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Abstract: Leaf variegation has been demonstrated to have adaptive functions such as cold tolerance.
Pittosporum tobira is an ornamental plant with natural leaf variegated cultivars grown in temperate
regions. Herein, we investigated the role of leaf variegation in low temperature responses by
comparing variegated “Variegatum” and non-variegated “Green Pittosporum” cultivars. We found
that leaf variegation is associated with impaired chloroplast development in the yellow sector,
reduced chlorophyll content, strong accumulation of carotenoids and high levels of ROS. However,
the photosynthetic efficiency was not obviously impaired in the variegated leaves. Also, leaf
variegation plays low temperature protective function since “Variegatum” displayed strong and
efficient ROS-scavenging enzymatic systems to buffer cold (10 ◦C)-induced damages. Transcriptome
analysis under cold conditions revealed 309 differentially expressed genes between both cultivars.
Distinctly, the strong cold response observed in “Variegatum” was essentially attributed to the
up-regulation of HSP70/90 genes involved in cellular homeostasis; up-regulation of POD genes
responsible for cell detoxification and up-regulation of FAD2 genes and subsequent down-regulation
of GDSL genes leading to high accumulation of polyunsaturated fatty acids for cell membrane
fluidity. Overall, our results indicated that leaf variegation is associated with changes in physiological,
biochemical and molecular components playing low temperature protective function in P. tobira.

Keywords: cold response; Pittosporum tobira; leaf variegation; linoleic acid; ROS scavenging enzyme;
heat shock protein

1. Introduction

Leaf variegation has been observed in many species of higher plants [1–3] and this special
attractive trait has become a focus of plant breeding as it increases the economic value of ornamental
plants [4]. There are two categories of leaf variegation in plants: structural-related variegation and
pigment-related variegation [5,6]. Two different types of structural variegation have been described,
including the air-space type and epidermis type of variegation, which play adaptive roles to varying
light conditions [7]. Pigment-leaf variegation is most common in ornamental plants because of the
chlorophyll-deficiency [6]. It is marked by the existence of sections that contain abnormal plastids [5].
The leaf color variegation in plants are divided into several types based on color classification for
instance green, yellow and albino (white) sectors on leaves [1,2,8,9].

Nuclear and plastid mutations or changes in expression of several genes which contribute to
chloroplast biogenesis and chlorophyll biosynthesis induce the leaf variegation [10,11]. The white
sectors of variegated leaves lack photosynthetic activity, therefore, leaf variegation may affect
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photosynthetic efficiency [12]. Previously, a transcriptome study of the Arabidopsis white-green
variegated mutant immutans (im) and an Arabidopsis FtsH2 mutant line (var2) revealed that the genes
related to photosynthesis were down-regulated in the white sectors of leaves [13,14]. Furthermore, the
chlorophyll-deficient leaf-mutant also showed the expressional repression of transcriptional factors
GLK1, Ftsz and MinD that regulate chloroplast development and division [15]. Recently, a mutation
in the transcription factor mitochondrial transcription termination factor (mTERF) has been found
to induce colorlessness in leaves of variegated fig [3]. Although these studies have provided a deep
understanding of the variegation mechanism in plants, the advantage of this trait for the good fitness
or for the plant physiology is still poorly understood.

Several potential physiological advantages of variegation have been proposed in plants.
For example, it was reported that leaf variegation is involved in plant defense from enemies including
aposematic coloration, mimicry of dead or infested plants, masquerade and camouflage [16–19].
It can also play physiological roles such as improved water or gas transport [20], mitigation of UV
radiation [21] and thermoregulation [22]. Investigations led on forest trees displaying variegated
leaves hinted that the trait might be a strategy to prevent the attack of herbivores [23,24]. Later, studies
by Mwafongo et al. [25] on leaf variegation patterns in Ledebouria revoluta highlighted two possible
functions including the photoprotection role and the aposematic role. Very recently, Shelef et al. [22]
demonstrated that under lower temperatures, variegated wild type Silybum marianum leaves were
significantly warmer than all-green mutants, conferring cold stress tolerance. These studies showed
that variegation in plants is not just a color mutation but has some physiological advantages.

Pittosporum tobira (Thunb.) Aiton belonging to the family Pittosporaceae originated from East
Asia and at present is being widely cultivated as an ornamental flowering plant in temperate and
subtropical regions around the world [26]. Typically, P. tobira plants are about 2–3 m high with thick,
rubbery and dark green colored leaves. The fragrant flowers of P. tobira have been well studied for their
antimicrobial and anti-oxidant activities [27,28]. Importantly, some cultivars exhibit leaf variegation
with yellowish or creamy white leaf margins and green interior, which have a greater aesthetic appeal
and ornamental value compared to the typical all-green P. tobira. These particular variegated cultivars
are spread to temperate regions. However, besides the aesthetic advantage, the intrinsic physiological
importance of leaf variegation for P. tobira is unknown.

In the present work, we studied two P. tobira cultivars namely, “Variegatum” and “Green
Pittosporum” with distinct leaf coloration features. To thoroughly understand the role of leaf
variegation in P. tobira under cold condition, we investigated the physio-biochemical characteristics at
different temperature gradients and profiled leaf transcriptome of the two cultivars under cold stress.
Our findings elucidate the leaf variegation mechanism in P. tobira and provide novel insights into the
thermo-protective function of this important trait.

