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ABSTRACT

Time-resolved phylogenetic methods use information about the time of sample
collection to estimate the rate of evolution. Originally, the models used to estimate
evolutionary rates were quite simple, assuming that all lineages evolve at the same rate,
an assumption commonly known as the molecular clock. Richer and more complex
models have since been introduced to capture the phenomenon of substitution rate
variation among lineages. Two well known model extensions are the local clock,
wherein all lineages in a clade share a common substitution rate, and the uncorrelated
relaxed clock, wherein the substitution rate on each lineage is independent from other
lineages while being constrained to fit some parametric distribution. We introduce a
further model extension, called the flexible local clock (FLC), which provides a flexible
framework to combine relaxed clock models with local clock models. We evaluate the
flexible local clock on simulated and real datasets and show that it provides substantially
improved fit to an influenza dataset. An implementation of the model is available for
download from https://www.github.com/4ment/flc.
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INTRODUCTION

Phylogenetic methods provide a powerful framework for reconstructing the evolutionary
history of viruses, bacteria, and other organisms. Correctly estimating the rate at which
mutations accumulate in a lineage is essential for phylogenetic analysis, as the accuracy
of inferred rates can heavily impact other aspects of the analysis. Classic approaches to
infer the substitution rate of a group of organisms rely on the existence of a so-called
“molecular clock”. The molecular clock hypothesis dictates that mutations accumulate
at an approximately steady rate over time, implying that the genetic distance between
two organisms is proportional to the time since these organisms last shared a common
ancestor. The molecular clock hypothesis was first proposed almost 50 years ago by
Emile Zuckerkandl and Linus Pauling (Zuckerkandl ¢» Pauling, 1965) who suggested that
the substitution rate was effectively constant over time. This very restricted model of
evolution has been implemented using a “strict clock” model in phylogenetic inference
software, but the rates of evolution in many organisms appear to change over time and the
model can not capture this phenomenon. Many prior studies have shown evidence of rate
variation among species (Wu ¢ Li, 1985; Woolfit ¢ Bromham, 2003; Fourment ¢ Holmes,
2015), especially among highly divergent taxa. Rate variation can be attributed to a range of
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factors including difference in background mutation rate, generation time, population size,
and natural selection (Bromham, 2009; Duchéne et al., 2016). The accurate inference of the
substitution rate along a phylogeny has played an important role in estimating the timing
of emergence and the geographic provenance of viral and bacterial outbreaks (Vijaykrishna
et al., 2008; Holmes et al., 2016). This led to the development of more realistic molecular
clock models. These more realistic models come with the expense of added complexity,
but an increase in computational power in recent years has made inference feasible under
complex models.

Relaxed clock models

Richer models can better capture the complexity of the evolutionary process. Thorne,
Kishino ¢ Painter (1998) and Sanderson (2002) proposed to model rate heterogeneity
among lineages using auto-correlated clock models using penalized likelihood and
Bayesian inference, respectively. In these parameter rich models, the substitution rate
of each lineage is assumed to be correlated with that of the parent lineage, emphasizing
a gradual rate change between neighboring lineages. The auto-correlation assumption
could be justified by considering that the substitution rate is influenced by heritable
mechanisms such as metabolic rate or generation time (Gillespie, 1994). In this framework,
it is assumed that the substitution rate varies gradually between neighboring lineages.
However there is no guarantee that rates evolve in an auto-correlated manner, especially
when the timescale under study is relatively small (Drummond et al., 2006). An alternative
approach is to assume that substitution rates on adjacent branches are independent draws
from an underlying parametric distribution. Drummond et al. (2006) chose to forgo the
hierarchical Bayesian framework and opted for a likelihood approach that requires the
rates to fit a discretized distribution, implemented in the BEAST software. The log-normal
and exponential distributions are commonly used to model the rate heterogeneity among
lineages, as they are available in the widely used BEAST1 and BEAST?2 packages (Drummond
& Rambaut, 2007; Bouckaert et al., 2014). Alternatively, Lepage et al. (2007) proposed to
model the rate process as a pure white noise process with a gamma distribution as its
stationary distribution. The auto-correlated and uncorrelated clock models are referred to
as relaxed clock models due their ability to relax the constant rate assumption.

