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Abstract
Fibrotic diseases take a very heavy toll in terms of morbidity and mortality equal to or even greater than that caused by 
metastatic cancer. In this review, we examine the pathogenesis of fibrotic diseases, mainly addressing triggers for induction, 
processes that lead to progression, therapies and therapeutic trials. For the most part, we have focused on two fibrotic diseases 
with lung involvement, idiopathic pulmonary fibrosis, in which the contribution of inflammatory mechanisms may be sec-
ondary to non-immune triggers, and systemic sclerosis in which the contribution of adaptive immunity may be predominant.
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Introduction: fibrosis reflects the loss 
of homeostasis resulting in excessive tissue 
repair

Fibrosis is a pathological term describing the excessive 
accumulation of extracellular matrix in a tissue. This process 
typically results from tissue injury followed by unregulated 
and overexuberant repair. The replacement of functioning 
cells and the induction of disordered tissue architecture 
induced by collagen-rich “scars” typically compromises 
organ function [1, 2]. Organs such as the lung, liver, kidney, 
the gastrointestinal tract, and skin are composed of epithe-
lial cells as well as many other different cell types and are 
exposed to different environmental factors. Fibrosis and the 
complications that result from fibrotic diseases contribute to 
nearly 45% of all deaths in the United States.

A dysfunctional, often overexuberant, repair process 
following injury results in different fibrotic disease phe-
notypes unique to each of these organs. Injury can be 
initiated by identifiable triggers such as infection and can-
cer, but most often the inciting triggers that lead to the 
evolution of a fibrotic disease are not known and likely 

differ from organ to organ and from disease to disease. 
However, when considering subsequent events, there are 
certain common features in different fibrotic diseases that 
are shared across different organs [1]. In general, injury 
or death of parenchymal cells (typically epithelial cells) 
in a tissue results in the activation of innate immunity, 
this is followed by some regulated tissue remodeling and 
then homeostasis is restored (Fig. 1). In a fibrotic dis-
ease, there is typically a persistent source of tissue injury 
or apoptotic death that contributes to uncontrolled tissue 
remodeling usually in the context of uncontrolled or per-
sistent inflammation as well (Fig. 1). It is helpful, though 
this may be an oversimplification, to think of fibrosis as 
having temporal and interconnected stages. The initial 
or triggering stage typically involves epithelial injury 
and dysfunction. This is followed by a stage of immune 
cell recruitment, though the degree of inflammation in 
different disorders may vary, and indeed immune cells 
may themselves serve as the “trigger” in some disorders. 
This could occur when immune cells are autoreactive or 
because the parenchymal cells are infected and thus serve 
as immunological targets. Fibrosis culminates with a final 
stage of dysregulation within the mesenchyme, those 
portions of an organ that are often described as “con-
nective tissue”. This final stage may be propagated and 
amplified by tissue hypoxia, tissue rigidity or stiffness 
and epigenetic alterations in innate immune cells [2, 3]. 
Understanding the nuances of the pathogenic processes 
that are common to different fibrotic diseases can help 
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us identify druggable pathways and molecules that could 
be targeted using a plethora of modern drug development 
technologies.

Notions of what drives fibrosis are continuing to 
evolve, and it is our lack of precise knowledge that in 
part contributes to the lack of effective therapies for these 
diseases. While reversing previous scarring of a tissues 
is a challenge, the goal of therapy is to not just prevent 
ongoing cellular and molecular events that continue to 
drive the process of fibrosis, but also induce tissue regen-
eration by skewing the balance of some well-understood 
pathogenic mechanisms.

In this review, we will first briefly touch upon two 
debilitating fibrotic disease both of which involve the 
lung but have distinct features. Through the lens of these 
two diseases, we will summarize distinct, but yet to be 
firmly established, initiating mechanisms that may lead 
to fibrosis and then discuss the stages of perpetuation and 
progression of fibrosis shared between these two diseases. 
We will end with some thoughts about newer systems 
approaches in these two diseases to identify novel thera-
peutics that might come to fruition in the not-too-distant 
future.

Section one: human fibrotic diseases

In this section, we touch on two debilitating fibrotic dis-
eases, idiopathic pulmonary fibrosis (IPF) and Systemic 
sclerosis (SSc), both of which target the lung, to illustrate 
the mechanistic understanding of fibrogenesis in human 
diseases. IPF and SSc-ILD (interstitial lung disease in sys-
temic sclerosis) are distinct lung diseases in which there 
is still much more to be learnt about the biological bases 
for disease presentation and this knowledge could impact 
clinical diagnosis and patient management [3]. Although 
both these conditions present with dysregulated fibroblast 
activation and myofibroblast accumulation, the initiating 
events and pathways of disease perpetuation and progres-
sion appear to be vastly distinct. While persistent alveolar 
and airway epithelial injury defines the core of IPF disease 
pathogenesis, SSc-ILD manifests defective endothelial cell 
homeostasis [4]. Unlike in IPF where the role of inflam-
mation in disease pathogenesis and progression has been 
increasingly questioned recently, SSc and SSc-ILD are 
well documented to have a major inflammatory compo-
nent [5].

Fig. 1   An overview of the pathogenic events in fibrosis
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Idiopathic pulmonary fibrosis

IPF is a chronic, progressive form of interstitial lung disease 
with an overall prevalence of 5–30 cases per 100,000 per 
year and a median survival rate of 3–5 years post-diagno-
sis (with no disease intervention) [6]. IPF is a diagnosis of 
exclusion defined by the absence of the known causes of 
lung disease [7]. It is usually characterized by interstitial 
pneumonia and peripheral bilateral reticulation (thickening 
of the septae) with honeycombing predominantly periph-
erally in the lower lobes of the lung, distorted pulmonary 
architecture resulting in reduced gas exchange and hypoxia, 
and eventually respiratory failure and death [6]. The only 
curative treatment available for IPF remains lung transplan-
tation; however, two drugs—nintedinib and pirfenidone—
have been approved that slow disease progression although 
the quality of life has not been positively impacted [8]. Once 
thought to be a disease caused by chronic inflammation, evi-
dence accumulated over the last decade, including the lack 
of consistent immune infiltration and the failure of immune-
suppression trials (PANTHER, Etanercept etc.) has relegated 
the notion that inflammation is a major driver of IPF patho-
genesis to the sidelines [9]. By the time of diagnosis there 
are many indications suggesting alterations in immunity, but 
active inflammation is mostly past its peak [10, 11].

