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ABSTRACT

As Earth’s climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in
which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the
hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest
soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in
the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacte-
ria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but
had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295
bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to
depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment
of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.

IMPORTANCE

The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indi-
cate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes
responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20
years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degra-
dation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study
illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve
our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.

Microbes are central players in the soil carbon (C) cycle, pro-
cessing litter and soil carbon to biomass and CO2 as a func-

tion of the quantity and quality of carbon available, genetically
encoded potential for targeting that carbon, and temperature.
Global climate warming is expected to alter microbial activity in
soils by directly accelerating enzyme process rates (1–3), and po-
tentially indirectly through its impacts on soil microbial commu-
nity composition. Numerous studies have examined how climate
warming has affected soil microbial communities (4), but it is
difficult to draw conclusions about shifts in the functional capac-
ities of communities based on the phylogenetic marker genes used
in these studies, because many traits involved in carbon cycling in
bacteria are only shallowly phylogenetically conserved (5). There-
fore, a direct assessment of pertinent genetic and physiological
functions in microbial communities subject to warming is neces-
sary to infer potential linkages between changes in microbial com-
munity structure and changes in community carbon cycling ac-
tivity.

As the first and often rate-limiting step of decomposition (6),
microbes must depolymerize compounds, such as the abundant
carbohydrates hemicellulose and chitin, before the resultant mono-
mers can be taken up and used for metabolism. This requires the
production and release of enzymes into the soil, where the opti-
mum temperature for activity, rate of substrate turnover, and rate
of activity for a given substrate concentration differ between the

“isoenzymes” produced by different members of the microbial
community (7). These enzymes tend to depolymerize their sub-
strates faster at higher temperatures (2, 8), but soil-warming-in-
duced shifts in both the soil carbon pool and isoenzymes pro-
duced by the microbial community may also influence carbon
cycling activity (9). In both tundra (10, 11) and temperate grass-
land ecosystems (9, 12), increases in the size of substrate pools
have accompanied generally small (�5 to 10%) but significant
increases in the genes encoding the enzymes responsible for the
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degradation and uptake of carbohydrates, such as starch and cel-
lulose. However, because of temporal mismatches in microbial
and dominant vegetation response to warming, potential carbo-
hydrate decomposition of soil microbial communities in tundra
or grassland ecosystems may respond to climate warming very
differently than those of forests.

One such factor that may affect how forests respond to climate
warming is the strong vertical stratification of soil physical struc-
ture, which was not considered in previous mineral-only prairie
soils (12) or peat-only tundra soils (10, 11). Forest soil profiles
typically consist of a root-entangled mat of partially decomposed
plant litter (organic horizon) that sits atop a less-carbon-rich min-
eral soil. The functional (13) and taxonomic (14) compositions of
microbial communities are similarly stratified, with the organic
horizon more enriched in fungi and carbohydrate-degrading
genes than the mineral soil (15). Forest organic horizon commu-
nities have previously been shown to respond to environmental
stressors with greater functional (15) and taxonomic (16) shifts
than those of the mineral soil, indicating that evaluating the hori-
zon-specific responses to warming may provide insight into al-
tered microbial carbon cycling capacity.

To determine how climate change may affect carbon cycling in
temperate forest ecosystems over long time periods, three chronic
soil-warming experiments were established in central Massachu-
setts five (17), eight (18), and 20 years prior to sample collection
for the present study (19) (Table 1). In all experiments, carbon
mineralization increased with the onset of warming (17–19), in
line with expectations based on knowledge of the response of basic
enzyme kinetics to elevated temperatures (8). However, respira-
tion has not remained consistently higher in warmed than in con-
trol plots at the longest-running site and declined to a rate similar
to that of the control treatment after approximately a decade of
warming (20). This coincided with a depletion of readily available
soil carbon in heated plots (21), a decrease in microbial biomass, a

shift in the microbial community toward Gram-positive bacteria
(22), and acclimation of respiration to a lower-than-expected rate
as temperature increased (21). However, by the time soil samples
were collected for the present study, respiration was again higher
in the heated plots than in the control plots (23). This made a third
phase in the respiration response to warming and was associated
with substantial shifts in the physiology (24) and identity (4, 16) of
microbial communities. In contrast, no such shifts in the bacterial
community were seen at the time of sampling in the other two exper-
iments (16), although substantial shifts in the quality of soil carbon
available to microbes have been observed (25). Whether shifts in the
microbial community responsible for the rate-limiting depolymer-
ization step of decomposition have also occurred at the 20-year site
but not the 5- and 8-year warming sites is an open question.

Both culture-dependent and culture-independent approaches
were used here to evaluate how chronic warming affects the mi-
crobial communities responsible for carbohydrate depolymeriza-
tion in temperate forest soils. We used metagenomics to deter-
mine whether soil warming has preferentially enriched the ability
to depolymerize carbohydrates in the organic horizon after 20
years of warming, or whether this effect is also visible in the 5- and
8-year experiments. This approach has the strength of informing our
understanding of how chronic warming changes the functional po-
tential of whole communities (12). We also evaluated the hypothesis
that 20 years of chronic warming has increased the capacity of bacte-
ria isolated from experimentally heated plots to depolymerize cellu-
lose, chitin, and xylan compared to their control plot counterparts
when assayed in the laboratory, as would be expected if warming had
promoted the expression of these traits in organisms.