Local clock models

Local clock models are an alternative to relaxed clocks, where the model assumes that the
substitution rate is constant within a clade but can differ between clades (Yoder ¢ Yang,
2000; Yang ¢ Yoder, 2003). Local clocks are based on the assumption that the molecular
clock hypothesis holds for closely related species. For example, this type of clock can
be useful for gene trees that have dense taxon sampling for which rate variation among
related lineages is expected to be minimal (Drummond et al., 2006). However, assigning
local clocks on a phylogeny is not without difficulty in the absence of a preliminary
analysis, and they warrant compute intensive methods that usually require the topology
to be fixed (Yang, 2004; Aris-Brosou, 2007; Fourment ¢ Holmes, 2014). Drummond ¢
Suchard (2010) developed a Bayesian algorithm that infers the phylogeny along with the
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number and location of the local clocks directly from the data. Many other methods
have been developed to model rate variation among lineages such as the compound
Poisson process (Huelsenbeck et al., 2001), the Dirichlet process prior (Heath, 2012) and
the autocorrelated CIR model (Lepage et al., 2007). For a broader overview on the topic we
direct the reader to reviews (Ho ¢ Duchéne, 20145 Dos Reis, Donoghue ¢ Yang, 2016) and
performance benchmark studies (Ho et al., 2005; Lepage et al., 2007).

Introducing the flexible local clock

In this manuscript we introduce a hybrid model that integrates features of both the local and
the relaxed clock models. In the model each local clock can be specified either as a strict clock
(as in the original formulation of the local clock model) or as a relaxed clock. Specifically,
this approach allows closely related lineages to be modeled with a single substitution rate
(i.e., strict clock) while other lineages in the same phylogeny with significant rate variation
can be described with a more flexible model (i.e., relaxed clock). We call this model the
flexible local clock (FLC) model. The FLC model is similar to previous models (Yang,
2004; Aris-Brosou, 2007; Fourment ¢» Holmes, 2014) as it requires to a priori define the
number and location of the local clocks but it allows a richer description of the rate process
trajectory. We evaluate the FLC model using a newly implemented module for the BEAST2
package, which uses Markov chain Monte Carlo to carry out inference of model parameters
(Bouckaert et al., 2014). We reanalyzed an influenza virus (Drummond & Suchard, 2010)
and a HIV (Wertheim, Fourment ¢ Kosakovsky Pond, 2012) data set to evaluate the utility
of the FLC model and compared its fit to the data to that given by other models.

METHODS

Phylogenetic packages such as BEAST provide several options to model lineage-specific
rate variation, known as heterotachy, without overfitting the model. One of the first
ingredients of the FLC model is the uncorrelated relaxed clock model (Drummond et al.,
2006), arguably the most popular lineage-specific rate model. The uncorrelated relaxed
clock model uses a single discretized parametric distribution to model rate heterogeneity.
In the original formulation of the model, a parametric distribution, usually lognormal,
is discretized into a fixed number of components, with the number of these components
equal to the number of branches b in the tree. In its simplest form, the model assumes

a one-to-one relationship between a rate at a branch and one of the components. For a
lognormal distribution, this approach only requires estimating two parameters (i.e., mean
and standard deviation) instead of 2N — 2 parameters if a hierarchical model was used,
where N is the number of sequences. As in the standard relaxed clock model (Drummond
et al., 2006), the FLC model can use the exponential distribution to model rate variation,
although our model could also use other appropriate parametric distributions.

The other ingredient of the FLC model is the local clock which was first proposed
by Yoder ¢ Yang (2000). This model allows lineages within a region of the tree to evolve
at exactly the same rate. We define a local clock on a phylogeny as a monophyletic group
where the substitution rate of every lineage is equal. As in Drummond ¢» Suchard (2010),
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we assume the existence of another clock (e.g., a ‘global’ clock) for lineages that are not
assigned a local clock.

Herein, we propose to relax the constraint that lineages within a local clock evolve at
exactly the same rate by replacing this implicit strict clock by a relaxed clock.

