylation of STAT3 and STAT6 was increased in the
peritoneum from mice in the CG group, and the rise of
B

C

D

E

F

G

H

A

FIGURE 3 | Inhibition of HDAC6 prevents macrophage infiltration and alternatively activated macrophages (M2) polarization in CG-induced mouse model. (A) Western blot
analysis showed the levels of CD68 and GAPDH in peritoneum from different groups of mice. (B) Expression levels of CD68 in different groups were quantified by densitometry
and normalized with GAPDH. (C) Representative micrographs of immunohistochemical staining of CD68 on peritoneum from different groups of mice. Red arrows represent
CD68 positive cells. (D) Quantization count of CD68-positive cells. (E) Western blot analysis showed the levels of Arginase-1, CD163, and GAPDH in peritoneum from different
groups of mice. Expression levels of (F) Arginase-1 and (G) CD163 in different groups were quantified by densitometry and normalized with GAPDH. (H) Representative
micrographs of immunofluorescence staining of Arginase-1 in peritoneum from different groups of mice. Red arrows represent Arginase-1 positive cells. Data were expressed
as means ± SEM. **P<0.01, ***P<0.001, ****P<0.0001. All scale bars = 20 mm. NS: P≥0.05.
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phosphorylation was significantly suppressed by the
administration of TA (Figures 5F–J). These results suggested
that inhibition of HDAC6 might suppress the M2 macrophage
polarization by regulating the PI3K/AKT, STAT3 and STAT6
signaling pathways.
Frontiers in Immunology | www.frontiersin.org 8
TA Inhibits M2 Macrophage Polarization in
Both IL-4 and HG-PDF Stimulated
Raw264.7 Cells
The above results have clarified the relationship between HDAC6
and macrophage polarization in CG-associated peritoneal fibrosis
B

C

D E F G

H I

J
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A

FIGURE 4 | Inhibition of HDAC6 by TA prevents M2 macrophage polarization via suppressing TGF-b1/Smad3 signaling in vivo. (A) Western blot analysis showed
the levels of TGFbRI, p-Smad3, Smad3, p-TAK1, TAK1, CTGF, and GAPDH in peritoneum from different groups of mice. Expression levels of (B) TGFbRI, (C) p-
Smad3, (D) Smad3, (E) p-TAK1, (F) TAK1, and (G) CTGF in different groups were quantified by densitometry and normalized with GAPDH, Smad3, TAK1
respectively. (H) Western blot analysis showed the levels of Twist, Snail, and GAPDH in peritoneum from different groups of mice. Expression levels of (I) Twist and
(J) Snail in different groups were quantified by densitometry and normalized with GAPDH. (K) Representative micrographs of immunofluorescence staining of Twist
on peritoneum from different groups of mice. (L) Quantization count of Twist-positive cells. Data were expressed as means ± SEM. *P<0.05, **P<0.01, ****P<0.0001.
All scale bars = 20 mm. NS: P≥0.05.
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mouse model, then we further explored the role and mechanism of
HDAC6-mediated macrophage polarization in Raw264.7 cells. IL-4
was a well-known stimulator to induce M2 macrophage
polarization. Compared to the starved cells, HDAC6
overexpressed in the Raw264.7 cells stimulated by IL-4
(Figures 6A, B). TA was able to suppress the expression of
HDAC6, and up-regulate the Acetyl Histone H3 and Acetyl a-
Tubulin in a dose-dependent way (Figures 6A–E). However, TA
had no influence on total Histone H3 and total a-Tubulin protein
levels. The immunofluorescence staining for HDAC6 showed the
portion of HDAC6 positive cells reduced, confirming the effective
Frontiers in Immunology | www.frontiersin.org 9
inhibition of HDAC6 in the IL-4-stimulated Raw264.7 cells by TA
(Figures 6F, G). Furthermore, IL-4 stimulation increased Arginase-
1 and CD163 expressions, implying the polarization of Raw264.7 to
M2. TA treatment down-regulated the expression of Arginase-1 and
CD163 from immunoblot analysis and immunofluorescence
staining (Figures 6H–K). In addition, the co-staining of HDAC6
and Arginase-1 indicated the involvement of HDAC6 in IL-4-
induced M2 polarization (Figure 6L).

