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ABSTRACT: Seed priming is considered to play an essential role in the overall improvement
of agricultural crops. The current research work was carried out in order to investigate the
comparative effects of hydropriming and iron priming on the germination behavior and
morphophysiological attributes of wheat seedlings. The experimental materials consisted of
three wheat genotypes including a synthetically derived wheat line (SD-194), stay-green
wheat genotype (Chirya-7), and conventional wheat variety (Chakwal-50). The treatments
included hydro (distilled and tap water)- and iron priming (10 and 50 mM) of wheat seeds
for 12 h duration. Results indicated that both priming treatment and wheat genotypes
exhibited highly different germination and seedling characteristics. These included
germination percentage, root volume, root surface, root length, relative water content,
chlorophyll content, membrane stability index, and chlorophyll fluorescence attributes.
Furthermore, the synthetically derived line (SD-194) was the most promising in majority of
the studied attributes by exhibiting a high germination index (2.21%), root fresh weight
(7.76%), shoot dry weight (3.36%), relative water content (19.9%), chlorophyll content (7.58%), and photochemical quenching
coefficient (2.58%) when compared with stay-green wheat (Chirya-7). The study also found that hydropriming with tap water and
priming wheat seeds with low concentrations of iron yielded better results when a comparison was made with wheat seeds primed at
high concentrations of iron. Therefore, wheat seed priming with tap water and iron solution for 12 h is recommended for optimum
wheat improvement. Furthermore, current findings suggest that seed priming may have the prospect of an innovative and user-
friendly approach for wheat biofortification with the aim of enhanced iron acquisition and accumulation in grains.

■ INTRODUCTION
Wheat (Triticum aestivum L.) is the most important crop in the
world after rice and maize with a total production of 765
million tons, covering 216 million hectares.1−3 The wheat grain
contains 20% food calories and 55% carbohydrates and is a
chief source of food across the globe.4−8 However, besides the
risks of climate change and increased population, wheat
producers and breeders are facing bigger challenges of
malnutrition and food insecurity.9−11 Furthermore, it is
believed that a substantial increase in the production of
agricultural crops after green revolution has led to a gradual
decline in the nutritional quality of elite high-yielding cereal
crops, particularly wheat.12−15 An exceptional rise in
atmospheric CO2 up to 420 ppm has directly affected the
carbon assimilation, the result being decreased accumulation of
both grain micro- and macronutrients.16−19

At least 18 mineral nutrients are vital and required for the
proper growth, development, and reproduction of plants as
well as humans.20,21 Iron (Fe) and zinc (Zn) with atomic
numbers 56 and 30, respectively, are among the important
transition metals on earth, which have been classified as

essential micronutrients needed in small quantities and play
regulatory, catalytic, signaling, and structural roles.22 Fe has a
vital role in plant physiological and biochemical processes, and
many electron transport reactions and plant hormone
synthesizing machinery need iron as cofactor for their
accomplishment.23,24 Leaf chlorosis is a condition during
which a young leaf is turned yellow, which results mainly from
the deficiency of iron. However, if it is present in high
concentrations, it can lead to different types of oxidative
stresses including OH− (hydroxyl radicals), O−2 (superoxide
radicals), and H2O2, i.e., hydrogen peroxide.6,25,26 Deficiency
of Fe and Zn is prevalent in both humans and crops, for
instance, anemia is among the major challenges in developing
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countries, which is due to the consumption of iron-deficient
diet; hence, there is an urgent need to develop an appropriate
strategy to provide ample iron in the daily diet for addressing
the problem.27−30 In cereal crops, an increase in the
concentrations of iron and zinc may result in better crops
and it may also improve human health globally, especially
micronutrients, which are beneficial for enhanced wheat grain
quality, biomass, harvest index, and plant height.31−35