A common underlying feature of IPF patients is advanced 
age. The incidence of IPF is remarkably high in older indi-
viduals and a body of evidence has emerged over the past 
decade highlighting the association of the hallmarks of 
aging with IPF [12]. These features include dysregulated 
genomic stability, telomere erosion, mitochondrial dysfunc-
tion, senescence, oxidative stress, altered cellular crosstalk, 
defective nutrient sensing and ER stress, loss of proteostasis 
(the dynamic regulation of a functional proteome) and defec-
tive autophagy [13].

Systemic sclerosis

Systemic sclerosis is an auto-immune ‘orphan’ disease 
characterized by vascular damage and immune activation 
followed by progressive and unresolved fibrosis of the 
skin and some internal organs, most commonly the lung. 
Immune dysregulation and microvascular damage in the skin 
and internal organs are hallmarks of SSc [14]. SSc presents 
with enormous heterogeneity, potentially resulting from 
a complex network of interactions between structural and 
inflammatory components including different cell types, 
cytokines and chemokines as well as components of the 
extra-cellular matrix. SSc can vary widely in terms of dis-
ease manifestations and patient outcomes and clinically SSc 
is a condition with a high unmet medical need [14]. From 
the physician’s perspective, once the diagnosis is made, the 
parameters used to determine potential disease progression 

and treatment choices are poorly defined and there is as yet 
no robust approach to patient stratification using diagnostic 
methods and clinical biomarkers. Although SSc can be clas-
sified into diffuse cutaneous SSc (dcSSc) or limited cutane-
ous SSc (lcSSc) based on the extent of skin involvement 
[15], a significant proportion of patients cannot be placed 
in either category and recent efforts have tried to improve 
subset classification of SSc using various biomarkers, gene 
signatures and combinations of clinical parameters. Both 
dcSSc and lcSSc can present with pulmonary involvement, 
impacting the vasculature as well as the parenchyma of the 
lung [16]. Interstitial lung disease sometimes represents the 
initial clinical presentation of SSc [17] while severe ILD 
manifests in SSc patients within 5 years of initial diagnosis 
[14]. Denton and Khanna [14] and Distler et al. [18] have 
extensively reviewed the need for a better understanding of 
SSc disease heterogeneity to effectively design and execute 
therapeutic trials. Overall, the prognosis in SSc remains 
poor, and dcSSc has a 10-year mortality rate of ~ 20%.

Many of the genetic associations in SSc are related to 
inflammation and adaptive immunity and it is not unreason-
able to speculate that aberrant immune activation following 
environmental triggers initiate SSc pathogenesis. The pres-
ence of disease-specific auto-antibodies prior to the onset 
of symptoms or the diagnosis of SSc is consistent with this 
hypothesis [19] and the aberrant autoimmune response at 
the onset of SSc appear to be directed towards the endothe-
lial cells in small blood vessels [20]. Many recent studies 
have investigated the mechanistic details of the initial vas-
cular injury in SSc and its contribution to pathogenesis [21]. 
Attempts are also being made to “back-translate” findings 
in the clinic and correlate these findings with mechanistic 
studies. The injured endothelium appears to undergo defec-
tive repair—with dysregulated angiogenesis and aberrant 
vasculogenesis resulting in the development of the specific 
structural changes in small vessels that are characteristically 
seen in SSc [22–24].

Section two: genetic, epigenetic 
and environmental triggers for the induction 
of fibrosis

A wide variety of triggers can result in the development 
of progressive fibrotic disease either by causing persistent 
injury or apoptosis of parenchymal cells. These triggers 
include inherited germline mutations, recurrent or persis-
tent infections, chronic exposure to irritants and particu-
lates like smoke and silica, and immune-mediated chronic 
inflammation [13]. Regardless of the initiating events, the 
common underlying feature of all fibrotic diseases is the 
accumulation of abnormally high numbers of myofibroblasts 
that are responsible for the excessive deposition of ECM 
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(extracellular matrix) components that directly impact organ 
function [25]. Many fibrotic conditions are accompanied by 
a robust state of inflammation that is well modulated dur-
ing tissue homeostasis and physiologic wound repair; any 
external triggers that disrupt this balance can result in a state 
of chronic inflammation leading to fibrosis. There are condi-
tions where immune cells may trigger fibrosis as has been 
described in SSc, asthma, IgG4-related disease and NASH, 
to cite but a few examples, some of which will be described 
below. However, in some diseases like IPF, progressive 
fibrogenesis may occur in the absence of any evidence of 
an active inflammatory state as revealed by examination of 
lung tissues from IPF patients [26]. Progressive fibrosis also 
results from dysregulated interactions between the epithe-
lial and mesenchymal compartments of a tissue or organ, a 
mechanism that has been proposed for the pathogenesis of 
IPF [27]. In addition, epithelial-to-mesenchymal transition 
has been postulated to be a mechanism triggering fibrosis in 
the context of cancer, as well as in IPF [28]. Although we 
have categorized triggers into discrete groups, clearly there 
is overlap between these groups.

Inherited mutations affecting epithelial cell 
homeostasis

Many genetic variants that contribute to susceptibility to 
fibrotic diseases affect the function of the parenchymal cells 
of the affected organ in a given disease. Some genetic vari-
ants affect all cells in the body but may have more prominent 
effects in certain tissues and organs. IPF is a good exam-
ple of a disease in which a range of mutations/polymorphic 
variants alter the function of bronchoalveolar epithelial cells 
[29]. In general, these mutations either disrupt the barrier 
(thus making the cells more susceptible to environmental 
insults) or induce cell-intrinsic changes such as cellular 
senescence, that contribute to the development of fibrosis.

The dominant risk factor for IPF is a polymorphism in the 
promoter of the MUC5B gene, a gain-of-function mutation 
that results in excessive production of the MUC5B mucin 
that is found both in conducting airways as well as in distal 
airways [30]. Excess MUC5B in lung epithelia is postulated 
to impair mucociliary clearance in the context of some envi-
ronmental insults to the bronchoalveolar epithelium and may 
thus trigger fibrosis specifically in the context of the lung. 
Desmoplakin (DSP) is a component of desmosomes and 
genetic variants of the DSP gene that contribute to increased 
DSP expression in the lung also contribute to IPF suscepti-
bility by presumably causing desmosomal dysfunction and 
loss of epithelial barrier function [31]. IPF-related variants 
of AKAP13, that encodes a RhoGEF, also likely contribute 
to epithelial barrier dysfunction [32].

