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Higher-order spatial organization of the genome into chromatin compartments
(permissive and repressive), self-associating domains (TADs), and regulatory loops
provides structural integrity and offers diverse gene regulatory controls. In particular,
chromatin regulatory loops, which bring enhancer and associated transcription factors in
close spatial proximity to target gene promoters, play essential roles in regulating gene
expression. The establishment and maintenance of such chromatin loops are
predominantly mediated involving CTCF and the cohesin machinery. In recent years,
significant progress has been made in revealing how loops are assembled and how they
modulate patterns of gene expression. Here we will discuss the mechanistic principles
that underpin the establishment of three-dimensional (3D) chromatin structure and how
changes in chromatin structure relate to alterations in gene programs that establish
immune cell fate.

Keywords: chromatin organization, cis-regulatory interactions, gene regulatory networks, phase-separation,
B and T cell development
INTRODUCTION

During the past two decades considerable progress has been made in the analysis of genes that code
for transcription factors and signaling molecules that control the development of various
hematopoietic cell lineages. Differentiation of a multipotent progenitor into committed adaptive
immune cells involves the activation of cell type-specific genes and silencing of the expression of
genes associated with alternative cell lineages (1, 2). There is a growing evidence that the 3D
organization of the genome and chromatin folding is intimately associated cell fate decisions and
function. Here, we review multiple levels of higher-order genome organization that orchestrate B
and T cell development.
CHROMOSOME TERRITORIES – HETEROCHROMATIN
AND EUCHROMATIN

Although the nucleotide sequence of genomes of various mammalian cells have been revealed, the
spatial arrangement of coding genes and associated regulatory elements within the confined three-
org March 2021 | Volume 12 | Article 6338251
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Pongubala and Murre Chromatin Dynamics During Lymphocyte Development
dimensional (3D) space of the nucleus and its relation to the cell
development and function remains unclear. It has long been
assumed that chromosomes are sequestered into subnuclear
structures such that complex biochemical reactions occur without
crosstalk. Early microscopy studies revealed that in the interphase
nucleus, each chromosome’s genome exists as a condensed unit in a
distinct physical nuclear space termed as ‘chromosome territory’
(CT) (3–6). The position of chromosomes in 3D-nuclear space is
nonrandom but is based on multiple features such as genomic
length, gene-density, and transcriptional activity (Figure 1) (7, 8).
Smaller chromosomes tend to be located toward the nuclear interior,
whereas larger chromosomes are positioned near the nuclear
periphery (9). Complementary biochemical approaches have
demonstrated, wthin the CTs, chromatin is non-randomly folded
as loops of varying genomic lengths and functionally segregated into
euchromatin, consisting of open chromatin comprised of
transcriptionally active regions, and heterochromatin containing
highly condensed and transcriptionally repressed regions (8, 10–
12) (Figure 1). While most of the gene activity of a specific
chromosome is limited to its subnuclear space, some chromatin
loops extend beyond the territory and engage in inter-chromosome
interactions, creating an even distribution of the chromatin
throughout the nuclear space (3, 12–15). These inter-chromosomal
interactions not only regulate coordinated activation but also
facilitate repression of gene expression patterns. Thus, chromatin-
interaction networks within and between the CTs are non-randomly
clustered to generate coregulated transcription hubs. These hubs
utilize overlapping transcription factors and coactivators and
function to facilitate increased transcription and transcript
Frontiers in Immunology | www.frontiersin.org 2
processing by associating with nuclear bodies, such as the
nucleolus, Cajal bodies, and promyelocytic nuclear bodies (PML-
NBs) (16, 17). Thus, nonrandompositioning of CTs generate distinct
active and repressive genome neighborhoods.
GENE SWITCHING BETWEEN THE
HETEROCHROMATIC AND
EUCHROMATIC COMPARTMENTS