MATERIALS AND METHODS
Experimental site. Soils were studied from three soil-warming experi-
ments of various durations at the Harvard Forest Long Term Ecological
Research (LTER) site in Petersham, MA (Table 1). As in other metag-

TABLE 1 Summary of warming experiments used in this study

Characteristica SWaN plots (17) Barre Woods (18) Prospect Hill (19)

Latitude, longitude 42.54°N, 72.18°W 42°28=N, 72°10=W 42.54°N, 72.18°W
Yr started (duration [yr] at time of

soil collection for metagenome)
2006 (5) 2003 (8) 1991 (20)

Plot size (m) 3 by 3 30 by 30 6 by 6
No. of plots 6 1 megaplot with 25 subplots 6
Soil pH, O-horizon 3.72 4.29 3.82
Soil pH, 0- to 10-cm mineral 4.38 4.42 4.41

Total C (mean � SE) (g of C · m�2)
O-horizon 3,314 (404) 1,772 (621) 2,565 (247)
0- to 10-cm mineral 3,478 (121) 1,810 (92) 2,859 (444)

Moisture (control, warmed) (g of
H2O · g�1 of soil [dry wt])

O-horizon 1.59, 1.26 1.32, 1.02 1.49, 0.99
0- to 10-cm mineral 0.41, 0.40 0.37, 0.31 0.44, 0.38

Dominant overstory vegetation Acer rubrum, Acer pensylvanicum,
Betula papyrifera, Fagus
grandifolia, Quercus rubra,
Quercus velutina

A. rubrum, Fraxinus americana,
Q. rubra, Q. velutina

A. rubrum, A. pensylvanicum,
B. papyrifera, Q. velutina

Soil series Gloucester Canton Gloucester
a Soil pH and carbon data refer to control plots only. O-horizon, organic horizon.
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enomic studies (15), we used space-for-time substitution to infer how the
effect of warming treatment on microbial functional potential may vary
over time. Two of the experiments, Prospect Hill and SWaN (Soil Warm-
ing and Nitrogen) are located immediately adjacent to one another in the
main tract of the forest and had been running for 20 years and 5 years,
respectively, at the time of soil collection for metagenomic analysis. The
third experiment, Barre Woods, is located approximately 5 km east of the
main tract and had been running for 8 years when soils were collected for
metagenomic analysis. Resistance cables buried at a 10-cm depth in the
soil maintain soil temperatures in heated plots consistently 5°C above
the temperatures observed in the control plots, as regulated by a data
logger that calculates the mean temperatures in warmed and control
plots each 10 min from thermistors buried in each plot and switches
the warming cables on or off accordingly (19). All experiments are
located in mixed deciduous forest stands (Table 1). An easily distin-
guished organic mat overlies a deep well-drained mineral soil, which is
of the Gloucester series at Prospect Hill and SWaN (19) and of the
Canton series at Barre Woods (18). Precipitation is distributed ap-
proximately evenly throughout the year, with an average of 118 cm per
year since 1991. Mean monthly temperatures range from �6°C in
January to 20°C in July (94). Soil temperatures at the 10-cm depth aver-
aged 9 to 11°C in the control plots on the days samples were collected.

Soil collection. On 25 to 27 October 2011, organic horizon material
was collected as intact 20- by 20-cm blocks, while mineral horizon soil (0
to 10 cm) was collected directly under each organic horizon sample using
a 9-cm-diameter custom stainless steel auger. Organic horizon and min-
eral soil samples were collected from four plots in each experiment, for a
total of 48 samples (3 experiments � 2 warming treatments � 2 soil
horizons � 4 replicates). In the field, subsamples from both horizons were
immediately flash-frozen and stored at �80°C until nucleic acid extrac-
tion.

Nucleic acid extraction. Complete nucleic acids were extracted from
soils using a modified cetyltrimethylammonium bromide (CTAB) proce-
dure, as per DeAngelis et al. (16). This method has two bead-beating steps,
which are expected to reduce extraction bias against fungi (26). The three
extractions were then pooled, and DNA and RNA were separated using an
AllPrep DNA/RNA kit (Qiagen). DNA was quantified using the Quant-iT
PicoGreen double-stranded DNA (dsDNA) assay kit (Invitrogen), ac-
cording to the product instructions.

Shotgun metagenome library preparation, sequencing, assembly, and
annotation were completed at the Joint Genome Institute using standard
operating procedures and pipelines. Unamplified libraries were prepared
for each sample using a modified version of the Illumina TruSeq protocol
with 500 ng of purified soil DNA. DNA was mechanically sheared to a
median length of 270 bp using a Covaris LE220 and then size-selected
using solid-phase reversible immobilization. Fragments were then end
repaired, and poly(A) tails were added prior to ligation to barcoded se-
quencing adaptors. After the quantification of individual libraries using
quantitative PCR, 11 to 12 libraries were pooled for sequencing on an
Illumina HiSeq 2000 (2 � 150-bp strategy). This resulted in an average �
standard error of the mean (SEM) of 1.387 � 0.06333 Gb per soil sample
(metagenome).

Data quality control and preliminary assembly. A sliding window
approach with a k-mer length of 28 and a step size of 1 was used to initially
trim sequences to exclude bases with quality scores lower than 3, strings of
3� Ns, and reads with a mean quality score lower than 20. Sequences
shorter than 50 bp were removed. This resulted in an average of
27,059,049 quality reads per metagenome. The Joint Genome Institute
(JGI) assembled merged paired-end reads further using SOAPdenovo
(27), with default parameters (“-K 81 -p 32 -R -d 1”) and 6 k-mers be-
tween 85 and 105 nucleotides (nt). Each contig was subsequently derep-
licated, keeping only one copy of a read when the first 5 bp are identical
and the reads are �95% identical over their entire length. Contigs shorter
than 1,800 bp were assembled using Newbler (Life Technologies, Carls-
bad, CA; flags: -tr, -rip, -mi 98, -ml 80) and subsequently combined with

those that were longer using minimus2 (flags: -D MINID � 98 -D
OVERLAP � 80) (28). The data were then uploaded to Integrated Mi-
crobial Genomes (IMG/M) as those that mapped to the assembly (assem-
bled) and those that did not (unassembled) for gene prediction and func-
tional annotation (29). Due to poor initial assembly (median, 0.15% of
reads assembled; range, 0.02 to 1.27% of reads), both reads that assembled
and those that did not were pooled for the analysis, weighting annotations
on the assembled contigs by the mean read depth (30, 31).