Variants of genes that encode for surfactant proteins 
SP-B, SP-C and SP-A1/2 (SFTPB, SFTPC and SFTPA1/2, 

respectively) are associated with various lung diseases [33]. 
These protein variants result in protein misfolding, increased 
ER-stress and a dysfunctional epithelial cell phenotype that 
facilitates tissue remodeling and fibrosis [34, 35].

Mutations in many genes that contribute to the genera-
tion and maintenance of telomeres (TERT, TERC) result in 
shortened and dysfunctional telomeres which trigger a DNA 
damage response [36–39]. Rare variants of other genes that 
contribute to telomere biogenesis and maintenance (DKC1, 
PARN, RTEL1, TINF2) have been described in familial pul-
monary fibrosis [40–43]. The DNA-damage response that is 
initiated at dysfunctional telomeres can be pro-fibrotic and is 
linked to a wide spectrum of ILDs and can initiate cell cycle 
arrest and lead to premature senescence and apoptotic loss 
[44, 45]. Aberrant telomere function seems to directly con-
tribute to alveolar stem cell failure, defective alveolar repair 
and fibrosis possibly because the rate of cell loss exceeds 
the rate of replacement [46–48]. Variants in telomerase-
related genes are found in about a quarter of all patients with 
familial IPF, and in about 10% of patients with sporadic IPF. 
About half of all the patients with these mutations have a 
non-IPF diagnosis but comparable rates of progression, lung 
function decline and survival [49]. Mutations in genes that 
contribute to telomere function are also mutated in about 
10% of SSc-ILD patients. TERT and TERC mutations have 
also been linked to liver cirrhosis.

Polymorphic variants in autophagy genes are an impor-
tant component of Crohn’s disease, although these variants 
have not been specifically linked to patients who present 
with strictures. In SSc, however, ATG5 is linked to suscep-
tibility suggesting that defective autophagy might contribute 
to this fibrotic disease. Polymorphic variants in a number 
of collagen genes that encode subunits of Type IV, Type V, 
Type XIII and Type XXII collagen have all been linked to 
the diffuse cutaneous form of SSc as has the CTGF (connec-
tive tissue growth factor) gene whose protein product which 
will be mentioned later in this review.

Mutations in immune‑related genes

When considering human fibrotic diseases, IPF is a good 
example of a disorder in which the immune system is 
not considered to be a central player (although inflam-
mation and immune activation are likely very relevant as 
described below), while SSc is an excellent example of a 
fibrotic disease in which immune mechanisms are thought 
to predominate. Many polymorphic variants in genes that 
affect the function of immune cells are, however, linked to 
IPF. TGF-β has pleomorphic functions that go beyond the 
immune system and interestingly TGF-β-related mutations 
are seen in IPF but not in SSc [50]. Mutations in TLR3, 
an endosomal TLR that responds to double-stranded RNA 
and TOLLIP, which encodes a protein that contributes to 
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the turnover of the IL-1R and of some Toll-like receptors 
are also seen in IPF [51]. Polymorphisms in IL1RN that 
encodes IL-1RA, the IL-1 receptor antagonist, are also 
relevant in IPF [52, 53], as is a polymorphism in the gene 
encoding the IL-8 chemokine [54]. These variants suggest 
an important role for innate immunity in IPF. A likely 
functional role for adaptive immunity and effector T cells 
in IPF is also suggested by the fact that an HLA-DRB1 
polymorphism is also linked to IPF [55]. CCL18 is an 
innate chemokine abundant in human lungs and which is 
relatively poorly studied since it has no murine ortholog. 
It is believed to be involved in lung homeostasis. A pol-
ymorphic variant in CCL18 that increases levels of this 
chemokine in the blood is linked to a better prognosis in 
IPF [56].

SSc is perhaps the best example for an autoimmune eti-
ology for fibrosis, though other autoimmune diseases like 
IgG4-related disease (IgG4-RD) and lupus nephritis should 
also be considered in such a context. While there are poly-
morphic variants in a number of genes that encode extracel-
lular matrix proteins as well as in other non-immune pro-
teins are seen in patients with SSc, most of the polymorphic 
variants is SSc are in immune genes such as HLA class II 
alleles, the IRF4 gene that encodes a key transcription factor 
relevant to many activated T and B cells, the IL12 A gene 
that encodes a subunit of the IL-12 cytokine, the IL-12RB1 
gene that encodes a subunit of the IL-12 receptor and the 
STAT4 gene, which is activated downstream of the IL-12 
receptor [57].

IPF risk factors: environmental factors, 
comorbidities and viral infections

Persistent exposure to multiple environmental factors includ-
ing dust, fibers, fumes and particulate matter, mostly associ-
ated with occupational hazards, air pollution and smoking 
results in a number of fibrotic lung diseases like IPF, COPD, 
NSIP and others [58, 59]. In addition, comorbidities like 
COPD/emphysema, pulmonary hypertension, GERD, dia-
betes mellitus and obstructive sleep apnea can lead to lung 
fibrosis. These are discussed in detail elsewhere [59, 60] 
and will be alluded to only in the context of fibrotic trig-
gers for the rest of the discussion here. In addition, viral 
infections particularly Hepatitis C virus (HCV), EBV infec-
tions and other herpes virus infections have been associated 
with increased risk of pulmonary fibrosis exacerbations and 
progression of disease [61, 62]. With the emergence of the 
SARS-COV2 coronavirus pandemic, and the staggering 
number of cases and the severity of disease in many indi-
viduals, there is an urgent need to consider the long-term 
implications of chronic respiratory symptoms and fibrotic 
lung disease resulting from these severe infections [63].

Section three: the induction, perpetuation 
and progression of fibrosis in human disease

The precise sequence of events that manifest as pathogenic 
fibrosis are not well established. However, certain risk fac-
tors associated with fibrotic diseases like IPF, including 
genetic predisposition, environmental factors, smoking etc. 
initiate a complex sequence of altered lung homeostasis that 
results in progressive fibrosis. In this section we outline the 
different stages of fibrosis highlighting initiation, perpetua-
tion and progression of pathogenic fibrosis in human lungs.