Genomic regions at the nuclear periphery predominantly interact
with the lamina leading to the formation of higher-order
structures known as lamina-associated domains (LADs) (Figure
1). Based on the enrichment of epigenetic marks and gene activity,
LADs are located in transcriptionally repressive neighborhoods
(18–20). In a recent study, it has been shown that promoters
become active when moved away from their native LAD location
(21). This is consistent with the notion that the physical association
of lamina proteins, (LADs) impose major constraints on the shape
and peripheral positioning of the genome and attenuation of
transcriptional activity (20, 22). Selected genes in a repressive state
at the nuclear periphery or heterochromatin regions detach and
reposition into the nuclear interior and become transcriptionally
active in a cell and developmental stage-specific manner (20, 23).
Several examples highlight the functional relationship between
transcriptional activity and genome topology during B and T
lymphocytes development. For instance, lineage-specific antigen
receptor rearrangement is closely associated with the ordered
FIGURE 1 | The hierarchical organization of the 3D chromatin. Inside the interphase nucleus, chromosomes occupy distinct territories (highlighted by different
colors). Within each chromosome territory the chromatin is folded into multiple loops and segregated into two distinct compartments: compartment A clustered
around nucleolus and nuclear bodies (permissive region, red lines), and compartment B (repressive region, blue lines) associated with LADs at the nuclear periphery.
Chromatin interactions occur predominantly between the compartments with similar biochemical or functional properties. Majority of the chromatin interactions are
intra-chromosomal. The permissive chromatin regions tend to position away from the nuclear lamina or from pericentromeric heterochromatin. Preferential self-
interactions within the heterochromatin and euchromatin (A and B compartments) regions result in the formation of topologically associating domains (TADs),
demarcated by boundary elements enriched with CTCF/Cohesin. Within TADs chromatin undergo multiple folds to form ‘regulatory loops’ that facilitate close
proximity interactions between gene promoters and their cognate enhancers.
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repositioning of these loci to a localized recombination center (24,
25). IgH locus rearrangements occur at the pro-B cell stage, whereas
Igk locus rearrangements occur at the small pre-B cell stage (26, 27).
3D imaging studies and chromatin conformation capture analyses
indicate that prior to rearrangement, the Ig alleles are associated with
nuclear lamina, a transcriptionally repressive compartment that
inhibits somatic recombination. Preceding the pro-B cell stage Igh
alleles move away from the nuclear lamina to the more central part
of the nucleus, where they undergo large-scale conformational
changes (28–30). As a result, the Igh proximal and distal Vh gene
segments organize as loop domains close to the Dh segment (31–33).
Successful V-D-J recombination of one of the Igh alleles results in the
expression of the Ig m heavy chain, which associates with surrogate
light chain genes (l5 and VpreB) and leads to the assembly of the
pre-BCR at the cell surface (30). Signaling through the pre-BCR
complex blocks rearrangement of the other allele and instructs
repositioning to the pericentromeric heterochromatin (24, 34–36).
Conversely, at the pre-B cell stage, one of the Igk alleles repositions to
the pericentromeric heterochromatin allowing the other allele to
undergo spatial rearrangement that favors recombination (34, 37,
38). Thus, the early-B cell developmental program is accompanied
by the repositioning of Ig loci between euchromatin and
heterochromatin compartments.

Similarly, Tcrb and Tcra loci undergo recombination during
T cell development following relocalization and contraction by
looping in a developmental stage-specific manner. The Tcrb
locus undergoes rearrangement in cells located in the double-
negative (DN) compartment, whereas Va-Ja rearrangements of
the Tcra locus occur during the double-positive (DP) cell stage
(25, 39). The alteration in the spatial positioning of antigen
receptor loci (b chain and a chain) has been suggested to provide
accessibility to the recombination machinery (40–42). Notably,
upon successful rearrangement of TCR alleles (b chain at DN
stage or a chain at DP stage) followed by signaling through antigen
receptors leads to a rapid reversal of locus contraction of non-
productive alleles and their association with pericentromeric
heterochromatin regions (40, 43–46). Nuclear repositioning and
contraction of Ig and TCR loci are closely associated with the
rearrangement, but the precise regulatory mechanisms that control
these chromatin dynamics are not yet fully understood. Similarly,
significant genome reorganization at the nuclear periphery and
associated gene activity changes were detected during T cell
development and function (22, 47). Thus, genome-nuclear lamina
interactions are not only important for structural maintenance, but
they are also intrinsically associated with gene regulation.
CO-REGULATORY HUBS