On the other hand, high glucose has been proved to mediate
the polarization of peritoneal macrophages to the M2 phenotype
(48). So, we further developed another in vitro model in
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FIGURE 5 | Inhibition of HDAC6 by TA prevents M2 macrophage polarization via suppressing PI3K/AKT, STAT3 and STAT6 signaling in vivo. (A) Western blot
analysis showed the levels of p-PI3K, PI3K, p-AKT, AKT and GAPDH in peritoneum from different groups of mice. Expression levels of (B) p-PI3K, (C) PI3K, (D) p-
AKT, and (E) AKT in different groups were quantified by densitometry and normalized with GAPDH, PI3K, AKT respectively. (F) Western blot analysis showed the
levels of p-STAT3, STAT3, p-STAT6, STAT6, and GAPDH in peritoneum from different groups of mice. Expression levels of (G) p-STAT3, (H) STAT3, (I) p-STAT6,
and (J) STAT6 in different groups were quantified by densitometry and normalized with GAPDH, STAT3, and STAT6 respectively. Data were expressed as means ±
SEM. **P<0.01, ***P<0.001, ****P<0.0001. NS: P≥0.05.
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FIGURE 6 | TA inhibits M2 macrophage polarization in IL-4-stimulated Raw264.7 cells. (A) Western blot analysis showed the levels of HDAC6, Acetyl Histone
H3, Histone H3, Acetyl a-Tubulin, a-Tubulin, and GAPDH in IL-4-stimulated Raw264.7 cells treated with different doses of TA. Expression levels of (B) HDAC6,
(C) Acetyl Histone H3, (D) Acetyl a-Tubulin, and (E) a-Tubulin in different groups were quantified by densitometry and normalized with GAPDH, Histone H3, and
a-Tubulin respectively. (F) Representative micrographs of immunofluorescence staining of HDAC6 in Raw264.7 cells with different treatments (Scale bars = 50
mm). (G) Quantization count of HDAC6-positive cells was calculated. (H) Western blot analysis showed the levels of Arginase-1, CD163, and GAPDH in IL-4-
stimulated Raw264.7 cells treated with different doses of TA. Expression levels of (I) Arginase-1, and (J) CD163 in different groups were quantified by
densitometry and normalized with GAPDH. (K) Representative micrographs of immunofluorescence staining of Arginase-1 and CD163 in Raw264.7 cells with
different treatments, and quantization count of Arginase-1 and CD163 positive cells (Scale bars = 50 mm). (L) Co-immunofluorescence staining of HDAC6 (red)
and Arginase-1 (green) in the Raw264.7 cells (Scale bars = 10 mm). Data were expressed as means ± SEM. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. NS:
P≥0.05.
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Raw264.7 cells treated with different peritoneal dialysis fluid
(HG-PDF, containing 1.5%, 2 .5%, 4.25% glucose) .
Immunoblotting results revealed that HG-PDF was able to
induce M2 macrophage polarization with increased expressions
of Arginase-1 and CD163 in both dose and time dependent
(Figures 7A–F). Then we similarly treated the Raw264.7 cells
with different doses of TA after stimulating by 4.25% HG-PDF.
The TA at a concentration of 10mM successfully decreased the
expression levels of Arginase-1 and CD163 as expected (Figures
7G–I). The immunofluorescence staining further determined the
suppression of M2 polarization by TA (Figure 7J). All these
results demonstrated that TA could inhibit M2 macrophage
polarizat ion in both IL-4 and HG-PDF stimulated
Raw264.7 cells.

TA Inhibits M2 Macrophage Polarization
via Suppressing TGF-b1/Smad3, PI3K/
AKT, STAT3 and STAT6 Signaling in
Raw264.7 Cells Stimulated by IL-4 and
HG-PDF
In vitro, we also detected several signaling pathways that HDAC6
contributed to M2 macrophage polarization. As expected, the
expression of TGFbRI and p-Smad3 rose in the IL-4-stimulated
Raw264.7 cells (Figures 8A–C). Consistently, the administration
of TA could suppress the expression of TGFbRI and p-Smad3 in
a dose-dependent manner, suggesting that TA inactivated TGF-
b1/Smad3 signaling after IL-4 stimulation (Figures 8A–C).
Moreover, IL-4 stimulation could activate PI3K/AKT, STAT3
and STAT6 signaling pathways, while TA treatment dose-
dependently inhibited all of them, especially in the dose of
10mM (Figures 8D–I). It was noteworthy that neither IL-4
stimulation nor TA treatment could influence the total protein
of Smad3, PI3K, AKT, STAT3 or STAT6. Similarly, inhibition of
HDAC6 with TA also blocked these aforementioned signaling
pathways in 4.25% HG-PDF-stimulated Raw264.7 cells
(Figure 9). In conclusion, TA inhibited both IL-4 and HG-
PDF induced alternatively activated macrophages (M2)
polarization in Raw264.7 cells via suppression of TGF-b1/
Smad3, PI3K/AKT, STAT3 and STAT6 signaling pathways.
DISCUSSION