Damage to epithelial or endothelial cells 
and induction of pathogenic cellular networks

The induction of cellular senescence and apoptosis are 
all likely triggers for fibrosis as implied in the section on 
non-immune mutations above. Senescent epithelial and 
endothelial cell states and their depletion resulting from a 
combination of underlying triggers discussed earlier have 
been shown to mediate pro-fibrotic pathways. Many of the 
genetic associations identified from GWAS studies in IPF 
directly impact epithelial cell homeostasis.

Type-2 alveolar epithelial cells (AEC2s) are the cuboidal 
surfactant producing cells that maintain homeostasis in alve-
olar epithelium and its regeneration following injury. AEC2s 
are self-renewing progenitor cells that differentiate into very 
large and thin type-1 alveolar epithelial cells (AEC1s) which 
specialize in gas exchange in the lung [27, 64–67]. During 
lung homeostasis and repair, AEC2 is required for alveolar 
regeneration by differentiating into AEC1 [68, 69]. Many 
fibrotic diseases of the lung, including IPF and SSc-ILD are 
associated with dysfunctional or depleted AEC2s [70]. Tar-
geted ablation of AEC2, induction of AEC2 senescence and 
blocking stemness of AEC2s in mice is sufficient to induce 
dysfunctional epithelia and lung fibrosis [71–73]. Senes-
cent epithelial cells secrete pro-fibrotic mediators including 
IL-1β, IL-6 and IL-8 which promote fibroblast to myofibro-
blast differentiation as well as their resistance to apoptosis 
leading to the accumulation of a fibrotic mass composed of 
the accumulated myofibroblasts and the extracellular matrix 
[74–76]. A balance of TGF-β and BMP-pathways modulate 
AEC2 to AEC1 differentiation, and this balance is disrupted 
in fibrotic lung diseases with increased TGF-β signaling and 
abrogation of BMP signaling [77]. In addition, regulated 
IL-1β levels are required for AEC2 reprogramming during 
alveolar regeneration but sustained IL-1β availability blocks 
the generation of mature AEC1 and defective re-epitheliza-
tion [77].

A recent study used alveolosphere organoid cultures 
to identify a novel transient cell state between AEC2 and 



5532	 H. Mattoo, S. Pillai 

1 3

AEC1s which was aptly named pre-alveolar type 1 tran-
sitional cell state (PATS) [78]. PATS arise from AEC2s 
following injury and rapidly differentiate into AEC1s. 
These cells exhibit gene signatures of the DNA-damage 
response and express senescence-related genes. Cells 
with features resembling PATS are enriched in the lung 
in human fibrotic diseases such as IPF and SSc-ILD [72, 
78]. Senescent AECs were also recently shown to undergo 
trans-differentiation into a KRT8+ transitional cell state 
with epithelial and mesenchymal cell properties dur-
ing alveolar regeneration following injury [79]. Similar 
cells that show a KRT5-/KRT17+ phenotype accumulate 
in human lung fibrosis and have been recently termed as 
‘aberrant basaloid cells’ [79, 80]. Alveolar epithelial cells 
in fibrotic lungs from ARDS show a KRT8+/KRT17+ phe-
notype and this suggests a potential role for these transi-
tional cell states in multiple fibrotic conditions. These data 
are consistent with what has been described as epithelial-
to-mesenchymal transition (EMT) in IPF pathogenesis, in 
which epithelial cells obtain mesenchymal characteristics, 
including change in morphology, increased motility and 
expression of mesenchymal markers like N-Cadherin, 
Vimentin and a-smooth muscle actin [81, 82]. TGF-β has 
been shown to be a driver of EMT through its effects on 
SNAI1, SNAI2, TWIST and ID2 [83]. The absolute role 
of EMT in IPF pathogenesis remains debatable as line-
age tracing experiments so far have failed to demonstrate 
full trans-differentiation of epithelial cells into fibroblasts 
or myofibroblasts [84]. In the context of many cancers, 
microRNAs have been shown to play a big role in EMT 
[85, 86] and microRNAs have also been implicated in IPF 
with reports on down-regulation of let-7d, mir-29 and mir-
30 as well as upregulation of mir-155 and mir-21 [87, 88]. 
The loss of epithelial barrier function could trigger low-
level chronic inflammation that results in the generation 
of profibrogenic macrophages and is permissive for the 
activation of fibroblasts. Cytokines generated by myeloid 
immune cells that activate fibroblasts and myofibroblasts 
include TGF-β, FGF, PDGF and Galectin-3 [89].

Oxidative stress has been implicated in IPF pathogenesis 
[90, 91]. Two recent articles summarize critical reviews of 
the multiple IPF studies studying oxidative stress, highlight-
ing the observations that strongly implicate oxidative stress 
as one of the major factors contributing to IPF pathogen-
esis [91, 92]. Oxidative stress in lungs results from envi-
ronmental factors such as cigarette smoking induced ER 
stress and ROS production [93], and production of NADPH 
oxidase (NOX4) by immune as well as lung structural cells 
in response to TGF-β stimulation [94]. TGF-β appears to 
drive mitochondrial ROS (mtROS) production associated 
with pro-fibrotic reprogramming of lung cells [94]. NOX4 
activation has been reported to suppress both mitochon-
drial biogenesis and bioenergetics in lung fibroblasts, while 

NOX4′s pharmacological inhibition, or its genetic silencing, 
has been shown to restore them [95]. Increased oxidative 
stress appears to induce premature senescence of the cells 
as a result of which fibroblasts acquire apoptosis resistance 
and persist to stay metabolically active producing high lev-
els of reactive oxygen species (ROS) [96–98]. One of the 
major components of the oxidative stress pathway is STAT3 
activation [99] which has been shown to make fibroblasts 
resistant to apoptosis [100]. More recently, thyroid hormone-
mediated reduction in STAT3 signaling was shown to sig-
nificantly resolve lung fibrosis, further supporting a role 
for STAT3 activation in persistent fibroblast activation and 
fibrosis [101]. Details of the mechanism of fibrosis driven 
by oxidative stress, ER stress, hypoxia and senescence-medi-
ated altered lung homeostasis are provided elsewhere [13].