In addition to the dynamic alterations associated with the
repositioning of genomic regions within CTs, nonrandom
chromatin interactions are crucial for the overall nuclear
organization of gene expression, where transcribing genes are
clustered together at subnuclear sites enriched in transcription
activators or silencing factors. A prominent example involves the
expression of cytokines in peripheral T cells. Specifically in naïve
Frontiers in Immunology | www.frontiersin.org 3
T cells, the regulatory region of Th2 cytokine (encode IL-4, IL-5 and
IL13), locus control region (LCR) located on chromosome 11,
interacts with elements located across the interferon g (IFNg) gene
located on chromosome 10 (48). These inter-chromosomal
interactions have been suggested to be important for rapid
transcription activation following stimulation of naïve T cells (49,
50). Upon terminal differentiation of naïve T cells into either Th1 or
Th2 cells such inter-chromosomal interactions are lost (48). During
Th2 cell development the LCR undergo a series of rapid epigenetic
alterations following TCR stimulation and interacts with nearby
regulatory elements to induce high levels of Th2 cytokine expression
(51, 52). In Th1 cells, T-bet facilitates the interaction of the INFg
promoter with its enhancer to activate gene expression (48, 53). Th1,
and Th2 cells repress IL-4 and IFNg gene expression by repositioning
into heterochromatin regions (50, 54). Hence, the reciprocal pattern
of IL-4 versus IFNg gene expression appears to be under the control
of the transcription factors, T-bet and GATA-3 (55, 56).
SWITCHING NUCLEAR LOCATION
DURING DEVELOPMENTAL
PROGRESSION

Comparative Hi-C analysis of B cells has revealed that while
during developmental progression the majority of the genes
remain in the same compartments a small but significant
percentage of genes (~10%) switched from compartment A to B
and vice versa and displayed corresponding changes in transcript
levels (57, 58). Prominent examples include Ebf1, Satb2, Tead1,
Pou2af1, and Tlr4, reposition from compartment B to A during the
developmental transition from pre-pro-B to pro-B cell stage.
Relocalization of genes from compartment B to A resulted in a
significant increase in promoter-enhancer interactions, leading to
higher gene expression (57, 58). Conversely, genes such as Satb1,
cKit, Cd34 as well as crucial alternate cell fate determinants, including
Gata3, Zbtb16, Klf4, Vav3, and Sox6 relocate to compartment B at
the pro-B cell stage (57, 58). Many essential alternate lineage
determining factors (GATA1, Gfi1, TCF7, Cebpa, Cebpb, Bcl11b,
and Id2) are sequestered in a transcriptionally repressive
compartment at the pro-B cell stage to ensure B cell-fate
specification (58). Recent studies have revealed that plasma cell
fate is orchestrated by widespread changes in nuclear architecture. In
developing plasma cells the Ebf1 locus is silenced by repositioning
from euchromatic to the peri-centromeric heterochromatin region.
Concomitantly, a distinct set of factors, including Prdm1, Atf4, and
Ell2 acquires the euchromatin state (59). Thus, gene repositioning
positively correlates with transcriptional activity crucial for terminal
plasma differentiation. These findings support the concept that
genomic regions and single genes are nonrandomly arranged
within the nucleus. Further supporting evidence for lineage
determinants in the establishment of chromatin reorganization
involves Bcl11b, a key regulator of T cell commitment. Activation
of Bcl11b is contingent upon its interactions with its enhancer that
binds Notch, GATA3, TCF1, and RUNX1 (60). Recent studies have
shown that a long non-coding RNA known as thymocyte
differentiation factor, ThymoD, repositions Bcl11b enhancer from
March 2021 | Volume 12 | Article 633825
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a repressive compartment to an active compartment and juxtaposes
the Bcl11b enhancer and promoter regions by forming a single loop
domain (61). As expected, the absence of ThymoD results in a loss of
activation of Bcl11b due to impaired recruitment of looping factors
such as CTCF and the cohesin complex (61). Thus, selective gene
activation or silencing during the developmental transition from
multipotent progenitors to differentiated B and T cells is a recurrent
principle that instructs adaptive immune cell development.
TOPOLOGICALLY ASSOCIATING DOMAINS