Sequencing produced an average � SEM of 1,387,259,102 �
63,331,106 bp per metagenome, with a mean fragment length of 270 bp
and G�C content of 61.6% � 0.2%. After quality control and assembly,
the mean number of scaffolds � SEM was 7,012,272 � 287,725, with
32.3% � 0.3% genes with predicted protein products and 0.24% �
0.0028% reads predicted as RNA genes. Overall, there were an average �
SEM of 6.99 � 106 � 0.28 � 106 (see Data Set S1 in the supplemental
material) quality-checked merged paired-end reads per sample.

Annotation. Metagenome reads were annotated by the JGI’s Inte-
grated Microbial Genomes (IMG) pipeline (32). We assigned taxonomy
categories to rRNA reads against the SILVAv119 long subunit (LSU) and
short subunit (SSU) databases using the RDP algorithm (33, 34). In the
IMG analysis pipeline, the taxonomy of protein-coding genes is deter-
mined by clustering reads against the set of all nonredundant sequences
for genomes in IMG plus KEGG using usearch (35), with -maxhits � 50
and -minlen � 20. Only the best hit based on identity is kept for taxon-
omy. We subsequently filtered this set to include only hits with �60%
identity at the phylum level and merged it with the Pfam annotations for
each read for function � taxonomy analysis. Protein family (Pfam) an-
notations were made using an HMMER version 3.0 (36) search against the
Pfam-A database (37) and filtered to include only those matches with a
maximum E value of �5 (38) and a minimum alignment length of 20
amino acids (39). These cutoffs left an average of 41.2% predicted coding
sequences (2.94 million reads) annotated to Pfams (see Data Set S1 in the
supplemental material).

Pfam annotations were subsequently mapped to carbohydrate-ac-
tive enzymes (CAZymes) (40) using the R package Pfam.db (version
3.1.2 [https://bioconductor.org/packages/release/data/annotation/html
/PFAM.db.html]). We elected to map from Pfams to CAZymes rather
than directly to CAZymes so we could (i) simultaneously assess the rela-
tive abundance of taxa over all functions and of CAZymes as a fraction of
all annotated functions and (ii) reduce the risk of false-positive hits to
CAZymes by providing “competitors” for a best hit. We used the relative
abundance of CAZymes in our analysis, calculated as the ratio of the
number of reads annotated to a given CAZyme to the total number of
reads to which any Pfam was annotated. Because the IMG annotation
pipeline used family-level trusted cutoffs only for annotating Pfams in one
Prospect Hill organic horizon-warmed sample, that sample was excluded
from the functional analysis.

Presence of differentially abundant genes. All statistical analyses
were completed in R (version 3.1.0 [http://www.r-project.org]). Plots
were generated using ggplot2 version 1.0.1 (41). A negative binomial
model (42, 43) was used to identify genes or taxa that were differentially
abundant between warmed and control plot samples using MASS version
7.3-43, and then corrected P values from Wald tests were used to account
for the false-discovery rate (44). A warming effect was assessed individu-
ally for each experiment as well as for all experiments together by pooling
experiments and analyzing each horizon separately. Model fit was verified
using a chi-square test. Due to the small number of replicates (3, 4) for
within-experiment comparisons, warming effects were considered signif-
icant at a corrected alpha of 0.1 (45). The overall warming effect (all sites)
was deemed significant at a corrected alpha of 0.05. The effect of warming
treatment on the relative abundance of Pfam reads annotated as CAZymes
was determined and plotted as 100 � [(relative abundance in heated �
relative abundance in control)/(relative abundance in control)]. The tax-
onomic affiliations of carbohydrate-degrading genes were plotted simi-
larly. Because there are either no blocks in the design of each experiment
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(Barre Woods and SWaN) or we did not sample warmed and control plots
within the same experimental block (Prospect Hill), there are no natural
warmed-control sample pairs in our sequencing design. Therefore, we
used a bootstrapping approach (999 iterations) to generate estimates of
the standard error of the ratio for plotting in our figures. Gene families
indicative of warming treatment were additionally identified using ran-
dom forest analysis with 1,000 trees, followed by feature selection using
the Boruta algorithm (46) at a P value of 	0.01. In contrast to other
feature selection methods that look for the minimal predictive set, Boruta
identifies all genes that assist with group prediction, including those that
offer redundant information (46). The final reduced set of genes was
evaluated for its ability to predict warming treatment of origin using a
second random forest analysis. The analysis was not repeated by site due to
inadequate replication. Overall changes in the phyla to which the carbohy-
drate-active enzymes were annotated were assessed using a permutational
multivariate analysis of variance (adonis, vegan version 2.3-5 [https://cran.r
-project.org/web/packages/vegan/index.html]) on Hellinger-transformed
data.

Isolate cultivation. Dominant members of the bacterial communities
at Prospect Hill (20 years of warming) were targeted for cultivation, with
successful isolation of 537 dominant and rare organisms in 6 phyla from
both warming treatment and control treatment soils (see Fig. S5 in the
supplemental material). Soils from Prospect Hill were selected for culti-
vation because microbial communities are known to have shifted with
warming at this site (4, 16, 22). Soils were collected on 22 October 2013, 28
April 2014, and 30 June 2014 when we were sampling the site for other
purposes. On these instances, soil samples were collected with 1/2-in.
tubular soil corers to a depth of 10 cm and split by eye into organic and
mineral soils. The soil corer was washed with 70% ethanol between plots
to minimize cross-contamination.