Different approaches that are currently in practice for
improving the grain quality include reducing time from seed
sowing to seedling emergence; minimizing the deleterious
effects of different biotic and abiotic stresses at the germination
stage, and different seed treatments such as pelleting, coating
of seeds, or seed priming.11,36−40 Seed priming treatment has
been proven to have several benefits such as seed dormancy
breakdown, rapid and uniform emergence, deeper roots,
enhanced root growth, stand establishment, better competition
with weeds, formation of sexual organs, early flowering,
resistance to different climatic conditions, and better grain
production in wheat.41−45 It is considered an innovative and
user-friendly approach for wheat biofortification, which
increases iron acquisition and accumulation in grains. In the
seed priming technique, seeds are soaked in solutions of low
water potential to enhance pregerminative metabolic activ-
ities.46−48 It may be categorized as hydro-, osmo-, thermo-,
halo-, and matrix priming.49 Every priming technique responds
differently in different crops and has mostly been successfully
applied for their beneficial effects in many agronomic crops
including soybean, wheat, sunflower, and rice. Among these,
osmopriming can strengthen the antioxidant system to increase
seed germination potential, resulting in an enhanced stress
tolerance capacity in germinated seedlings.32,50 It is generally
believed that changes in wheat seeds, due to priming agents
including water and iron, may have positive prospects in
seedling establishment and subsequent physiological perform-
ances. Furthermore, seed priming with different media has
regularly been employed for the general improvement of seed
crops including wheat. However, the comparison of hydro-
priming and iron priming needs to be investigated, as very little
work in this perspective has been done so far. The present
study was therefore aimed at studying the germination
characteristics and morphophysiological and germination
performance of wheat seedlings through hydropriming and
iron priming.

■ MATERIALS AND METHODS
Plant Materials. The present study was conducted at the

Centre for Plant Sciences and Biodiversity, University of Swat,
in order to investigate the comparative effects of hydropriming
and iron priming on the germination behavior and
morphophysiological characteristics of wheat. The research
was carried out on three wheat genotypes including a
synthetically derived wheat advanced line (SD 194), stay-
green drought-tolerant wheat cultivar (Chirya-7), and conven-
tional wheat variety (Chakwal-50). The selection was based on

two years of detailed characterizations of a core collection of
325 diverse bread wheat for drought stress effects on stay green
and chlorophyll fluorescence with focus on it yield character-
istics. The experimental genotypes originated through Wheat
Wide Crosses and Cytogenetics Program at National
Agriculture Research Centre, Islamabad, Pakistan (pedigree
is given in Table 1).
Seed Priming Experiment. Clean and healthy seeds of all

wheat genotypes were primed with iron (Fe) as iron sulfate
and water (distilled and tap). Briefly, seeds of each genotype
were separately soaked in a 100 mL solution of FeSO4 (10 and
50 mM) and distilled and tap water in a beaker for 12 h. Ten
seeds from each medium were then transferred to Petri dishes
containing filter paper and were kept completely in the dark for
72 h. All the primed seeds were observed on a daily basis, and
germination was considered to have taken place when the
radical reached 2 mm length.51 The germination percentage
(GP; which is the percentage of number of germinated seeds
to total seeds sown multiplied by 100) of seeds was obtained
when the experiment was completed. Mean germination time
(MGT) was measured when the experiment was terminated.
Seed germination index (SGI) was measured as described in
the Association of Official Seeds Analyst (1983)

=GI
TiNi
S

where Ti represents the number of days counted after planting,
Ni is the number of germinated seeds on day 1, and S is the
total number of seeds sown.
The experiment was continued further by transferring three

uniform-sized plants from each replicated treatment to pots for
further morphological and physiological investigation. The
growing medium was a mixture of mineral soil collected from a
nearby field and commercial organic soil, which comprised
deep, well-drained and moderately fine-textured particles. It
was slightly calcareous and nonsaline, with pH 8.1 and an
electrical conductivity (EC) of 0.24 dS/m. The soil was
amended with a commercial organic soil mix with a ratio of
70:30 (v/v) and placed into 2.5 L (24 × 30 cm2) pots,
ensuring a bulk density of 1.2 g·cm−3. Pots were arranged in a
randomized complete block design (RCBD). In pot soil,
FeSO4 (10 and 50 mM) and H2O (control) were employed for
watering purposes on a need basis. All the pots were kept
under light at room temperature. The experiment was
continued for up to 45 d until each plant attained maximum
shoot length. Images were taken with a digital camera (Meiji
infinity DK-5000, Japan). The root surface (RS), root volume
(RV), root diameter (RDia), and root length (RL) were
measured using SmarRoot software,52−54 while shoot length
(SL) was determined with the help of a scale. Sampling was
then accomplished for further physiological analysis.
Leaf Relative Water Content (RWC). For the RWC, the