HDAC6 is a class IIb member of the HDAC family and takes a-
tubulin as deacetylation modification substrate protein by
interactions with microtubules (24, 25). The inhibition of
HDAC6 is reported to exert the anti-fibrotic effect in various
fibrosis models (26, 27, 49). Recently we have demonstrated that
HDAC6 is critically implicated in HG-PDF induced peritoneal
fibrosis, and overexpressed in the peritoneum and dialysis
effluent from PD patients (29). However, the precise
mechanisms of HDAC6 in peritoneal fibrosis have not been
elucidated. In this study, we further proved that HDAC6 could
aggravate CG-induced peritoneal fibrosis via promoting
macrophage polarization to the M2 phenotype. Moreover, our
results revealed that blockade of HDAC6 inhibited alternatively
Frontiers in Immunology | www.frontiersin.org 11
M2 macrophages polarization by suppressing the activation of
TGF-b/Smad3, PI3K/AKT, and STAT3, STAT6 pathways.
Therefore, this study clarified the importance of HDAC6 in
peritoneal fibrosis from a new mechanism point that HDAC6
contributed to M2 macrophage polarization.

To confirm the therapeutic effect of HDAC6 inhibition, we
treated the CG-induced peritoneal fibrosis mouse model with TA
and found a significant alleviation of fibrosis and reduced
extracellular matrix protein deposition. These changes are
symbols of remission of epithelial-mesenchymal transition, a
key factor in fibrogenesis (50). So far, a great bulk of evidence has
elucidated the role of macrophage polarization, especially M2
polarization, in the pathological progression of fibrosis (40, 51,
52). The triggered M2 macrophage polarization promotes EMT
and metastasis in gastric cancer (53). Clinical data showed the
infiltration of CD163 positive macrophages associated with EMT
in colorectal cancer metastasis (54). The latest paper
demonstrated that the M2c (a subtype of M2 macrophages)
macrophage polarization could enhance the EMT of peritoneal
mesothelial cells (55). It is consistent with our observation in the
mouse model: the expression of Arginase-1 and CD163 elevated
in the peritoneum tissues from the CG-injected group. We
confirmed the increased infiltration of macrophages and
enhanced M2 polarization in the peritoneal fibrosis. In
addition, the staining colocalized HDAC6 and Arginase-1 in
IL-4-stimulated Raw264.7 cells, which provided support that
HDAC6 might promote peritoneal fibrosis via manipulating M2
polarization. These results pointed out that the therapeutic effect
of peritoneal fibrosis by TA correlated with M2 polarization, and
encouraged us to explore the further mechanisms.