It is now evident that the chromatin folds into clusters of loops,
also named topologically associating domains (TADs) (Figure 2).
TADs are stable and conserved across cell types (62–64). TADs
are arranged contiguously across the chromatin and interspaced
with boundary regions that are enriched for CTCF binding sites
(62, 63, 65). It has been suggested that TADs ensure cell-type-
Frontiers in Immunology | www.frontiersin.org 4
specific gene expression by insulating the promoters from the
enhancers located in a neighboring TAD and enriching for
interactions between promoters and enhancers within TADs (5,
6, 10, 66, 67). Deletion of boundary sequences (63) or disruption
of CTCF binding sites (68) readily result in alterations in TAD
structure. Thus, TADs facilitate regulatory interactions while
restricting interactions with genomic elements outside the loop
domains (69). Consistent with these studies are observations
indicating that genes positioned in the same TAD display
similar expression patterns (57, 70).
DYNAMIC TADS

Initial studies have indicated TADs are invariant structures, but the
chromatin interactions within and between the compartments vary
significantly (62, 65, 71). As described above, B and T cell development
is closely associated with a number of chromatin alterations such as
A

B

FIGURE 2 | Chromatin dynamics in B cell progenitors. Hi-C analysis revealed that the mammalian genome is organized into topologically associated domains (TADs),
generated by aggregation of self-interaction chromatin regions that feature similar properties, permissive or repressive, respectively. TADs are separated from each other
by boundary elements that restrain interactions with adjacent TADs. The boundary elements are enriched with insulator proteins cohesin and CTCF. (A) The cartoon
illustrates the Hi-C interactome of the mouse chromosome 12 for a genomic region that is partitioned into multiple TADs at the pre-pro-B cell stage. The frequency of
intra-chromosomal interactions is indicated by the color gradient. (B) Schematic representation of the extended TAD of the same genomic region observed in committed
B cells (57). During differentiation transcribing regions establish strong ectopic-TAD chromatin interactions leading to the merging of multiple adjacent TADs into a single
de novo TAD. The increased cis-regulatory interactions within and between the TADs may be accomplished by loss of insulator proteins at the boundary regions
accompanied by binding of TFs to their cognate regulatory elements thereby promoting alterations in genome confirmations. Dotted arrow lines represent possible
ectopic-TAD interactions, blue rectangles represent genome scale high-frequency Hi-C interactions, and black arrowheads represent boundary elements.
March 2021 | Volume 12 | Article 633825
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chromatin switching between permissive and repressive compartments,
chromatin remodeling, and developmental stage-specific chromatin
interactions beyond their chromosome territories. These observations
suggest that genome structure and organization are highly dynamic
and such alterations of chromatin topology may have a crucial role in
genome function and maintenance of cell commitment. Hi-C analysis
in differentiating B cells revealed that, while a substantial number of
TADs are constant between pre-pro-B and pro-B cells, a significant
number of TADs are altered (57). Based on the structural variations
of TADs between pre-pro-B and pro-B cell stages, two distinct sets of
TADs – unique TADs and dynamic TADs were identified. The unique
TADs are those that are present only either in pre-pro-B or pro-B cell
types. It has been proposed that increased local genomic interactions
necessary for activation of lineage-specific genes may result in the
formation of unique TADs. On the other hand, the dynamic TADs are
those that undergo division or fusion during developmental
progression (57). Indeed, a significant number of TADs (110)
present at the pre-pro-B cell stage partitioned into two or more
TADs at the pro-B cell stage. Conversely, a large number of TADs
in the pre-pro-B cell stage coalesced to form extended TADs (183) at
the pro-B cell stage (Figure 2). The division or merging of TADs may
be associated with the loss or gain of inter-TAD interactions,
respectively (57). Consistently, increased ectopic TAD interactions
resulted in an expansion of median TAD size and a concomitant
increase in promoter-enhancer interactions and high levels of
transcription (57, 72). Thus, TADs are dynamic and undergo
reorganization during developmental progression and disruption of
boundary elements results in a regulatory loss or gain of gene activity
leading to developmental abnormalities (Figure 2).