flag leaf samples were taken from all the treatment plants and
then cut immediately into small discs (0.8 cm diameter). These
discs were weighed (fresh weight, FW). The leaves were then

Table 1. List and Pedigree of Wheat Genotypes Studied during Current Research Worka

acc. no. genotype pedigree

AS-01 Chirya-7 CHINESE-SPRING/AG.CU//GLENNSON-81/3/ALONDRA/ PAVON-76/4/NINGMAI-4/OLESEN//ALONDRA/YANGMAI-4[1281]
AS-02 Chakwal-50 ATTILA/3/HUI/CARC//CHEN/CHTO/4/ATTILA
AS-03 SD-194 CHAPIO/INQALAB 91/4/PICUS/3/KAUZ*2/BOW//KAUZ

aSource: Bioresources Conservation Institute (BCI), National Agriculture Research Centre, Islamabad, Pakistan.
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kept in test tubes and floated in distilled water in the dark at 4
°C for 24 h and weighed again (turgid weight, TW). Finally,
the leaves were dried in an oven at 80 °C for 48 h, and the
weight was determined again (dry weight, DW). Measurement
of the relative water content was accomplished as previously
reported.55

Chlorophyll Analysis. To measure the content of
photosynthetic pigments (chlorophyll a, chlorophyll b, and
total chlorophyll), fresh leaves were collected from each pot,

weighed, wrapped in aluminum foil, and then kept in a freezer
for 72 h. The method of Hiscox and Israelstam56 was
employed for chlorophyll determination with minor mod-
ifications. For this purpose, all the samples were kept in test
tubes containing 5 mL of dimethyl sulfoxide (DMSO) and
heated in a water bath at 65 °C for 35 min. Absorbance of all
the sample extracts was then taken using a spectrophotometer
(BMS-6702) at 645 and 663 nm wavelengths. The contents of

Figure 1.Mean germination time (MGT), seed germination index (SGI), germination percentage (GP, %), root length (RL, cm), root surface (RS,
mm2), root volume (RV, cm3), root diameter (RDia, mm), and shoot length (SL, cm) of the studied wheat lines under different priming media.
Error bars represent standard deviation (n = 3).
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these photosynthetic pigments were then calculated using the
following equations of Arnon’s.57

= A AChla 0.0127 0.00269663 645

= A AChlb 0.0029 0.00468663 645

= A Atotal Chla 0.0202 0.00802663 645

Membrane Stability Index (MSI). The study of Sairam58

was followed for the determination of the leaf MSI. Briefly, two
sets of about 100 mg of leaf tissue were taken in test tubes and
dipped in 10 mL of distilled water. One set was heated in a
water bath for 30 min at 40 °C, and the other was boiled for 10
min at 100 °C. Electrical conductivity of both solutions was
recorded on a conductivity bridge, i.e., C1 and C2 (Elico,

Figure 2. Root fresh (RFW, g) and dry (RDW) weight and shoot fresh (SFW, g) and dry (SDW) weight, relative water content (RWC, %),
chlorophyll contents (Chla, Chlb, and TChl, μg/g) of the studied wheat genotypes under different priming media. Error bars represent standard
deviation (n = 3).
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CM183EC-TDS analyzer, India) and MSI was calculated as
MSI = [1 − (C1/C2)] × 100.
Measurement of Chlorophyll Fluorescence. The study