SSc may be initiated by endothelial cell injury and pre-
sents as a vasculopathy [102]. The exact mechanism by 
which endothelial cells are injured is unclear, and how 
exactly endothelial cell injury results in fibrosis is also 
not clear. Vascular endothelial cells under oxidative stress 
appear to exhibit cell-fate plasticity and undergo endothe-
lial-to-mesenchymal transition (EndoMT) into cells with 
myofibroblast like features, thereby causing vascular dam-
age [102, 103]. Additionally, increased ROS generation 
appears to mediate TGF-β-induced EndMT in SSc and sev-
eral other conditions including atherosclerosis and diabetic 
neuropathy [104–106]. Given its profibrotic role, TGF-β 
mediates EndMT through both Smad-dependent and Smad-
independent pathways, with the involvement of numerous 
transcriptional regulators such as Snail1, Snail2, Twist and 
some Zeb family members [107–110]. In addition, Endothe-
lial cell derived endothelin-1, which is highly upregulated 
in SSc-skin and SSc-ILD lung appears to potentiate TGF-
β-mediated EndMT [111]. A detailed review on the links 
between oxidative and EndMT can be found elsewhere 
[112].

Caveolin-1 (CAV1) expression is down-regulated in 
affected tissues from SSc and SSc-ILD as well as IPF lungs 
[113] and restoration of CAV1 functional domains using 
synthesized peptides and adenoviral-expression reversed 
phenotypes of SSc and IPF in vitro and in vivo in animal 
models of PF [114, 115]. Notch and Wnt/β-catenin path-
ways also synergize to mediate EndMT in vitro and in 
mouse models of fibrosis [116, 117]. These studies have 
demonstrated that EndMT is not a phenomenon restricted to 
experimental animal models since it was observed in stud-
ies performed on lung tissues from patients with SSc-ILD 
and PAH (pulmonary arterial hypertension). Given the pleo-
tropic effect of many of these pathways, further molecular 
understanding of this process is, however, needed to ensure 
safe therapeutic strategies for SSc-related fibrosis.

We have described an immune-mediated mechanism for 
endothelial cell apoptosis in SSc (discussed below) but have 
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not obtained knowledge about the downstream events that 
could lead to fibrosis. It is possible that injured endothelial 
cells release pro-fibrogenic proteins in a manner similar to 
that postulated for injured epithelial cells. Whether endothe-
lial damage is responsible for some degree of hypoxia and 
consequent induction of fibrosis is also unclear.

Immune‑mediated events leading to fibrosis

Epithelial cell damage frequently occurs in the context of 
viral infection and in genetically susceptible individuals this 
can lead to fibrosis. Well-established examples are chronic 
infections with the hepatitis B and the hepatitis C viruses 
that are the major causes of liver cirrhosis when the dis-
ease is viewed in a global context. Progression from hepa-
titis to cirrhosis can take a decade or two, and the chronic 
inflammatory process that results from the activation and re-
activation of virus-specific CD4+ helper T cells that secrete 
inflammatory cytokines and the ongoing albeit somewhat 
inefficient elimination of infected liver cells by cytotoxic 
CD8+ T cells, both contribute to the fibrotic process. The 
overall adaptive immune response in this context is biased 
towards a Type 1 response including NK cells, TH1 cells 
and CD8+ CTLs, though the latter are likely in a state of 
partial exhaustion.

Innate immune pathways facilitating fibrosis

Inflammation driven by innate and adaptive immune 
responses are a common feature in many fibrotic diseases, 
including IPF, where immune infiltrates tend to be abundant 
in monocytes, plasmacytoid dendritic cells, mast cells and 
neutrophils. The inflammation is heterogeneous across most 
of the organs and varies among different diseases, but accu-
mulation of activated macrophages and monocytes appears 
to be a common feature of most fibrotic diseases. However, 
the extraordinary plasticity and pleiotropy of macrophages 
and monocytes has made establishing the pathogenic vs 
homeostatic roles of these cells a challenge and there are 
no successful macrophage/monocyte targeting therapies 
currently available. Macrophages/ monocytes respond to a 
number of stimuli including PAMPs, DAMPs, apoptotic cell 
debris, cytokines and chemokines. TLR4 signaling appears 
to be a key mediator of fibrosis and blockade of TLR4 sign-
aling leads to reduction and reversal of fibrosis in several 
preclinical disease models [118]. The ligands for TLR4 in 
SSc, IPF and other fibrotic diseases have been shown to be 
the alternatively spliced forms of two matri-cellular proteins 
tenacin-C and fibronectin-EDA, HMGB1, S100 and hyalu-
ronan fragments [119–123]. Other TLRs implicated in SSc 
are TLR7, TLR8 and TLR9 which seem to be at least partly 
modulated by TGFβ production [124, 125]. Chronic activa-
tion of plasmacytoid DCs (pDCs) through TLR8 and TLR9 

may mediate SSc pathogenesis by induction of IFNα and 
CXCL4 [124]. Proinflammatory cytokines IL-1 and IL-6 are 
also produced downstream of TLR signaling and have been 
established to be key drivers of fibrosis in SSc; they have 
also been implicated in IPF pathogenesis [126–128]. Block-
ade of the IL6R, however, resulted in an increase in serious 
infections in treated patients and resulted in the termination 
of a clinical trial [129]. IL-6 also seems to act downstream of 
or with lysophosphatidic acid (LPA) to induce an autotaxin 
dependent self-perpetuating loop of fibrosis in experimental 
models of skin fibrosis [130], and levels of all these three 
mediators are elevated in SSc skin.

M2-like and monocyte-derived macrophages also have 
key roles in lung, liver and skin fibrosis. M2-polarized 
macrophages differentiate in the presence of the two major 
type 2 inflammatory cytokines, IL-4 and IL-13. Since there 
is an ongoing debate about the validity of the rigid clas-
sification of macrophages into the M1 and M2 subtypes, 
especially when most tissue studies use a single marker, we 
prefer to describe these cells as M2-like. M2-like polarized 
macrophages are abundant in fibrotic tissues including lung 
and skin from SSc patients, and SPP1+ macrophages which 
resemble M2-polarized macrophages in many ways are 
found in the lungs of IPF patients [131]. M2-like polarized 
macrophages secrete profibrotic growth factors like TGF-β, 
FGF, PDGFα, IGF1 and VEGF [132]. Most of the inferences 
thus far about role of type 2 inflammation in mediating lung 
and skin fibrosis are derived from extrapolating findings 
from murine models like bleomycin induced lung and skin 
fibrosis or they are conclusions drawn from human studies 
that show an association with pathogenic type 2 responses 
like increased periostin and buildup of IL-4- and IL-13-re-
lated pathways (Fig. 2). However, a recent study involving 
the therapeutic blockade of two of the key cytokines of type 
2 immunity, IL-4 & IL-13, underscores the importance of 
type 2 inflammation in dermal fibrosis [133]. This study 
establishes one of the first direct lines of evidence to connect 
type 2 inflammation in human fibrosis. These therapies lead 
to disease modification by blocking the cellular network of 
type 2 innate and adaptive immune responses and more stud-
ies are warranted to gain further understanding of fibrosis 
linked to type 2 inflammation.