It is well established that the TGF-b signaling could regulate
macrophage behavior and polarize the macrophages towards a
certain phenotype (56). TGF-b/Smad3 signaling was found to
stimulate macrophages to synthesize pro-inflammatory cytokines.
TGF-b could activate Smad3 in macrophages, and the TGF-b/
Smad3 activation exerted protective effects by stimulating
phagocytosis of macrophages in myocardial infarction (57). In
research of chronic renal allograft rejection, the increased M2
macrophages and elevated nuclear-phosphorylated Smad3
contributed to the interstitial fibrosis, suggesting enhanced M2
polarization via a Smad3-dependent mechanism in the
development of interstitial fibrosis (58). Considering the role of
TGF-b/Smad3 signaling in macrophage polarization, we also
detected the regulation of TA on TGF-b/Smad3 during peritoneal
fibrosis in this study. The activation of TGF-b/Smad3 signaling was
observed in peritoneum tissues from CG-injected mice and in two
cell injured models, and this activation was considerably suppressed
by TA administration. Besides, TA also blocked downstream
signaling molecules of TGF-b/Smad3, including TAK1 and
CTGF, and two related nuclear transcription factors. Our results
support that the HDAC6 could enhance M2 polarization to
promote peritoneal fibrosis via regulating the TGF-b/Smad3
signaling. However, the macrophage-specific Smad3 loss in the
previous study could not affect the angiogenesis and fibrogenesis
significantly (57), suggesting us other mechanisms might involve in
the manipulation of M2 polarization.
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Thus, we next demonstrated whether the phosphatidylinositol 3-
kinase/protein kinase B (PI3K/AKT) signaling pathway participated
in the regulation of macrophage polarization by HDAC6. Based on
the previous literature, the PI3K/AKT pathway affected survival,
migration, metabolic progress, and polarization in macrophages
(20). The PI3K/AKT pathway was found to promote M2
polarization in neuroinflammation (59, 60). Cao et al. found that
Frontiers in Immunology | www.frontiersin.org 12
HDAC6 could control PI3K regulatory subunit 2 (PIK3R2) through
miR-30d, thus activating PI3K/AKT/mTOR and ERK pathways
(61). Another research showed that HDAC6 physically interacted
with AKT and acetylated AKT at Lys163 and Lys377 located in the
kinase domain. This research treated the deacetylase activity of
HDAC6 as a novel regulator of AKT signaling (62). The above
results suggest the involvement of HDAC6 activation in PI3K/AKT
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FIGURE 7 | TA inhibits M2 macrophage polarization in HG-PDF stimulated Raw264.7 cells. (A) Western blot analysis showed the levels of Arginase-1, CD163, and
GAPDH in Raw264.7 cells treated with peritoneal dialysis fluid in different dextrose concentrations. Expression levels of (B) Arginase-1 and (C) CD163 in different
groups were quantified by densitometry and normalized with GAPDH. (D) Western blot analysis showed the levels of Arginase-1, CD163, and GAPDH in Raw264.7
cells treated with 4.25% HG-PDF for different times. Expression levels of (E) Arginase-1 and (F) CD163 in different groups were quantified by densitometry and
normalized with GAPDH. (G) Western blot analysis showed the levels of Arginase-1, CD163, and GAPDH in 4.25% HG-PDF treated Raw264.7 cells with different
doses of TA. Expression levels of (H) Arginase-1 and (I) CD163 in different groups were quantified by densitometry and normalized with GAPDH. (J) Representative
micrographs of immunofluorescence staining of Arginase-1 and CD163 in Raw264.7 cells with different treatments. Quantization count of Arginase-1 and CD163
positive cells was calculated. Data were expressed as means ± SEM. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. All scale bars = 50 mm. NS: P≥0.05.
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signaling pathway. In this study, we demonstrated that the
activation of the PI3K/AKT pathway involved the effect of
HDAC6 on M2 polarization. The inhibition of HDAC6 by TA
effectively reduced the activation of the PI3K/AKT pathway in vivo
and in Raw264.7 cells, indicating that HDAC6 regulated the PI3K/
AKT pathway. Our findings were consistent with the previous study
that activating the PI3K/AKT pathway promoted M2 polarization
(63). In another word, the PI3K/AKT pathway mediated by
HDAC6 was involved in the regulation of M2 polarization in
peritoneal fibrosis.

The signal transducer and activator of transcription 3 also
aroused our interest in exploring the mechanisms as the activity
of HDAC1 and HDAC2 could negatively regulate STAT3
signaling (64). Furthermore, the activation of STAT3 was
Frontiers in Immunology | www.frontiersin.org 13
reported to induce macrophage differentiation toward the M2
phenotype (65, 66). The expression of p-STAT3 and p-STAT3/
STAT3 levels in the peritoneum of our animal models and IL-4
or HG-PDF-treated macrophages were relatively higher. By
contrast, the p-STAT3 and p-STAT3/STAT3 levels were
reduced by TA administration. These data correspond to the
findings by Yin, Z. et al.: the expression of STAT3 mRNA and
protein was higher in IL-4-induced M2 macrophages (45). Our
results originally implied the possible regulation of STAT3 by
HDAC6. The underlying mechanism may be demonstrated by
the suppression of IL-6/STAT3 signaling. Evidence has
demonstrated that interfering with IL-6 trans-signaling could
attenuate renal fibrosis via suppressing STAT3 activation while
inhibiting the recruitment of macrophages (67). We previously
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FIGURE 8 | TA inhibits M2 macrophage polarization via suppressing TGF-b1/Smad3, PI3K/AKT, STAT3 and STAT6 signaling in Raw264.7 cells stimulated by IL-4.
(A) Western blot analysis showed the levels of TGFbRI, p-Smad3, Smad3, and GAPDH in IL-4-stimulated Raw264.7 cells treated with different doses of TA. Expression levels
of (B) TGFbRI and (C) p-Smad3 in different groups were quantified by densitometry and normalized with GAPDH and Smad3 respectively. (D) Western blot analysis showed
the levels of p-PI3K, PI3K, p-AKT, AKT and GAPDH in IL-4-stimulated Raw264.7 cells treated with different doses of TA. Expression levels of (E) p-PI3K and (F) p-AKT in
different groups were quantified by densitometry and normalized with PI3K and AKT respectively. (G) Western blot analysis showed the levels of p-STAT3, STAT3, p-STAT6,
STAT6, and GAPDH in IL-4-stimulated Raw264.7 cells treated with different doses of TA. Expression levels of (H) p-STAT3 and (I) p-STAT6 in different groups were quantified
by densitometry and normalized with STAT3 and STAT6 respectively. Data were expressed as means ± SEM. *P<0.05, **P<0.01. NS: P≥0.05.
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observed elevation of IL-6 and macrophage infiltration in
peritoneal fibrosis rats. Therefore, we conceived that there
might be interactions between the inhibition of HDAC6 and
the IL-6/STAT3 signaling, leading to a phenotypic switch in
macrophages. However, the detailed relationship needs
further elucidation.