Recent investigations of genome mapping using single-cell
Hi-C analysis and imaging studies have revealed that TADs may
not prevail as constant units and may represent as collective
chromatin interactome of a given cell population and thus
challenges the conventional static view of topological
chromatin domains (73–76). Although the single-cell Hi-C
analysis corroborated the existence of large-scale chromatin
compartments – permissive and repressive compartments, the
self-interacting domains (TADs) were found to vary from cell-to-
cell (72, 77). Concurrent with these observations, super-resolution
imaging and single-cell Hi-C analysis demonstrated that the
organizational structure, configuration, and boundaries of TADs
vary extensively between individual cells (72, 73, 75, 78, 79). In line
with these observations, biophysical studies indicate that cis-
regulatory interactome differ dramatically from cell-to-cell (80).
Contrary to population-average analyses (81, 82), high-resolution
sequential chromatin tracing studies revealed TAD-like structural
units in individual cells, despite depletion of cohesin, except the
position of boundaries were altered significantly (73). It has been
suggested that in the absence of cohesin, chromatin folds into
loops of various length scales, as predicted by the chromatin-
polymer model, resulting in the generation of globular structures
involving intra-polymer interactions (83). Despite the nonrandom
organization of chromosomes and genes, their localization and
chromatin interactions vary from cell-to-cell, indicating that gene
structure and activity are dynamic and stochastic (8, 74, 75). The
heterogeneity of genome organization and function has been
Frontiers in Immunology | www.frontiersin.org 5
attributed to multiple influences, including extrinsic, allele-
specific, and intrinsic factors (84). Extrinsic variability occurs
due to cell-to-cell differences in the rate of transcription and
differential expression levels of key transcription factors (85). In
comparison, the intrinsic variability arises from differences in the
binding of transcription factors to their cognate sites and dynamic
chromatin movements in the 3D nuclear space (75). Finally, allele
variability arises from the independent functioning of the two
alleles in the same cell in a mutually exclusive manner (30, 35).
NUCLEAR ARCHITECTURE
AND INSULATORS

Numerous studies had now documented that depletion of cohesin
(81, 86) or disruption of CTCF binding sites (87) readily results in
impaired formation of loops and a reduction in the number of
TADs. However, cohesin and CTCF do not play a significant role in
segregating euchromatin from heterochromatin (68, 81, 82).
Accumulating evidence indicates that in addition to CTCF other
factors may also contribute to insulator function. For instance, the
mediator complex functions in concert with cohesin to establish
higher-order chromatin domains (88). Another transcriptional
regulator, YY1, functions as a structural regulator of 3D genome
(89). YY1 binds both promoters and active enhancers akin to that of
CTCF. Disruption of YY1-binding motifs or deletion of YY1 impair
enhancer-promoter looping and gene expression, indicating that
YY1 is important for enhancer-promoter interactions (89). Earlier
studies revealed that YY1 is essential for Igh locus contraction (90).
Interestingly, like Pax5 deficiency (28), conditional deletion of YY1
results in a block at the pro-B cell stage and YY1-deficient pro-B
cells fail to undergo Igh locus contraction and distal Vh-DhJh
rearrangement (91). These findings have raise the question as to
how these ubiquitously expressed factors (92–95) control cell-type-
specific loop formation. It has been suggested that lineage-defining
transcription factors instruct chromatin modifications and
influence the establishment and maintenance of chromatin
networks that promote lineage-specific gene expression program.
Consistent with this possibility, in situHi-C analysis revealed that in
developing B cells the genome topology undergoes widespread
alterations involving cis-regulatory interaction landscape and that
a majority of cis-regulatory elements bind Ebf1 and Pax5 (57). In
line with these studies, a recent report shows that Pax5 plays an
essential role in reorganizing the Igh locus contraction (28, 96).
How do transcription factors modulate genome topology? It is
possible that during B cell development transcriptional regulators
initiate the formation of nuclear condensates. Indeed recent
observations indicate that the Igh locus is organized as a solid or
weak gel (97).
CHROMATIN LOOPS