Various methods known to be effective for isolating the closest cul-
tured relatives of dominant Acidobacteria, Actinobacteria, and Alphapro-
teobacteria identified in a previous study of these soils were used (19). Our
overall approach was to maximize the total number and diversity of bac-
teria isolated from soil, with the intention of examining how warming
changed the phylogeny of biopolymer-degrading traits. We used low-
nutrient media and long incubation times (weeks to months), as these
have been shown to increase up to a hundredfold the number and diver-
sity of bacteria that can be cultured (47). Soil treatment methods prior to
isolation on solid medium included (i) placing lignin-amended Bio-Sep
beads into warmed and control plots for 3 months (4) and then transfer-
ring them to a minimal medium (48) with Kraft lignin as sole C source
under anaerobic conditions for 6 weeks, (ii) diluting soil to extinction in a
soil solution mimic (49) and growing the resultant dilutions under aero-
bic conditions at room temperature prior to plating on solid medium, (iii)
drying soils at 120°C for 1 h with or without a 1-h 30°C phenol treatment
designed to select for Gram-positive organisms, (iv) surface-sterilizing
and then grinding plant roots in an extraction solution to select for endo-
phytic bacteria (50), and (v) vigorously stirring soil in the presence of 2.24
mM dithiothreitol and 1 mM sodium pyrophosphate for 1 h prior to
plating to enable the separation of bacteria from soil while minimizing
oxidative stress (51). Media used included oatmeal agar (52), humic acid
vitamin agar (53), lignin soybean flour vitamin agar (54), MM1 (55), 1%
nutrient agar (56), modified carboxymethyl cellulose (CMC) (50), water
agar plus yeast extract, and VL-55 with gellan gum, xylan from birchwood,
carboxymethyl cellulose, pectin, xanthan gum, or readily oxidized carbon
(51). Plates were incubated in the dark at 23 to 25°C in the laboratory at
room temperature in an anaerobic Coy chamber filled with 5% H2, 5%
CO2, 90% N2, or with switching between these conditions every 2 to 3 days
to mimic the reduced oxygen conditions characteristic of soil. We also
prepared roll tubes with a 1 to 2% oxygen headspace (57) and incubated
them at 18°C. In all instances, no-soil negative controls were prepared in
order to rule out the possibility of cross-contamination between warmed
and control plot soils. Plates and tubes were incubated from 1 week to 6
months before colonies were picked. No obligate anaerobes were identi-

fied. All bacteria were streaked to isolation under aerobic laboratory con-
ditions and then cryopreserved in 15% glycerol at �80°C. Freezer stocks
were identified and verified as pure by sequencing of 16S rRNA gene PCR
products using the primers 27F (5=-AGAGTTTGATCMTGGCTCAG-3=)
and 1492R (5=-TACGGYTACCTTGTTACGACTT-3=) (58). Sequences
were trimmed to include only an average quality score of �60 and exam-
ined for contamination in 4Peaks (version 1.7.2 [Nucleobytes]) before
being assigned taxonomic categories using EzTaxon (59). Closely related
isolates were identified by clustering 16S rRNA sequences at 99% identity
using cd-hit (60), and BLASTn (61) was subsequently used to map meta-
genome 16S rRNA reads to these clusters.

A phylogenetic tree (Fig. 4) of isolate sequences was built with RAxML
version 7.7.2 (62) (100 bootstraps, GTRGAMMA model of nucleotide
substitution) using sequences aligned using the bacterial model in RDP
(33). We only included those 295 bacteria that both demonstrated
growth in at least two of the three substrate use assays and for which we
had viable freezer stocks verified as pure by sequencing of the 16S
rRNA gene in our tree. Methanocaldococcus jannaschii DSM 2661 was
included as the outgroup. The 16S rRNA sequences of the following
strains were extracted from NCBI’s 16S prokaryotic rRNA database
(63) and included in the isolate alignment to assist with tree building:
Terriglobus roseus KBS 63, Burkholderia soli GP25-8, Nevskia terrae
KIS13-15, Bradyrhizobium lablabi CCBAU 23086, Flavobacterium soli
KCTC 12542, Opitutus terrae PB90-1, Bacillus subtilis NRS 744, Isospha-
era palida ATCC 43644, and Mycobacterium smegmatis 987-M10. The
phylogenetic tree was drawn and annotated using iTOL (64). Isolation
information for bacteria used in this analysis can be found in Data Set
S2 in the supplemental material.