We applied the FLC model to two data sets of heterochronous viral nucleotide
sequences. The first data set comprises an alignment of 69 human influenza A/H3N2
virus haemagglutinin (HA) sequences (987 nt in length) isolated between 1981 and 1998.
The evolutionary rates and time to the most recent ancestors (tMRCAs) of this data set
was previously investigated using a random local clock method (Drummond ¢ Suchard,
2010) with a Bayesian Markov chain Monte Carlo (MCMC) approach implemented in
BEAST1 (Drummond ¢ Rambaut, 2007). We reanalysed the data using BEAST2 with
each of the FLC, uncorrelated lognormal relaxed clock (UCLN), local clock (LC), and
random local clock (RLC) models. As in the original study, our analyses use the HKY 4TIy
substitution model that incorporates gamma-distributed rate variation among sites (four
rate classes). The FLC and LC models require manual assignment of each lineage to a local
clock with the appropriate constraints on the phylogeny. Drummiond ¢ Rambaut (2007)
noticed that the substitution rate of the lineages comprising viruses sampled after 1990
appeared higher than the pre-1990 lineages. We therefore assigned sequences sampled
after 1990 to a local clock for both LC and FLC models. For each local-based model, we
conducted two separate analyses in which the branch subtending the clade containing
the late viruses (1990-onward) were assigned either to a local clock or the ancestral rate.
We specified a diffuse prior on the substitution rates of the LC and FLC models using
an exponential distribution with a mean of 0.003. For the log-normal distribution of
the relaxed clock we used an exponential prior distribution (A =1/0.003) on the mean
parameter and an exponential prior distribution (A =1/0.33) on the standard deviation
parameter. As in the study describing the RLC model we used a Poisson distribution with
A =log?2 as a prior on the number of local clocks, thereby placing 50% prior probability
on a single rate across the phylogeny. Finally, we assumed a priori that rate multipliers
are independently gamma distributed with « = 0.5 and 8 =2 as in Drummond ¢ Suchard
(2010).

For each data set, we calculated the marginal likelihood of the data under each model
using the stepping stone algorithm to compare competing models (Xie et al., 2011). We
used a series of 100 power posteriors where B values are chosen to be evenly spaced
quantiles of a Beta distribution with parameters « = 0.3 and § = 1.0. These parameters
result in half of the power posteriors being evaluated for B < 0.1 for which the power
posterior is changing rapidly, as suggested by Xie et al. (2011). Each MCMC was run for 10
million iterations and the first 10% of the samples were discarded as burn-in.

Simulations

To validate the implementation of our model we simulated data sets using the FLC model.
Our approach is similar to a simulation-based study (Worobey, Han ¢» Rambaut, 2014)
that showed that the local clock model is best suited to model rate variation among
influenza virus sequences sampled from three different hosts (i.e., equine, human, and
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Figure 1 (A) Phylogenetic tree and (B) substitution rates used to simulate data sets.
Full-size Gal DOI: 10.7717/peerj.5140/fig-1

birds). Worobey et al. assigned different local clocks to each of the monophyletic bird and
human clades and simulated nucleotide alignments containing 10,000 sites. Phylogenies
were estimated using either a strict, flexible local or local clock model using the BEAST2
package (Drummond & Rambaut, 2007). The simulations showed that only the local clock
model was able to recover the true tree. In this study, we used the same topology and
divergence times, and replaced standard local clocks with flexible local clocks.

Ten replicates containing 10,000 sites were simulated using the program simultron (Four-
ment ¢ Holmes, 2014) under the HKY model (x = 3 and equal nucleotide frequencies).
The standard deviation o of the lognormal distributions were all set to be equal to 0.2.
The pparameter of the lognormal distributions of the equine, human, and bird clades were
set such as the mean of the distributions were 5x 1073, 1 x 1072, and 1.5 x 1072, respectively
(Fig. 1). The choice of the parameters results in roughly bell shaped distributions centered
on the substitution rates used in the Worobey et al. study. We analyzed the simulated data
sets with the HKY model and the skyline coalescent tree prior under the strict, flexible
local, local, relaxed, and random local clocks. The simulation script is available from

http://www.github.com/4ment/flc-data.

RESULTS AND DISCUSSION

We analyzed the influenza virus data set with BEAST2 under a variety of models including
the FLC model. Since the flexible local clock can be composed of a combination of strict
and relaxed clocks, we specify the type of clock between brackets. For example, we use FLC
[strict&UCLN] to denote a flexible local clock with a strict clock on the early lineages (i.e.,
sequences before 1990) and an uncorrelated lognormal relaxed clock (UCLN) on the later
lineages. For local and flexible local clocks we can specify whether the branch leading to the
clade with a local clock should be included in the new clock (contains the stem). To test
which models better fit to the data we calculated the marginal likelihood for each model
(Table 1).
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Table 1 Marginal likelihoods calculated using the stepping stone algorithm. UCLN, uncorrelated log-
normal relaxed clock; RLC, random local clock; FLC, flexible local clock; LC, local clock. The “Contains
stem” column specifies whether the branch subtending the post-1990 clade is assigned to the local clock.