of Genty et al.59 was followed for the measurement of
chlorophyll fluorescence attributes through a photosynthetic
yield analyzer (Mini-PAM, Walz, Effeltrich, Germany), while
fluorescence nomenclature was according to Maxwell and
Johnson.60 A 0.8 s saturating pulse of 8000 μmol m−2 s−1 in
dark-adapted leaves was used to measure the maximum
fluorescence (Fm) with all PSII reaction centers closed,
while in light-adapted leaves, a second saturating pulse of 8000
μmol m−2 s−1 was applied again.
Statistical Analysis. The experimental design employed

was a two-factor factorial RCBD with three replications,

comprising two treatment factors, which included three wheat
genotypes (Chirya-1, SD-194, Chakwal-50) and four priming
media (tap and distilled water, Fe-10 mM and Fe-50 mM).
The investigated germination, morphological, and physiolog-
ical attributes were then subjected to ANOVA using
STATISTIX 8.1 (Analytical Software, Tallahassee FL).61

Comparison of means among experimental wheats for the
studied physiological traits was accomplished using standard
deviation and Fisher’s least significant difference (p < 0.01 and
0.05).

■ RESULTS
Priming Effects on Germination and Seedling

Attributes. Responses regarding germination percentage

Figure 3. Membrane stability index fresh (MSI, %), photochemical quenching coefficient (qP), actual quantum yield of PSII electron transport
(ϕPSII), maximal quantum yield of PSII photochemistry (FV/Fm), non-photochemical quenching coefficient (qN), and electron transport rate
(ETR) of the studied wheat genotypes under different priming media. Error bars represent standard deviation (n = 3).
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(GP), germination time, (GT), seed germination index (SGI),
root surface (RS), volume (RV), diameter (RDia), length
(RL), and shoot length (SL) are shown in Figure 1. A
maximum GT of 3.04 was observed in SD-194, which was
followed by Chakwal-50 (2.97) and Chirya-7 (2.93). Similarly,
a SGI of 2.95 was observed in Chakwal-50, which was followed
by SD-194 (2.94), while the lowest SGI of 2.88 was recorded
in Chirya-7. A mean maximum RS of 3.73 mm2 was noted in
Chakwal-50, followed by 3.49 mm2 in Chirya-7; however, the
lowest (1.13 mm2) was recorded in SD-194 (Figure 1). It is
evident from the figure that a mean maximum GP of 98.9%
was noted in Chakwal-50, while a GP of 97.3% was observed in
Chirya-7 with 96.9% in SD-194. It is also evident from the
figure that a mean maximum RV of 0.22 cm3 was reported in
Chirya-7, which was followed by 0.16 cm3 in Chakwal-50,
while the lowest RV of 0.07 cm3 was noted in SD-194.
Similarly, a mean maximum RDia of 0.13 mm was measured in
Chirya-7, while the lowest RDia of 0.08 mm was recorded in
SD-194. The result regarding root length showed that a mean
maximum RL of 11.08 cm was noted in Chakwal-50, while the
lowest RL of 10.33 cm was recorded in Chirya-7. Furthermore,
a mean maximum SL of 30.05 cm was measured in SD-194
followed by Chirya-7, in which a SL of 29.93 cm was reported,
while the least SL of 29.61 cm was observed in genotype
Chakwal-50.
Results regarding root fresh (RFW) and dry (RDW) weight