Physiological characterization of isolates. Isolates were character-
ized for the ability to depolymerize three polysaccharides if their cryopre-
served cultures had been validated as pure and growth was observed on
the assay medium used. Our objective was to evaluate how long-term
warming has affected the ability to degrade polysaccharides in phyloge-
netically diverse organisms isolated from soil, with the expectation that a
greater fraction of bacterial genotypes from heated plots would be able to
degrade biopolymers. All incubations and assays were completed aerobi-
cally at room temperature (23 to 25°C), as these are the conditions under
which all isolates had been maintained following isolation. With a few
exceptions for very slow-growing isolates, isolates were streaked from
freezer stocks onto 10% tryptic soy agar (TSA) 6 days prior to character-
ization. Three distinct colonies were selected, and each was inoculated
into 10 ml of 10% tryptic soy broth (TSB) and allowed to grow for 24 h
with gentle shaking (120 to 150 rpm). Ten microliters of this culture was
inoculated onto solidified medium with 0.1% chitin, carboxymethyl cel-
lulose (TCI C0045), or xylan (catalog no. X4252; Sigma) for evidence of
depolymerization, where depolymerization is seen as zones of transpar-
ency around growth on otherwise-opaque medium for chitin, and as
zones of yellow on otherwise-purple-brown medium following staining
with Gram’s iodine for xylan and cellulose (65). Chitin from crab shells
(catalog no. C-7170; Sigma) was colloidized for inclusion in medium by
soaking 15 g in 112.5 ml of 12 M hydrochloric acid with periodic stirring
for 1 to 2 h, and then precipitating it in 3.375 liters of ice-cold distilled water
overnight, filtering the pellet, and rinsing it with ice cold phosphate-buffered
saline (pH 7.5) until the eluent reached circumneutral pH. We used MM
medium (66) as the base for plate-based assessment of zones of clearance.
Chitin degradation was examined after 11 days of growth, while xylan and
cellulose degradation was assessed after 4 days. The bioinformatic tool con-
senTRAIT (5) was used to calculate the mean phylogenetic trait depth for
groups where at least 90% of the members are able to use a substrate (
D).
Significant differences in isolate potential for biopolymer utilization were as-
sessed using a phylogenetic logistic regression method implemented in the
phylolm package in R (version 2.4 [https://cran.r-project.org/web/packages
/phylolm/index.html]), using 1,000 bootstraps (67).

Accession number(s). Metagenomes and all annotations are available
in IMG (https://img.jgi.doe.gov/) under taxon object identification (ID)
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numbers 3300001606 to 3300001636, 300001638 to 3300001650,
3300001652, 3300001653, 3300001658, and 3300002954, and in NCBI’s
Sequence Read Archive under accession numbers SRX2013848, SRX2014317
to SRX2014349, SRX2014378 to SRX2014381, SRX2014384 to
SRX2014388, SRX2014390, SRX2014391, SRX2014394, SRX2014397,
and SRX2014398.

RESULTS
Diversity of carbohydrate-degrading genes. The metagenomes
were dominated by bacteria, which accounted for an average of
97.8% � 0.06% of the protein-coding reads and 91.6% � 0.5% of
the rRNA reads across all samples. Independent of the annotation
method, Actinobacteria, Acidobacteria, and Proteobacteria ac-
counted for the majority of annotated metagenome reads (see Fig.
S1 in the supplemental material). In contrast, eukaryotes ac-
counted for 1.53% � 0.07% of protein-coding reads. Carbohy-
drate-active enzyme genes were identified by mapping Pfam IDs
(37) to the CAZy database (40) and included glycoside hydrolases,
glycosyltransferases, polysaccharide lyases, and carbohydrate
binding motifs (see Fig. S2 in the supplemental material). As ex-
pected based on annotated genomes, these genes accounted for
1.59 to 2.08% of the protein-coding genes present in the meta-
genomes (40), with similar relative abundances at Prospect Hill
and SWaN and a lower relative abundance at Barre Woods (see
Fig. S2). There are 162 carbohydrate-active enzymes for which a
Pfam-to-CAZy match is possible, and all were identified in our
metagenomes. Of these, glycoside hydrolases associated with al-
pha-glucosidase linkages (GH13) and glycosyl-transferases (GT4)
were the most abundant (see Fig. S3 in the supplemental mate-
rial). The diversity of CAZymes was generally unaffected by
warming treatment, with unchanged Shannon index [H � 4.04
versus H � 4.06, t(4.91) � 2.31, P � 0.070] and a small but sig-
nificant decrease in Pielou’s evenness with warming [heated J �
0.80 versus control J � 0.81, t(4.73) � 2.82, P � 0.039] in the
organic horizon at Prospect Hill. Based on a permutational anal-
ysis of variance (ANOVA), the taxonomic composition of individ-
ual CAZymes was driven first by soil horizon (R2 � 0.37, P �
0.001), then by site (R2 � 0.055, P � 0.039), and finally by warm-
ing treatment (R2 � 0.034, P � 0.037).

Effects of warming on abundance and diversity of carbohy-
drate-degrading potential. Metagenomic sequencing of soils
from the three warming studies revealed that chronic warming
significantly altered the repertoire of carbohydrate-degrading
genes in an experiment-specific manner. The number of carbohy-
drate-degrading genes as a fraction of all annotated reads was sig-
nificantly increased by warming, but only for the shortest (5-year
warming) and longest (20-year warming) duration experiments,
which are colocated within the experimental site away from the
site warmed for 8 years (see Fig. S2 in the supplemental material).
At the 20-year site, warming increased carbohydrate-active genes
by 2.90% in the mineral horizon [z(7) � 31.8, P � 0.0015]. In the
organic horizon, warming decreased the abundance of carbohy-
drate-active genes by 4.57% [z(7) � �4.81, P 	 0.001] and de-
creased the abundance of glycoside hydrolases by 6.8% (P �
0.021). At the 5-year site, warming increased (4.45%) the fraction
of genes annotated as carbohydrate active in the organic horizon
[z(7) � 2.09, P � 0.037].

When all experiments were taken together, three genes showed
a consistent response to warming (Fig. 1). In the organic horizon,
warming was associated with decreased chitosanase genes (GH75)

and with increased cellobiohydrolase genes (GH48). In the min-
eral horizon, warming was associated with increased alpha-gluco-
sidase genes (GH65), a family that mostly contains sugar phos-
phorylases. Random forest analysis followed by Boruta feature
selection identified an additional five gene families predictive of
warming treatment in the organic horizon and 11 in the mineral
soil (Table 2). The enzyme families identified by this method are
able to degrade a variety of compound classes, including starch,
chitin, and cellulose.