Model Marginal likelihood Contains stem
FLC [strict&UCLN] —4381.72 No
FLC [UCLN&UCLN] —4382.07 Yes
FLC [strict&UCLN] —4382.92 Yes
FLC [UCLN&UCLN] —4383.28 No
UCLN —4385.04 NA
LC —4386.81 Yes
LC —4387.69 No
RLC —4415.36 NA

As in the original study (Drummond & Suchard, 2010), every model shows a substitution
rate increase in sequences sampled after the 1990 (Fig. 2).

The marginal likelihood estimates (Table 1) suggest that the best models are the FLC
models, followed by the UCLN, LC, and RLC models. The inclusion of the stem in the
FLC and LC models appears to have a minor effect on the model fit depending on the
model, but the marginal likelihood estimates are subject to Monte Carlo error and caution
should be exercised in order to avoid overinterpreting small differences. The 95% highest
posterior density (HPD) of the standard deviation of the lognormal distribution assigned
to the global clock includes zero, suggesting that there is little rate variation outside the
post-1990 clade (i.e., FLC [UCLN&UCLN]). It is therefore no surprise that the marginal
likelihoods of the FLC models with a strict or UCLN clock on the pre-1990 lineages are
similar. Interestingly, the UCLN model appears to fit better to the data than the RLC and
LC models.

Results on simulated data

We simulated 10 data sets under the flexible local model and estimated the phylogenies
using several clock models. The comparison of the maximum clade credibility (MCC)
tree to the true topology reveals that the strict and relaxed clock models could not recover
the rooting of the true tree in any replicate. Interestingly the 95% HPD intervals of the
root node age contained the true value in four and two of the replicates using the relaxed
and strict clock models, respectively. The MCC trees of the standard local clock model
recovered the true rooting and the root age was recovered in the 95% HPD in only three
replicates. The MCC trees of the flexible local clock model had the same rooting as the true
tree in 9 out of 10 cases and the 95% HPD of the root age contained the true value for 8
out of 10 replicates.

Limitations and conclusions

As in the standard local model, the flexible local clock model introduced in this paper
assumes that the user knows the number and the location of the rate shifts in the phylogeny.
Drummond ¢ Suchard (2010) devised the random local clock to address this limitation
using a stochastic search variable selection method to sample over random local clocks.
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Figure 2 Posterior distributions of the mean substitution rate of the lineages comprising viruses sam-
pled after 1990 and before 1990. UCLN, uncorrelated lognormal relaxed clock; RLC, random local clock;
FLC, flexible local clock; LC, local clock. For the local clock models labeled no stem, the branch subtend-
ing the post-1990 clade is not assigned to the local clock.

Full-size Gl DOI: 10.7717/peerj.5140/fig-2

Unfortunately that approach is not easily amenable to integration with the FLC model
since the substitution rate within a clock can either be constant or heterogeneous across
lineages. Although it should be possible to use reversible jump MCMC to sample the
posterior distribution it is not clear how to deal with a variable number of lineages assigned
to a relaxed clock. For example, the assignment of a relaxed clock with a two parameter
distribution to a single branch would over-parametrize the model. An interesting direction
for further research would be to develop an algorithm that automatically selects the clock
type for each local clock.

Until a method exists for automatic determination of the placement and type of local
clocks, users of the model will need to determine these manually via exploratory analysis of
datasets. Future work could investigate the conditions under which simpler clock models

Fourment and Darling (2018), PeerdJ, DOI 10.7717/peerj.5140 7110


https://peerj.com
https://doi.org/10.7717/peerj.5140/fig-2
http://dx.doi.org/10.7717/peerj.5140

Peer

break down and provide guidance to users of the FLC on how to identify conditions where
the model is likely to provide an improved fit relative to other alternatives.

The FLC model is implemented in the BEAST2 package as a plugin and is available from
https://www.github.com/4ment/flc. This implementation inherits the flexibility of the
BEAST? architecture as it can be integrated through the plugin system without changing
the code base and it is fully compatible with the other model components.
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