It is now established that cohesin and CTCF function together to
establish chromatin folding by loop extrusion (98–101). Briefly,
cohesin is loaded onto chromatin by NIPBL and MAU2
March 2021 | Volume 12 | Article 633825
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heterodimer (102, 103). Once sequestered at chromatin, cohesin
actively extrudes the chromatin fiber until it encounters two
convergently bound CTCF sites (Figure 3) (87, 98, 101, 105, 106).
The extruded loop then folds internally to form a large number
regulatory loops, which promote interactions between regulatory
elements and active genes within the same domain (Figure 3) (10).
Cohesin is negatively regulated byWAPL, which dissociates cohesin
rings from the chromatin (107, 108). Consistent with this function,
deletion of cohesin releasing factor, WAPL, causes prolonged
cohesin retention resulting in the enrichment of larger CTCF
loops and decreased intra-TAD chromatin interactions (109, 110).
Biophysical studies argue that the convergent CTCF barriers are
important to ensure accurate genome folding (105, 111). Multiple
regulatory loops often assemble into ‘transcription hubs’ where
promoters and enhancers are spatially clustered (69). Contrary to
the classical promoter-enhancer model (112), transcription hubs
allow a single enhancer to co-activate multiple gene promoters. On
the other hand, a single gene promoter can be co-activated by
multiple enhancers (113–115). The transcription hubs recruit
overlapping activating or repressing proteins through multiple
mechanisms (Figure 3). Indeed synchronized transcription-
bursting kinetics of the two spatially segregated genes was
observed for a single enhancer (116). A recent study showed that
recruitment of high concentration of activators may increase the
distance between an enhancer and its target promoter upon
transcriptional activation (117). The cis and trans physical
contacts within these hubs may be established independently of
CTCF/cohesin (68, 81, 118). In fact, disruption of the CTCF motif
in the homeobox gene A (HoxA) locus leads to enhanced
interactions between permissive and repressive regions and
increased expression patterns (119). Another prominent example
Frontiers in Immunology | www.frontiersin.org 6
is where perturbation of CTCF-associated boundary elements
results in increased activation of proto-oncogenes that are
frequently associated with T-cell acute-lymphoblastic leukemia
(T-ALL) (120). Similarly, inversion of CTCF motifs in the
protocadherin alpha (Pcdha) locus led to expanded interactions
between repressive and permissive hubs but led to decreased gene
expression (121). These results indicate that CTCF boundary
elements compartmentalize the genome into distinct domains and
regulate gene expression by maintaining appropriate cis-regulatory
interactions within the domain. Consistent with these possibilities,
the majority of the TADs are composed of either permissive or
repressive chromatin regions, as defined by histone modification
patterns. However, only a small number of TADs are composed of
both permissive and repressive regions (57).
NUCLEAR ARCHITECTURE AND ANTIGEN
RECEPTOR LOCUS REARRANGEMENT

Antigen receptor locus rearrangement is regulated by enhancers
as well as architectural proteins. The Igh locus contains multiple
enhancers and particularly the intronic enhancer, Em, and the
intergenic control region 1 (IGCR1) play crucial roles during
locus contraction and rearrangement (122). Disruption of Em
dramatically reduced Dh-Jh rearrangement in pro-B cells and
thymocytes (123). Mutation of CTCF binding elements in
IGCR1 disrupts the rearrangement order and displays severely
reduced Vh utilization (124, 125). Similarly, the Igk light chain
contains two (iEk and kE3’) enhancers. Deletion of either iEk or
kE3’ showed only a modest effect on Igk locus rearrangement.
Conversely, deletion of both iEk and kE3’ enhancers blocked the
FIGURE 3 | Mechanism of chromatin loop formation. TADs contain varying number of chromatin loops generated through loop extrusion by CTCF/cohesin
complexes. Chromatin loop formation facilitates interactions between promoter and enhancer elements. (Right panel) In the presence of NIPBL and MAU2, the
cohesin complex loaded on to the DNA. Then, cohesin extrudes chromatin until a pair of convergent CTCF binding sites is reached. (Right panel) The N-terminus of
CTCF and convergent positioning of the CTCF-DNA complex stabilizes cohesin binding and stall chromatin extrusion leading to the establishment higher-order
chromatin organization. The intervening DNA between two convergent CTCF sites leads to the formation of a loop domain, which adopts variety of complex shapes
comprised of multiple regulatory loops. The internal structure of loop domain is likely determined by polymer chromatin-chromatin self-interactions, which may be
further stabilized by phase separation. The contacts within the loop domains facilitate the targeting of enhancers to specific genes (104). The black arrow depicts the
direction of loop extrusion.
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rearrangement of Igk loci (126). In ab T cells, successful
rearrangement of TCRb is under the control of Eb enhancer
(127). Similarly, the TCRa enhancer (Ea) is essential for double
positive (DP) ab T cell development (128). TCR locus
rearrangement involving the TCR a, b, g and d loci is regulated
by the helix-loop-helix proteins, E47 and HEB (129). In a recent
study, it has been shown that E2A recruitment to distinct cis-
regulatory elements regulates the expression of Rag-1 and Rag-2
genes, crucial for Ig and TCR gene rearrangements, in a lineage-
specific manner (130). Thus various regulatory elements that bind
distinct sets of transcription factors contribute to the spatial re-
organization of the genome at a locus-specific level.
THE ROLE OF GELATION OR PHASE
SEPARATION IN MODULATING GENE
EXPRESSION