In addition, we decided to determine the link between STAT6
and HDAC6 due to the interactions between HDACs and STAT
transcription factors. In fact, a recent study demonstrated that
IL-4-STAT6 signaling was HDAC3 dependent and repressed the
LPS-induced inflammatory program of macrophages (68).
STAT6 is the major factor during macrophage M2 polarization
(69). The activation of STAT6 is known to drive M2 polarization
Frontiers in Immunology | www.frontiersin.org 14
(70). The acetylation of STAT6 would further inhibit M2
polarization by suppressing the transcriptional activity of
STAT6 (69). Moreover, the IL-4/STAT6 activation could
regulate liver fibrosis (17) and cardiac fibrosis progression (71)
through targeting macrophages. Our study showed that TA
suppressed the expression of STAT6 in CG-induced peritoneal
fibrosis and injured Raw264.7 cells. Accordingly, the results
suggested that the regulation of M2 polarization by HDAC6
might exert via the IL-4/STAT6 signaling.

According to reported literature, a handful of selected HDAC6
inhibitors have been undergoing clinical trials for tumors treatment.
In the public database of clinical trials from U.S. National Library of
Medicine, there are seven HDAC6-related clinical trials with three
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FIGURE 9 | TA inhibits M2 macrophage polarization via suppressing TGF-b1/Smad3, PI3K/AKT, STAT3 and STAT6 signaling in Raw264.7 cells stimulated by HG-PDF.
(A) Western blot analysis showed the levels of TGFbRI, p-Smad3, Smad3, and GAPDH in 4.25% HG-PDF treated Raw264.7 cells with different doses of TA. Expression levels
of (B) TGFbRI and (C) p-Smad3 in different groups were quantified by densitometry and normalized with GAPDH and Smad3 respectively. (D) Western blot analysis showed
the levels of p-PI3K, PI3K, p-AKT, AKT, and GAPDH in 4.25% HG-PDF treated Raw264.7 cells with different doses of TA. Expression levels of (E) p-PI3K and (F) p-AKT in
different groups were quantified by densitometry and normalized with PI3K and AKT respectively. (G) Western blot analysis showed the levels of p-STAT3, STAT3, p-STAT6,
STAT6, and GAPDH in 4.25% HG-PDF treated Raw264.7 cells with different doses of TA. Expression levels of (H) p-STAT3 and (I) p-STAT6 in different groups were
quantified by densitometry and normalized with STAT3 and STAT6 respectively. Data were expressed as means ± SEM. *P<0.05, **P<0.01, ****P<0.0001. NS: P≥0.05.
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studies completed, including multiple HDAC6 inhibitors (ACY-
241, KA2507, ACY-1215). Results from a phase Ib study showed the
combination therapy of ACY-241 (Citarinostat) and Nivolumab in
advanced non-small cell lung cancer, and suggested the
combination might be feasible in these patients (72). In another
multicentre phase 1b trial, ACY-1215 (Ricolinostat) enhanced
efficacy of lenalidomide and dexamethasone in relapsed or
refractory multiple myeloma. 21 (55% [95% CI 38-71]) of 38
patients presented an overall response in a preliminary
assessment of antitumour activity after combined medication with
ACY-1215 (73). Overall, several clinical trials have proved the
effectiveness, security, applicability of selected HDAC6 inhibitors
in clinical treatment, which provides opinions and possibilities of
the application of HDAC6 inhibitors in peritoneal fibrosis
associated with peritoneal dialysis in the future.

In summary, the present study revealed the fibrogenic role of
HDAC6 in CG-induced peritoneal fibrosis, and the anti-fibrotic
effect of TA mediated by suppressing macrophage M2
polarization. We innovatively demonstrated that the inhibition
of HDAC6 by TA significantly suppressed M2 macrophage
polarization by regulating the TGF-b/Smad, PI3K/AKT,
STAT3 and STAT6 signaling pathways. These findings
indicated that targeting HDAC6 might be a novel therapeutic
strategy for peritoneal fibrosis.
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