and shoot fresh (SFW) and dry (SDW) weight are shown in
Figure 2. Results revealed that a maximum RFW of 76.3 mg
was observed in Chakwal-50, followed by 73.5 mg in SD-194,
while the least (67.8 mg) was recorded in Chirya-7.
Furthermore, a mean maximum SFW of 692 mg was recorded
in Chirya-7 followed by 654 mg in SD-194, while the lowest
SFW of 618 mg was noted in Chakwal-50. Furthermore, a
mean maximum MGT of 3.1 was recorded in Fe-50 mM-
primed seeds followed by priming with distilled water (3.07),
while the least (2.68) was noted in seeds primed with tap
water. Similarly, a mean maximum GI of 3.06 was recorded in
seeds primed in Fe-10 mM, while the lowest (2.70) was
measured in seeds with tap water. Similarly, a mean maximum
RS of 3.30 mm2 was seen in seeds primed with Fe-10 mM,
which was followed by distilled water (3.12 mm2)- and tap
water-primed seeds (2.90). However, the least mean RS of 1.83
mm2 was measured in Fe-50 mM-primed seeds. Our results
regarding GP revealed that the maximum GP of 100.0% was
observed in Fe-10 mM-primed seed, while the lowest GP of
94.4% was seen in those plants treated with Fe-50 mM.
Similarly, a mean maximum RWC of 74.2% was observed in
Fe-50 mM followed by 68.5% in those treated with tap water,
while the mean lowest RWC of 58.9% was measured in those
primed in Fe-50 mM solution. Likewise, a mean maximum RL
of 12.0 cm was observed in tap water-primed plants, which was
followed by plants treated with Fe-10 mM (11.9 cm). A mean
maximum SL of 33.9 cm was observed in Fe-50 mM followed
by those treated with Fe-10 mM, in which a SL of 33.7 cm was
observed, while the lowest mean SL of 23.6 cm was measured
in those treated with distilled water. A mean maximum RV of
0.27 cm3 was observed in tap water-primed plants, which was
followed by those primed with distilled water, while the least
(0.11) was noted in plants primed with Fe-10 mM. Moreover,
the lowest RV of 0.07 cm3 was observed in Fe-50 mM-primed
plants. Likewise, a mean maximum RDia of 0.11 mm was
observed in tap water-treated plants, while a minimum RDia of
0.08 mm was seen in those plants treated with Fe-50 mM.

Priming Effects on the Relative Water Content and
Photosynthetic Pigments. Results regarding relative water
content (RWC) and chlorophyll contents (Chla, Chlb, TChl)
are shown in Figure 2. A mean maximum RWC of 70.1% was
recorded in SD-194, which was followed by Chakwal-50
(61.9%), while the lowest RWC of 56.2% was observed in
Chirya-7. It is evident from the figure that a mean maximum
Chla of 1.71 μg/g was observed in SD-194, which was followed
by Chirya-7, in which Chla was measured as 1.59 μg/g, while
the lowest (1.49 μg/g) was noted in Chakwal-50. Similarly, a
mean maximum Chlb of 0.50 μg/g was recorded in SD-194,
which was followed by Chirya-7 and Chakwal-50 (0.45 μg/g
and 0.37 μg/g, respectively). Furthermore, a mean maximum
TChl of 2.21 μg/g was recorded in SD-194, which was
followed by Chirya-7 (2.04 μg/g), while the lowest TChl of
1.86 μg/g was measured in Chakwal-50. The effect of the
priming treatment on photosynthetic pigments including
chlorophyll a (Chla), chlorophyll b (Chlb), and total
chlorophyll (TChl) revealed that a mean maximum Chla of
1.71 μg/g was measured in Fe-10 mM-treated plants, followed
by 1.65 μg/g in plants treated with tap water, while the lowest
Chla of 1.47 μg/g was measured in Fe-50 mM. Likewise, the
mean maximum TChl of 2.22 μg/g was observed in plants
treated with tap water, which was followed by 2.14 μg/g in
plants primed in Fe-10 mM, while the lowest TChl of 1.89 μg/
g was observed in plants primed with Fe-50 mM.
Results related to membrane stability index and chlorophyll

fluorescence attributes are shown in Figure 3. Membrane
stability was noted to be the highest, i.e., 70.9% in Chirya-7,
while it was the lowest in Chakwal-50 (62.4%). A mean
maximum ϕPSII (actual quantum yield of PSII electron
transport) of 0.670 was recorded in Chirya-7, which was
followed by Chakwal-50 and SD-194 (0.58). Similarly, it is
evident from the figure that a mean maximum FV/Fm
(maximal quantum yield of PSII photochemistry) of 0.68
was observed in SD-194 and Chakwal-50, while the lowest was
noted in Chirya-7. Also, a mean maximum qP (photochemical
quenching coefficient) of 0.86 was recorded in SD-194, while
the least qN (non-photochemical quenching coefficient) was
recorded in Chirya-7. Regarding the effects of priming
treatment on chlorophyll fluorescence attributes, it was
revealed that a mean maximum ETR (electron transport
rate) of 52.7 was measured in Fe-10 mM-treated plants,
followed by 52.4 in plants treated with tap water, while the
lowest (38.9) was measured in plants primed in distilled water.
Likewise, the mean maximum ϕPSII of 0.70 was observed in
plants treated with Fe-10 mM, while the lowest 0.52 was
observed in plants primed with Fe-50 mM.
Analysis of variance of the studied germination, morpho-