To determine whether the abundance of specific carbohy-
drate-active enzyme families was changed by warming, we ex-
amined data from each site individually. Warming treatment
only increased two gene families at the 5-year site (SWaN). At
the 8-year site (Barre Woods), almost as many gene families
increased as decreased with warming in the organic horizon
(Fig. 1). However, genes associated with cellulose degradation
consistently increased with warming in both mineral and or-
ganic horizons. At the 20-year site (Prospect Hill), individual
carbohydrate-degrading gene families significantly affected by
warming increased in abundance in the mineral horizon and
decreased in abundance in the organic horizon. After 2 decades
of warming in these soils, gene families responsible for oligo-
saccharide degradation were consistently negatively affected by
warming in the organic horizon.

Actinobacteria, Acidobacteria, and Proteobacteria dominated
the carbohydrate-degrading gene pool and shifted in dominance
with warming (Fig. 2). In the mineral horizon in all experiments,
warming treatment increased the fraction of reads annotated to
Actinobacteria carbohydrate-degrading genes while decreasing the
fraction annotated to Proteobacteria (Fig. 2). Only at Barre
Woods, the experiment warmed for 8 years, did warming treat-
ment have a similar effect in the organic horizon, increasing Acti-
nobacteria and decreasing proteobacterial carbohydrate-degrad-
ing genes (Fig. 2). Warming also decreased the relative abundance
of carbohydrate-degrading genes annotated to Eukaryotes in the
organic horizon at the two longer-running experiments (Fig. 2).
This was consistent with a 22.4% decrease in the eukaryotic-to-
prokaryotic rRNA gene ratio with warming for all experiments
[beta regression, z(23) � 2.17, P � 0.030].

Some polysaccharide-degrading genes significantly affected by
warming treatment in both soil horizons had altered phylogenetic
distributions (Fig. 3). A substantial fraction of reads for the three
enzymes that increased with warming in both soil horizons at
Barre Woods were annotated to Actinobacteria. However, the
number of reads annotated to Actinobacteria significantly in-
creased with warming only for GH4 in the organic horizon. Al-
though warming increased the overall abundance of GH31 in the
mineral horizon at Prospect Hill, the number of reads annotated
to Acidobacteria decreased with warming treatment. In contrast,
although warming treatment decreased the overall abundance of
GH31 by 16.9% in the mineral horizon, the number of reads for
this gene annotated to individual phyla was unaffected.

Carbohydrate-degrading capacity of isolated bacteria ex-
posed to 20 years of warming. We characterized the capacity of
295 bacterial isolates in 6 phyla (10 classes, 14 orders, and 34
families) from warmed and control treatments at Prospect Hill
(20-year experiment) to degrade the carbohydrates carboxy-
methyl cellulose (CMC), xylan, and chitin. These organisms
were cultivated as representatives of the diversity of organisms
found in our soils, not for their ability to degrade these poly-
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saccharides. Including those organisms, we did not have satis-
factory sequence or substrate utilization data to incorporate
into our phylogenetic tree; our isolate collection contains rep-
resentatives of all dominant phyla found in the metagenome
but is enriched in Firmicutes and Betaproteobacteria and depleted
in Acidobacteria (see Fig. S4 in the supplemental material). Ap-
proximately 70% of the isolates showed at least 99% identity
over the 16S rRNA gene with at least one other isolate, resulting
in 103 clusters of closely related isolates. We found a significant
phylogenetic signal-to-substrate depolymerization (greater-
than-expected phylogenetic clustering of identical trait states
where the phylogenetic correlation parameter a � �4; a �

25.6, 31.8, and 10.3 [67] and Fritz and Purvis’s phylogenetic
signal metric �D � 1 � 0; �D � 1 � 0.251, 0.393, and 0.500
[68, 69] for CMC, xylan, and chitin, respectively). However,
these traits were only conserved to a mean 16S rRNA depth (
D)
(5) of 0.01 or less in all cases, indicating that even “conspecific”
organisms sharing 99% 16S rRNA identity do not always share
the ability to degrade a given polysaccharide in our assay. This
is typified by the observation that isolates clustered at 99% 16S
rRNA identity showed divergent substrate utilization patterns
on many occasions, even for organisms isolated from the same
warming treatment (see Table S2 in the supplemental mate-
rial).

FIG 1 Effect of chronic warming on the relative abundance of polysaccharide (polysacc.)-degrading genes in organic (A) and mineral (B) soil. Points denote
mean percent difference in relative abundance of CAZymes between heated (H) and control (C) plots as a fraction of annotated reads, and are colored where
regression coefficients of a negative binomial model regression differed between warmed and control plots (Benjamini-Hochberg corrected Wald test, P 	 0.1
for individual sites, P 	 0.05 for all sites together). Symbol size is proportionate to genome-standardized abundance in the control plots. Panels are separated into
all sites analyzed jointly to look for an overall warming effect (“all sites”) or separately by site, in increasing order of experiment age.

TABLE 2 CAZy gene families identified as indicative of warmed or control plot metagenomes

Warmed or
control

Mineral Organic horizon

Indicator gene families
Classification
error rate (%)a Indicator gene families

Classification
error rate (%)

Warmed GH26, GH4, GH46, GH65, GH66, GH76, GT4, GH48,
GH52, CBM2, GT1, GT4

25.0 GH48, GH85 36.4

Control GT35, GT5 16.7 GH75, GH100, CBM5, GT13, GH98 16.7
a Error refers to fraction of samples incorrectly assigned to warming treatment when just using the subset of genes identified as indicators by the Boruta algorithm at P value of
	0.01. Example: if the relative abundance of each of GH75, GH100, CBM5, GT13, and GH98 was to be taken from a control plot mineral soil sample and used to try and determine
whether that sample came from a warmed or control plot, 16.7% of the time, the sample would be incorrectly assigned as coming from a heated plot.
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Despite divergent warming responses of conspecifics, a phylo-
genetic logistic regression showed that exposure to long-term
warming significantly increased the probability of CMC and xylan
depolymerization by isolates (logistic regression coefficient b0 �
0.707, P � 0.0040 and b0 � 0.641, P � 0.0073) (Fig. 4). Chitin
depolymerization was not significantly affected by warming (b0 �
0.453, P � 0.13).