While active genes move to euchromatin regions, the repressed
genes are sequestered in highly condensed repressive regions,
referred to as heterochromatin regions. Typically, heterochromatin
regions comprised of repetitive sequences enriched for methylated
histones (H3K9me3, H3K27me3), gene-poor regions and
heterochromatin protein 1 (HP1) occupancy (131, 132). Recent
studies revealed that assembly of heterochromatin domains is
orchestrated by liquid-liquid phase separation (133, 134). Protein
domains that are associated with modest structural complexity tend
Frontiers in Immunology | www.frontiersin.org 7
to assemble into high-density phase separated liquid condensates at
clustered cis-regulatory elements (135–137). It has been proposed
that transcription factors bind at enhancers and promoters to
facilitate the formation of phase separation bodies by rapidly
nucleating high concentration of activators, coactivators, and
components of transcription initiation complex. Prominent among
these factors is BRD4 a co-activator protein that is essential for the
assembly of nuclear condensates involving super-enhancers (138).
These phase separation bodies may play an important role in the
assembly and function of eukaryotic genomes (136, 139, 140).
Additionally, compartmentalization of the genome facilitates the
assembly of enhancer clusters (super-enhancers) (141, 142). These
findings led to the hypothesis that super-enhancers form phase
separated biomolecular condensates akin to that described for the
nucleolus and other membrane-less cellular bodies. The formation of
phase separated bodies compartmentalizes and concentrates the
transcription machinery to induce essential cell-identity genes
(Figure 4) (137, 141, 142, 144). Biophysical studies suggest that
transcription factors assemble into condensates (145). Most recent
studies have indicated that the transcription factor EBF1 binds
genomic regions prior to the detection of chromatin accessibility
that requires the EBF1’s C-terminal domain (146). The Ebf1 C-
terminal domains is interesting since it also harbors a prion-like
domain with the ability to promote phase separation (143). Notably
the ability to phase separate was significantly elevated by interaction
of EBF1 with FUS, prion-like low-sequence complexity RNA-
binding protein involved in transcription, DNA repair, and RNA
A B

FIGURE 4 | Role of EBF1 in orchestrating phase separated condensates. Repositioning of Ebf1 locus is illustrated during the developmental transition from pre-pro-
B to pro-B stage. (A) Genomic locus of Ebf1 is localized in close spatial proximity to the repressive compartment of the nuclear periphery at the pre-pro-B cell stage.
In the absence of Ebf1, B lineage genes are transcriptionally silent due to inaccessibility of the TF to their target sites or lack of TF that are necessary for their
activation. (B) The Ebf1 locus repositions from the transcriptionally repressive compartment to the nuclear interior. The Ebf1 locus becomes transcriptionally active in
response to PU.1 and E2A binding as well as IL-7R mediated signaling. It has recently been proposed that following activation of Ebf1 at pro-B cell stage and
beyond, Ebf1 coordinates the establishment of multivalent interactions involving transcription factors, co-activators and transcription initiation proteins containing
unstructured flexible regions to form a phase separation body (143).
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biogenesis (147, 148). The chromatin remodeler Brg1, a key
component of SWI/SNF chromatin-remodeling complex, also
partitioned into phase separated FUS condensates and co-localized
with EBF1 and FUS into distinct condensates (143). These elegant
experiments revealed a pathway in which the phase separation ability
of EBF1 facilitated Brg1-mediated chromatin opening. Finally, live
cell imaging experiments recently revealed that remote genomic
interactions are subject to severely sub-diffusivemotion reflective of a
solid or weak-gel configuration (97). Chromatin assembled into a
solid or gel-like state facilitates remote genomic interactions within
TADs assembly of droplets while preventing encounters with
genomic regions located outside loop domains (97). It will be of
significant interest to determine how transcription factors, histone
acetyltransferases, and chromatin remodelers act in a solid or gel-like
matter within the context of lymphoid specific patterns of gene
expression and somatic recombination.
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