logical, and physiological attributes using different priming
media is given in Tables 2 and 3. The analysis indicated that
the studied wheat genotypes as well as different priming media
were highly different regarding GP, RS, RDia, RWC, Chlb,
ϕPSII, and ETR. The wheat genotypes did not show significant
differences for the rest of the studied attributes. Similarly, the
employed priming treatment exhibited maximum differences
with respect to GI, GT, RL, RS, RDia, SL, SFW, RWC, Chla,
Chlb, TChl, MSI, ϕPSII, Fv/Fm, qN, and ETR. Furthermore,
the interaction between wheat genotypes and priming
treatment led to high differences regarding GT and MSI.
However, this interaction yielded no significant differences for
the rest of the studied characteristics.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02359
ACS Omega 2023, 8, 23078−23088

23083

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02359?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ DISCUSSION
Iron plays an important role in fundamental biochemical
processes including chlorophyll synthesis, mitochondrial
respiration, and nitrogen fixation. It is also a basic component
of many important enzymes such as catalase, ferredoxin,
superoxide dismutase, and peroxidase and hence may be a
limiting factor for plant biomass production and quality.62−68

Present research work focused on the potentiality of
hydropriming and iron priming in terms of its effect on
germination and morphophysiological responses of the studied
wheats, which exhibited enhanced germination and early
primary growth in young seedlings. Hydropriming specifically
with tap water and priming with Fe-10 mM resulted in quicker
MGT, high GP, better GI, ϕPSII, Fv/Fm, qP, and ETR along
with other investigated morphological and physiological
attributes. Regarding GP, the experimental wheats depicted
maximum germination in seeds primed with Fe-10 mM.
Similarly, minimum germination time was observed in the
seeds of Chirya-7 (stay-green wheat cultivar) primed with Fe-
10 mM, with the maximum being observed in those primed
with Fe-50 mM. Regarding seedling RL, the maximum (12.7
cm) was observed in Chakwal-50 (rain-fed cultivar) primed
with Fe-10 mM, while the minimum was recorded in the
Chirya-7 wheat seedling primed with Fe-50 mM. Similar
findings of wheat seed speedy germination after soaking for 12
h in water have been reported.43 Previously, 85% germination
of wheat seeds as a result of hydropriming for 12 h was
demonstrated.69 In the current study, 100% germination
percentage, maximum mean germination time, high root
length, and enhanced chlorophyll content were attained by
some of the genotypes, which could be due to difference in the
genetic background of the studied wheat genotypes and the
optimal priming duration of 12 h as previously reported.36 The
same has previously been reported for other crops also,
including maize, beans, finger millet, sorghum, pearl millet,
rice, sorghum, maize, and cotton.48 This effect could be
credited to the leakage of germination inhibitors into the
priming solution and seed reserve premobilization during the
priming period.70 Our results are generally in accordance with
Giri and Schillinger,71 who previously stated that soaking
wheat seeds in water delivered better germination performance
than that of the other used priming media. In another study by
Dezfuli et al.,72 it was reported that soaking maize seeds in
water for still high duration could lead to a high germination
percentage. Similarly, enhanced seed germination and root
length were reported in wheat genotypes soaked in water.36

Changes in photosynthetic pigments and subsequently in
chlorophyll fluorescence attributes may lead to an alteration in
photosynthetic efficiency, including the capability to harvest
light; hence, observing these traits is essential to determine the
plant photosynthetic effectiveness. In the current research, a
differential trend was observed in the chlorophyll content,
which was positive in the case of plants primed with tap water
and Fe-10 mM, which may be attributed to simultaneous
changes in osmoprotectant and different response levels of the
studied wheats.73−77