Adaptive immune pathways facilitating fibrosis

The abundance of immune infiltrates composed of specific 
subsets of T cells and B cells and the presence of autoan-
tibodies in diseases like SSc underscores the importance 
of adaptive immunity in fibrosis [134]. The T cell infiltrate 
in fibrotic diseases tends to be very heterogeneous and a 
number of T helper subsets have been described to have 
profibrotic roles, though many of the inferences and models 
are derived from experimental preclinical mouse models. 
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The ideal scenario of establishing a direct role of a cell type 
in fibrosis is to demonstrate its abundance in fibrotic tissue 
and to establish that pathology is attenuated when the cell 
type is depleted. The latter is obviously hard to achieve in 
humans, except in the settings of clinical trials; however, 
many therapeutics tend to have a broad effect that does not 
typically reveal a specific disease mechanism. One example 
is that the role of T cells can only be very broadly inferred 
in SSc pathogenesis since immunosuppressive modalities 
like cyclophosphamide (CYC) remain the main therapeu-
tic option, especially in SSc-ILD despite its caveats [135, 
136]. A number of studies have made the case for the role of 
T-helper type-2 (Th2)-oriented immune response with key 
roles for interleukin (IL)-4 and IL-13; however, a contribu-
tion of Th2 cells has never been directly established, and the 
perceived Th2 bias could reflect the contribution of innate 
immune cells that secrete IL-13 as discussed above.

We have identified abundant infiltrates of cytotoxic CD4+ 
T cells in tissue biopsies from IgG4-RD, SSc and fibrosing 
mediastinitis (a fibrotic disease linked to Histoplasma cap-
sulatum infection)[137–140]. Quantitative examination of all 
major T cell subsets in early diffuse SSc, revealed the clonal 
expansion of CD4+ CTLs in the blood and the presence of 
CD4+ CTLs in skin biopsies, outnumbering all other CD4+ 
T cell subsets in the tissues of most patients. Th2 cells were 
not abundant when CD4+ T cell subsets were quantitated 
in the tissues. Both in IgG4-RD and SSc-skin CD4+CTLs 
may be responsible for inducing apoptotic death of cells in 
disease tissues, [138, 139]. The majority of the apoptotic 
cells in SSc tissues were endothelial cells. CD4+ CTLs 
may also be a source of IL-1β as well as TGF-β and these 

cytokines may also contribute to profibrotic events along 
with the innate immune sources [87, 88] (Fig. 3). Activated 
and apoptotic endothelial cells show increased ICAM-1 and 
GlyCAM-1 expression leading to accumulation of Th2/Th17 
cells, macrophages and mast cells that promote inflamma-
tion and aggressive tissue remodeling. More recently, T fol-
licular helper cells have been shown to be present in SSc 
skin, though the studies were not quantitative; these cells 
might contribute to dermal fibrosis in an IL-21 and Mmp12 
dependent manner [141, 142].

The depletion of B cells results is dramatic improvement 
in IgG4-RD and there are some data that argue that B cell 
depletion may benefit patients with SSc as well. Since there 
is no firm evidence to suggest that autoantibodies contribute 
to fibrosis in either of these diseases, we posit that activated 
B cells in lesions may be involved in antigen presentation 
to CD4+ T cells or that they perhaps secrete pro-fibrotic 
molecules. While in IgG4-RD, a much less severe fibrotic 
disease than SSc, reversal of fibrosis has been observed 
with anti-CD20-mediated B cell depletion, the exact mecha-
nisms by which B cells contribute to fibrosis remain to be 
established.

Mechanisms of perpetuation and progression 
of fibrosis

The cell intrinsic changes in epithelial and endothelial cells 
resulting from senescence, genetic predisposition or envi-
ronmental stress and their dysregulated crosstalk, along with 
the ensuing innate and adaptive immune responses create 

Fig. 2   Type 2 immunity and the 
end-stage events in fibrosis
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cellular networks that contribute to perpetuation and pro-
gression of fibrosis in diseased tissues.

The active form of TGF-β is abundant in bronchoalveolar 
lavage collections from IPF patients and is over-expressed in 
IPF and SSc-derived fibroblasts. TGF-β mediates an increase 
in connective tissue synthesis by inducing fibroblast activa-
tion, myofibroblast differentiation, secretion of ECM pro-
teins and increased expression of inhibitors of connective 
tissue proteases. TGF-β is expressed in dysfunctional epithe-
lial cells, activated fibroblasts as well as the infiltrating mac-
rophages in IPF tissue and it induces the increased expres-
sion of a number of pro-fibrotic growth factors and cytokines 
like CTGF and IGF1. CTGF has emerged as an important 
mediator of fibrosis downstream of TGF-β and is emerging 
as one of the most promising therapeutic targets in treating 
IPF, as will be discussed later in this review. Other impor-
tant mediators of fibroblast activation and persistent tissue 
remodeling include TNF-α, PGE2, MCP-1, FGF-2, PDGF 
and others and these are described in detail elsewhere [13, 
143]. These cytokine/growth factor-driven pathways result in 
an increase in connective tissue mass and increased stiffness 
of the affected organs.

The cellular origins of myofibroblasts in lung, skin, liver 
and other organs have been assessed using genetic tools for 
cell-fate tracing [144–147]. Given their contribution to the 
self-perpetuating, progressive phase of fibrosis, identify-
ing the main cellular source of myofibroblasts is important 
to understand the pathogenesis of fibrotic diseases and to 
identify druggable pathways and cell states. Myofibroblasts 

have been demonstrated to originate from resident fibroblast 
subsets, mesothelial cells, pericytes and potentially from epi-
thelial and endothelial compartments following their transi-
tion to mesenchymal-like cell states. A detailed review on 
the origins of myofibroblasts in fibrotic disease can be found 
elsewhere [148].