DISCUSSION

We expected that warming treatment would increase the car-
bohydrate-degrading potential of the microbial community in
the 20-year experiment. We found this to be the case in the
mineral soil only; warming significantly decreased the fraction
of genes annotated as being capable of degrading carbohydrates
in the organic horizon. However, at the 5-year experiment,
there was an increase in the relative abundance of biopolymer-
degrading genes in the organic horizon. These results suggest
that warming may have enriched for a carbohydrate-degrading
gene pool in the organic horizon in the short term but eventu-
ally led to a depletion of these genes as the organic matter was
increasingly degraded and/or translocated to the mineral hori-
zon. Since organic horizon communities are enriched in car-
bohydrate-active enzymes compared to mineral soil commu-
nities (15), organic matter that is incompletely degraded in the

organic horizon may enter the mineral horizon as particulate
organic matter, promoting an increased abundance of carbo-
hydrate-degrading genes in the mineral horizon. Warming
treatment may increase the translocation of partially degraded
organic matter into the mineral horizon by increased inverte-
brate activity in summer (70) or increased soil surface freeze-
thaw outside the growing season (71). Such increased mixing of
the organic and mineral horizons is consistent with our previ-
ous observation that bacterial communities in warmed organic
and mineral soils are more similar to one another than com-
munities in control organic and mineral soils are in these soil
samples (16). Therefore, we posit that warming may cause an
immediate loss of soil organic matter (SOM) primarily from
physically unprotected pools in the organic horizon, but over
time, the mineral horizon plays a more important role in pos-
itive feedback to climate. However, quantification of particu-
late organic matter in the upper mineral soil is necessary to
validate the hypothesis of increased translocation from the or-
ganic horizon. Furthermore, additional annual and seasonal
time points must be sampled to verify whether the observed
changes in microbial community structure and function are
consistent over time. Finally, while sites were selected to be as
similar as possible for the warming experiments, edaphic dif-

FIG 2 Effects of experimental warming on the fraction of annotated reads assigned to dominant phyla in organic (A) and mineral (B) soil. Circles are plotted as
the percent difference between warmed and control plot values, with the size proportionate to the number of polysaccharide-associated reads in the metagenome
assigned to the phylum. Other parameters are as per Fig. 1.
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ferences between sites (Table 1) cannot be ignored as possible
explanations for the differences in the horizon specificity of the
warming response.

Our results also indicate that bacterial biopolymer degradation
may be increasingly important to soil organic C cycling in a warm-
ing world. Fungi tend to dominate the microbial biomass and
decomposition of litter in temperate forests (72) but generally
form just a small fraction of metagenome reads (12). We observed
a small and declining eukaryote contribution to both the polysac-
charide-degrading gene pool and the overall gene pool in the or-
ganic horizon with warming in the present study. Because of the
poor representation of environmentally relevant eukaryotes in
genomic databases (73), it is possible that the decrease in eu-
karyotes is an artifact of our annotation method. However, we
believe this is unlikely, because both quantitative PCR (qPCR)
data from the present soil samples (16) and phospholipid fatty
acid (PLFA) analysis (22) from the 20-year site showed a trend
toward reduced fungal abundance and increased or unaffected
bacterial abundance with warming. A strong extraction or anno-
tation bias against fungi is also unlikely, as RNA coextracted with
and analyzed in the same manner as the metagenomes used in the
present study contained an average of almost 25% fungi. The fun-
gus-to-bacterium biomass ratio has also been observed to de-
crease with warming in many other studies (74), with key excep-
tions occurring where mycorrhizal fungi have accompanied an
expansion of host plants (75, 76). One possible mechanism for this
shift in the microbial community responsible for carbohydrate
degradation is through reduced soil carbon content; fungal bio-
mass tends to increase with organic matter content and C/N ratio
(77), and soil C tends to decrease with warming (78). An addi-
tional plausible mechanism for reduced fungal relative abundance
under warming at the 8-year site only is a reduction in plant host
tissue available for colonization; fine-root biomass was reduced by
warming in this experiment (18). Distinguishing between these

two hypotheses is not possible with the data used in the present
analysis but could be important for understanding how plants and
microbes may interact to drive ecosystem-level feedback to cli-
mate warming.

Warming increased the fraction of carbohydrate-degrading
genes annotated to Actinobacteria in the mineral horizon at all
sites and in the organic horizon at Barre Woods. This is consistent
with a global trend toward increased relative abundance of this
phylum under warming (74), including in metagenomes of a de-
cade-long prairie warming experiment (12). Although members
of the Actinobacteria show considerable variability in their ability
to degrade carbohydrates (79), the genomes of Actinobacteria in
our metagenomes were on average enriched in glycoside hydro-
lases responsible for cellulose, starch, and xylan degradation com-
pared to other phyla based on a CAZyme-to-RNA polymerase
subunit B standardization (see Fig. S5 in the supplemental mate-
rial). A substantial fraction of individual carbohydrate-active
genes belonged to Actinobacteria and were significantly increased
by warming, suggesting an increasing role for Actinobacteria in the
degradation of carbohydrates with warming. However, alternative
explanations for the increased relative abundance of Actinobacte-
ria cannot be excluded, such as an ability to better tolerate altered
abiotic conditions related to warming, such as drier soils (80),
compared to other taxa. Indeed, soil moisture was generally lower
in heated plot soils (Table 1). These results also do not preclude
the importance of other bacterial taxa in the degradation of soil
carbohydrates; soil Actinobacteria may be overrepresented in
genomic databases compared to other phyla due to their biotech-
nological relevance (81).