In addition to the risks of climate change and increased
population, crops including wheat are also facing bigger
challenges of malnutrition and food insecurity.10 To ensure
food security, exploration of genetic diversity and germplasm
improvement are crucial to the reliable and sustainable
production of crops.78−81 In this context, hydropriming isT
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considered important for ensuring germination to be uniform
and rapid; however, the underlying mechanisms involved have
remained unclear and hence need further exploration. As a
matter of fact, unprimed seeds may need extra time for
germination and those that are hydroprimed may exhibit
enhanced germination, probably through its action on embryo
development and leakage of emergence inhibitors. It may also
play its role through earlier initiation of metabolic processes
accompanied by better synthesis of RNA, DNA, and
proteins.82 Accordingly, enhanced concentration of free
amino acids including proline and soluble sugars has been
reported in hydroprimed rice in an osmotic stress environ-
ment.83 Furthermore, seeds of Medicago truncatula when
hydroprimed have been reported to upregulate the genes
involved in antioxidant activity and DNA damage repair.
Similarly, hydropriming treatment for 4 h enhanced the activity
of formamidopyrimidine DNA glycosylase involved in base
excision repair.84 The ANOVA result revealed that priming
medium has affected the germination characteristics of the
studied wheat genotypes. However, the effect was more
prominent when priming was accomplished with water. The
studied wheat genotypes, on the other hand, were highly
different in response to different priming media used. The role
of Fe-10 mM and priming with tap water was comparatively
much more promising in terms of GP, RV, RS, RDia, RL, SL,
RFW, RDW, SFW, chlorophyll content, ϕPSII, Fv/Fm, qP,
and ETR. The wheat genotype interaction with priming
treatment was also conducive in terms of germination
percentage, chlorophyll a, chlorophyll b, and total chlorophyll
content. Shahverdi et al.85 have also reported previously that
iron priming of Stevia seeds at low concentration has the
potential of reducing the deleterious effect of salinity stress on
the investigated attributes, which included mean germination
time, germination percentage, shoot length, free proline, and
total chlorophyll content as well as antioxidants activities. El
Rasafi et al.86 have reported similar findings of enhancing
germination percentage with priming wheat seeds with iron,
cadmium, and zinc. It has also been reported that iron when
applied at low concentrations in the form of iron sulfate
resulted in enhanced germination behavior and increased
yield.43 Nonetheless, iron sulfate when applied in high
concentrations led to reduction in the number of leaves and
nodules. Hence, care needs to be taken when selecting the
proper concentration of iron for obtaining optimum beneficial
output.

■ CONCLUSIONS
The research study has demonstrated that seed priming in
general is a preliminary step to enhance the germination
characteristics of wheat crop. Priming accomplished with
distilled as well as tap water and low iron concentrations

revealed better germination and seedling performances in the
experimental wheats and was harmful or toxic in high
concentrations. The optimum level of Fe must not exceed 10
mM for better performance of bread wheat in terms of
germination behavior and other related seedling morphological
and chlorophyll fluorescence attributes. Furthermore, current
findings suggest that seed priming may have a prospect of an
innovative and user-friendly approach for wheat biofortification
with the aim of enhanced iron acquisition and accumulation in
grains.
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error 22 75.56 0.165 0.019 0.229 36.7 0.0009 0.0005 0.001 0.005 3.722
aDF, degree of freedom; NS, nonsignificant; *, **, and ***, statistical significances by employing Fisher’s LSD at 0.05, 0.01, and 0.001 α levels,
respectively; RWC, relative water content; Chla, chlorophyll a; Chl b, chlorophyll b; TChl, total chlorophyll; MSI, membrane stability index; ϕPSII,
actual quantum yield of PSII electron transport; FV/Fm, maximal quantum yield of PSII photochemistry; qP, photochemical quenching coefficient;
qN, non-photochemical quenching coefficient; and ETR, electron transport rate.
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