In many disease settings, fibrogenesis reaches a tipping 
point where fibroblast activation, proliferation and altered 
extracellular matrix (ECM) deposition becomes a self-ampli-
fying loop independent of any of the mechanisms of initia-
tion/perpetuation discussed thus far. The ECM is a source of 
critical spatial and contextual cues under homeostatic con-
ditions, and its altered composition and stiffness in fibrotic 
diseases drive many pathways of fibroblast proliferation, 
migration, and production of pro-fibrotic mediators. The 
mechanisms of end-stage progressive fibrosis involve a set of 
cell–cell and cell–ECM interactions that add another layer of 
complex biology to fibrosis in human disease. Recent studies 
have focused on establishing the ECM-mediated and mech-
ano-sensory driven feed-forward pathways that mediate a 
self-amplifying loop of progressive fibrosis [149, 150]. The 
composition as well as mechanics of the ECM profoundly 
influence the biology of tissue fibrosis and are among the 
most pursued fields of investigation in drug discovery efforts 
towards fibrotic diseases. Fragments of ECM components 
influence myofibroblast differentiation by modulating the 
activity of many pro-fibrotic stimuli including TGF-β and 
integrin signaling and the mechanosensitive Hippo pathway 
effector Yes-associated protein 1 (YAP1). Active TGF-β, 

Fig. 3   Cytotoxic T cells and the 
induction of fibrosis
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integrin and YAP signaling and sustained increase of miR-
21 may drive progressive fibrosis in the absence of ongoing 
injury, creating fibrogenic niches and the formation of fibro-
blastic foci leading to progressive fibrosis [25]. Given its 
role in the progression of fibrosis, a comprehensive under-
standing of the ECM in homeostasis and disease is essential 
to fully capture the mechanisms of controlled tissue repair 
and progressive fibrosis. New evidence is emerging regard-
ing the alterations in ECM composition in the context of the 
aging lung both at the transcriptome and proteome levels 
that could shed some light on the mediators of the alteration 
of the properties of the ECM [151]. The composition of 
the ECM in IPF and COPD lung for example is consider-
ably different from that in normal lungs and the ECM has 
been a source of target identification for novel therapeutic 
approaches in fibrotic lung diseases [152, 153].

The failed resolution and altered ECM in fibrotic diseases 
like IPF results in increased tissue stiffness that is func-
tionally implicated in fibroblast activation and migration, 
another major player in the feed-forward loop of progressive 
fibrotic tissue remodeling. Mechanosensory components like 
cell adhesion protein complexes (including many integrins) 
and ligand gated ion channels exhibit distinct features in 
fibrotic scars and contribute to persistent altered endothe-
lial and epithelial cell states as well as activated fibroblast/
myofibroblast states, as discussed extensively by Tschump-
erlin et al. [154]. Lessons gleaned from these altered states 
in disease vs homeostasis warrant further investigation and 
may be translatable into novel clinical and therapeutic inter-
ventions that target fibrotic tissue remodeling [154, 155].

Section four: lessons from systems‑based 
approaches to investigate mechanisms 
of pathogenic fibrosis

Fibrotic diseases have been historically difficult to study 
and the approaches towards obtaining a mechanistic under-
standing of disease pathogenesis have evolved over time. In 
the past fibrosis research focused on experimental models, 
mostly the bleomycin model in parallel with in vitro studies 
on fibroblasts under different conditions. These models for 
the most part do not resemble most relevant human fibrotic 
diseases. More recently, a number of animal models have 
been engineered that replicate different pathogenic fea-
tures described in IPF/SSc/NASH and are more suitable for 
discovery and pre-clinical testing of candidate therapeutic 
drugs [156]. Over the years, human biopsies and tissue sam-
ples have been studied using newer modalities and system-
atic efforts towards creating consortia and tissue banks have 
resulted in some well-planned studies. In addition, advances 
in high throughput data-generation including genomics, pro-
teomics, metabolomics and studies on the microbiome have 

significantly advanced our understanding of a number of 
fibrotic diseases of the lung, liver and skin [157].

Several large efforts have been in place to understand the 
molecular features of IPF lungs with the goal of capturing 
the heterogeneity of disease pathology and altered cell-
states and cell types. Genome wide transcriptomic studies 
of human lung tissues in IPF have led to the identification 
of novel pathways and molecular targets using systems-
biology methods as well as more reductionist experimental 
approaches [158]. Distinct gene-expression patterns have 
been effectively used to identify potential aberrant devel-
opmental pathways in IPF lungs [159], have contributed to 
the discovery of defective mitochondrial homeostasis and 
function [101, 160] and to the recognition of different patient 
phenotypes and disease subsets [161, 162] and many other 
predictions as well.

The transcriptomic studies mentioned above have 
advanced our understanding of fibrotic diseases in terms of 
potential mechanistic pathways and biomarker profiles of 
disease subsets as well as drug responses. However, these 
studies even with the best mechanistic deconvolution are 
limited by changes in the cellular composition of fibrotic 
tissues and may not necessarily be identifying altered 
‘pathogenic cell-states’. The advances in single cell tech-
nology over the last 5 years has made it possible to identify 
novel previously un-identified types and cell states that have 
helped provide more nuanced insights into the pathophysiol-
ogy of human diseases [163, 164]. The human cell atlas pro-
ject is a great example of how a concerted effort has led to a 
wealth of comprehensive information about molecular cell-
states in ‘healthy’ and ‘diseased’ human tissues [165]. In the 
last 3 years, a number of single cell RNA-Seq studies have 
helped make significant inroads into the multi-cellular com-
plexity of fibrotic tissues and the understanding of complex 
cellular networks that may drive the pathogenic processes 
involved in fibrosis. Single cell profiling of epithelial cells 
sorted from fibrotic lungs of IPF patients identified three dif-
ferent subsets—one with basal cell characteristics, one with 
features of goblet cells from conducting airways and an atyp-
ical transitional cell state that co-expressed AEC2-associated 
cell signatures [70]. A novel population of CCR10+ EphA3+ 
epithelial cells was identified from IPF lungs that showed 
transcriptomic signatures of altered mitochondrial function 
and enrichment of pro-fibrotic pathways [148]. These epi-
thelial cells promoted lung fibroblast and COL1A1 secretion 
and also induce lung remodeling in humanized NSG mice. A 
comprehensive study published recently took a deeper dive 
into the characterization of cell types and cell states by stud-
ying fibrotic lungs from 32 IPF and 18 COPD patients with a 
total of 312,928 cells identifying 38 distinct cell types [80]. 
This dataset is readily accessible to the public on the IPF 
cell atlas and identifies a novel ‘aberrant basaloid’ cell type 
that co-expresses basal epithelial, mesenchymal, senescence 
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and developmental markers, lines fibroblastic foci and poten-
tially activates TGF-β1-dependent and independent profi-
brotic pathways locally. These cells were also validated from 
an orthogonal dataset [131]. These studies confirm the aber-
rant phenotypic and genomic changes seen in IPF lung epi-
thelium. It is, however, not very clear whether these altered 
cell states result from abnormal de-differentiation of alveolar 
epithelial cells or from migrating airway epithelial cells that 
have been altered by the profibrotic micro-environment in 
the lung interstitium. It is also not clear if there is any over-
lap between these altered cell states described in IPF lungs. 
Additional studies with proper ‘normal’ controls may help 
resolve some of these outstanding questions.