In line with previous studies (79), we found that carbohydrate
degradation was phylogenetically conserved. Due to cultivation
bias (82), phylogenetic correction is required to conclude in-
creased probability of carbohydrate degradation ability (83), al-
though many previous papers comparing the physiological capac-

FIG 3 Taxonomic distribution of polysaccharide-degrading genes for which the overall abundance was significantly affected by warming in both the organic
horizon (top row) and mineral soil (bottom row); see Fig. 1. Differences in fractions of Pfam reads assigned to a given taxon and function were analyzed using
a t test with Benjamini-Hochberg correction. (A) Barre Woods. (B) Prospect Hill. No genes were affected by warming treatment in both horizons at SWaN.
“Other” includes all reads identifiable to at least the domain level. �, P 	 0.1; *, P 	 0.05.
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ity of bacteria isolated from different environments or under
different conditions in the laboratory have failed to consider the
potential need to correct for phylogenetic autocorrelation in their
analysis (84–86). With this analysis of isolate physiology, we were
able to establish that there is a trend toward increasing capacity of
bacteria for degradation of cellulose and xylan with warming. The
fact that an increased probability of degrading chitin was not ob-
served in isolates from heated plots may be explained by reduced
absolute (16, 22) and relative (this study) eukaryote abundance,
since fungal cell walls and arthropod exoskeletons are the primary
sources of chitin in soil (87). However, we caution that since the
collection of bacteria isolated and characterized for biopolymer

degradation in the laboratory is not entirely representative of the
diversity and abundance of organisms in our study sites, applying
this finding directly back to soils would be flawed. Nonetheless,
the cultivation and characterization approach taken in the present
study affords the unique opportunity to observe the functions
demonstrated by individual bacteria, where metagenomics only
enable examination of the potential function of the soil metaor-
ganism. Furthermore, cultivation of conspecific organisms from
dissimilar environments may eventually provide insight into the
physiological basis of microevolutionary trends shown by bacteria
in response to climate change.

While metagenomics and isolate cultivation can provide a rea-

FIG 4 Phylogenetic tree of bacterial isolates collected from warmed and control plots or immediately adjacent to experimental plots at Prospect Hill. Branches
are colored according to phylum or class (for Proteobacteria). Inner ring of colors denotes whether isolate came from warmed (red) or control (blue) plots or
outside the plots (green), while outer rings denote whether the isolate was able to degrade the polymer in a 4-day (CMC and xylan) or 11-day (chitin) assay on
solid medium, as shown in the key. Breaks in color ring denote type strains inserted for orientation. Archaea were removed from the tree after building. Positions
with a color in the color ring but no data for any substrate failed to grow in the plate-based assay.
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sonable evaluation of the range of phenotypes organisms can take
on, in situ function is contingent upon numerous factors not read-
ily captured in the present study. These include spatial and tem-
poral heterogeneity in substrate availability and community struc-
ture (88), seasonal differences in transcriptional response (89),
expression of isoenzymes and/or uptake transporters with differ-
ent Km/Vmax tradeoffs (2), gene-gene interactions (90), and inter-
actions between substrate quality, quantity, and microbial physi-
ology (24). Furthermore, metagenomics is liable to access the
genomes of both active and inactive, living and dead cells (91).
Intensive physiological assessment of dominant bacteria coupled
to field-based studies of the in situ transcriptional or proteomic
profiles of these organisms holds promise for closing a number of
these gaps.

Soil organic matter decomposition is directly promoted by el-
evated temperatures in the short term (3, 78), and our study sug-
gests that chronic climate warming may also indirectly boost de-
composition by favoring those microbes with the ability to
degrade common litter polymers. Although the distinct start times
and geographic locations of the three warming experiments mean
they form an imperfect chronosequence, our results further indi-
cate that the effect of warming on the potential for carbohydrate
degradation may vary with duration of warming and depth of soil.
Soil respiration at the 20-year experiment has shown a triphasic
respiration response (23, 92); our observation that the microbial
community was enriched in genes for carbohydrate degradation
in the organic horizon of the 5-year experiment and mineral soil of
the 20-year experiment suggests that the secondary burst of respi-
ration may have originated from the mineral soil. In the mineral
soil at the 20-year site, as at all experiments in the present study,
Actinobacteria increased in relative abundance, indicating that Ac-
tinobacteria may have been important for sustained carbon loss
from these soils at the time of soil collection. Nonetheless, since we
sequenced metagenomes from just a single time point, further
assessment of possible interannual and seasonal variability in the
drivers of microbial response to warming is necessary to corrob-
orate our results.

An improved understanding of the effects of climate change on
soil decomposers is increasingly recognized as vital for predicting
soil carbon content. Substantial progress has been made in im-
proving our knowledge of soil-level (20) and ecosystem-level (18,
78) responses to warming, but it is difficult to extend this result to
new sites and conditions without a mechanistic understanding of
how the key microbial players are responding to these changes
(93). In contrast to much of the previous work at our experimental
sites, which has focused on how carbon stocks and flows are af-
fected by warming (17–20), the present study proposes a possible
mechanism by which warming-induced changes in soil carbon
stocks and microbial communities may produce feedback to in-
fluence one another. As such, our results build on other studies
(10–12) and show that an enhanced capacity to degrade carbohy-
drates may be part of a general microbial response to chronic
warming that is shared across ecosystems.
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