In addition to the characterization of altered epithelial 
cells, single cell RNA-Seq has also helped with the iden-
tification of disease-related macrophage heterogeneity in 
fibrotic lungs [131, 166].

Section five: possible future interventions 
including disease‑modifying strategies

Though there have been some advances, IPF and SSc remain 
diseases that lack therapies that are highly effective, and the 
optimal choice or combination of therapeutics is still the 
subject of debate. Nintedanib can ameliorate a decline in 
forced vital capacity (FVC) in patients with SSc and lung 
fibrosis [167], and autologous stem cell transplantation can 
favorably modify disease course in some patients, leading to 
remission or even “cure” [168]. This latter finding speaks to 
the relevance of an underlying causal immune mechanism 
in this disease.

Well-defined recommendations for clinical management 
and standardization of diagnostic criteria for IPF patients has 
made multi-center, randomized placebo-controlled clinical 
trials possible for potential disease-modifying drugs. One 
of the biggest shocks to the field were the failed and possi-
bly harmful PANTHER-IPF (Prednisone, Azathioprine and 
N-acetylcysteine triple combo) [9] and warfarin trials [169]. 
These trials drew the whole field back to the drawing board. 
Eventually through additional randomized clinical trials, 
two effective disease-modifying therapies were identified 
for IPF—nintedanib and pirfenidone [170–172]. Both these 
drugs are approved for IPF and are fairly effective in slow-
ing the decline in lung function, although they both have 
serious side effects. More recently, nintedanib has proven 
beneficial for improved lung function in SSc-associated lung 
disease [167]. Both these compounds, however, slow the 
progression of these diseases and there is a need for alter-
native therapeutic approaches to not just slow disease pro-
gression but to also reverse it. Recent studies have encom-
passed increased efforts to enhance contextual regenerative 

pathways in the lung and liver with a focus on restoring a 
functional epithelium.

In the last decade, a number of biologics have been tested 
in both IPF and SSc with mostly underwhelming results 
in clinical settings. Some examples of failed trials in IPF 
include monoclonal antibodies against CCL2 (Carlumab), 
LOXL2 (Simtuzumab), TNF-α (Etanercept), IL-13 (Traloki-
numab & Lebrikizumab) and others in which patients 
showed no noticeable improvement [173–176]. Combination 
of lebrikizumab and pirfenidone did not meet the primary 
endpoint of lung function decline.

Not all the news has been bad. Pamrevlumab (FG-3019) a 
monoclonal antibody against CTGF showed a very promis-
ing safety and efficacy profile in a phase 2 randomized, pla-
cebo-controlled trial. Blocking CTGF resulted in decreased 
progression of IPF over a 1-year period with multiple posi-
tive efficacy outcomes including lung function and quality 
of life [177]. Over a period of 48 weeks, 10% of patients 
in the Pamrevlumab group experienced disease progres-
sion, compared to 31.4% of patients in the placebo group. 
Progression of lung fibrosis was also reduced significantly 
in patients treated with Pamrevlumab [177]. Two novel 
drugs that also hold potential in improving the outcome of 
mild-to-moderate IPF patients are the Autotaxin inhibitor 
GLPG1960 and recombinant human Pentraxin 2 protein 
PRM-151–202. A Phase 2 trial of GLPG1960 on mild-to-
moderate IPF patients showed significantly improved lung 
function at 12 weeks compared to a lung function decline in 
the placebo group [178]. This drug is undergoing two phase 
3 clinical trials—ISABELA 1 and ISABELA 2 with a total 
of around 1500 IPF patients. More recently PRM-151-202 
has been shown to block the differentiation of proinflamma-
tory macrophages and production of TGF-β1 [179, 180]. A 
phase 2 double-blinded randomized trial of PRM-151-202 
showed significant reduction in rate of decline in FVC and 
stable 6-min walking distance from baseline compared to 
placebo at 28 weeks [181]. Long-term assessment of PRM-
151 also showed good safety and tolerability profiles [182] 
and a phase 3 clinical trial is ongoing.

For systemic sclerosis, immunosuppressive treatments 
like cyclophosphamide (CYC) and mycophenolate mofetil 
(MMF) remain the main therapeutic option, especially in 
SSc-ILD despite its caveats [135, 136, 183]. Given the abun-
dance of auto-antibodies and the presence of B cell infiltrates 
in skin samples of LcSSc and dcSSc patients, Rituximab 
(anti-CD20), which depletes B cells, has been recently tested 
especially in CYC refractory patients, with some success 
[184, 185]. A study comparing rituximab on top of standard 
treatment with standard treatment alone showed a significant 
and persistent benefit to rituximab treated patients [186]. 
Based on these initial findings, large scale and properly con-
trolled multi-center trials are needed to establish the benefits 
of B cell depletion treatments in patients with SSc-ILD. A 
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pilot trial on Belimumab (which blocks BAFF) in patients 
with early dcSSc with background MMF therapy showed 
promising results with improved MRSS scores and gene 
expression changes consistent with decrease in expression 
of B cell signaling with a significant decrease in profibrotic 
genes and pathways [187]. Recently In addition, a monoclo-
nal bispecific IL-4 and IL-13 antibody which failed in IPF 
showed a very promising disease modifying trend in mRSS 
scores in dSSc and robust blockade of biomarkers of type 2 
inflammation-like chemokine (C–C motif) ligand 17 [133].

Conclusions

Although progress has been made both in terms of our 
understanding of the pathogenesis of fibrosis and in the treat-
ment of fibrotic diseases, our understanding still remains 
rudimentary, and all current treatments have failed to make 
a significant dent in the associated morbidity and mortality 
in diseases like idiopathic pulmonary fibrosis or systemic 
sclerosis. Fibrotic human diseases and the development of 
therapies for these diseases therefore continues to pose great 
challenges for the field.
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