2. Results

2.1. Characteristics of Variegated Leaves in Pittosporum Tobira

A naturally occurring leaf variegated cultivar of Pittosporum tobira named “Variegatum” was
collected from Pingdingshan, Henan province in China. The cultivar “Variegatum” bears yellowish
margins and green interior leaves, whereas, the typical cultivar “Green Pittosporum” exhibits dark
green colored leaves (Figure 1). The phenotypic characteristics such as leaf thickness and shape
were found to be similar for both cultivars except for the variegation. It is well documented that
the leaves of variegated plants having green/yellow sectors have impaired chloroplast biogenesis,
less photosynthetic pigments in the yellow sectors and also accumulate excessive levels of reactive
oxygen species (ROS) [29,30]. To verify these observations in P. tobira, we analyzed the chloroplast
ultrastructure in the yellow sector compared to the green sector of the variegated leaf. As shown in
Figure 2A,B, the green sector contained well-developed chloroplasts with stacked grana. In contrast,
in the white sector of the leaf, plastids did not contain stacked grana but contained large starch
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granules and many plastoglobuli (Figure 2C,D). Next, we assessed the photosynthetic parameters
and malonaldehyde (MDA) in both cultivars in August when the ambient temperature is around
20 ◦C (Figure 1). The net photosynthetic rate (Pn), the intercellular CO2 concentration (Ci) and the
transpiration (Tr) rate were found similar between leaves from both cultivars (Figure 3A–C), showing
that the photosynthetic efficiency is not significantly impaired in “Variegatum” as compared to “Green
Pittosporum”. Next, we compared the content of photosynthesis-related pigments such as total
chlorophyll (chlT) and carotenoids (Ca) in both leaf types. The results revealed that the chlT contents
were significantly lower (p < 0.05) in “Variegatum” compared to the “Green Pittosporum” (Figure 3D),
while Ca was higher in “Variegatum” compared to the “Green Pittosporum” (Figure 3E), indicating
that the yellowish phenotype in “Variegatum” is underlined by a reduced chlorophyll content and a
stronger accumulation of carotenoids. We further measured the MDA content, which is associated
with lipid peroxidation via an increased generation of ROS [31]. The MDA was significantly (p < 0.01)
and highly accumulated in “Variegatum” leaves compared to “Green Pittosporum” leaves (Figure 3F),
implying a high level of ROS in the variegated leaves.

Taken together, our results showed that leaf variegation trait in P. tobira is associated with defected
chloroplast biogenesis in the yellow sector, reduced chlorophyll content, strong accumulation of
carotenoids and high level of ROS.
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Figure 1. Overview of the experiment design and phenotypes of the two Pittosporum tobira cultivars,
namely “Variegatum” with green/yellowish variegated leaf and “Green Pittisporum” with complete dark
green leaf. Leaf samples were harvested at different dates following decrease of ambient temperature.
The bar = 2 cm.
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Figure 2. Chloroplast ultrastructure of the green (A,B) and yellow (C,D) sectors in variegated leaves of
Pittosporum tobira cultivar “Variegatum”. C = chloroplast; P = plastid; SG = starch granule; G = grana;
V = vacuole, PL = plastoglobuli.
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Figure 3. Physio-biochemical comparison of leaf from variegated “Variegatum” and non-variegated
“Green Pittosporum” cultivars. (A) net photosynthetic rate (Pn), (B) intercellular CO2 concentration
(Ci), (C) transpiration rate (Tr), (D) total chlorophyll content (ChlT), (E) carotenoids content (Ca) and (F)
malonaldehyde content (MDA). *, ** above the bars represent significant difference between the two
cultivars at p < 0.05 and p < 0.001, respectively, using Tukey’s honestly significant difference (HSD) test.
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2.2. Effect of Temperature Decrease on ROS-Scavenging Enzyme Activities in P. tobira Cultivars

The natural occurrence of leaf variegation in plants suggests that the trait might have adaptive
functions [32]. In line with this, we investigated the enzymatic changes with respect to cold stress
response in leaves of “Variegatum” and “Green Pittosporum” cultivars over a period of three months
(from August to November) when the ambient temperature decreases from optimal condition (20 ◦C) to
cold condition (10 ◦C). The results showed that the two cultivars respond similarly to the temperature
decrease (Figure 4). The activities of all the three ROS-scavenging enzymes including peroxidase
(POD), catalase (CAT), superoxide dismutase (SOD), were increased over the assayed period. Notably,
CAT and POD displayed a sharp increase in response to the temperature decrease. At the lowest
temperature (10 ◦C, November 15th), POD and CAT activities were significantly higher (P < 0.01)
in “Variegatum” as compared to “Green Pittosporum” (Figure 4A–C), denoting a stronger response
to cold in “Variegatum”. We extended the investigation on the MDA contents in both cultivars in
order to record the stress levels induced by the temperature decrease. As expected, MDA levels also
increased in both cultivars with the temperature decrease, but “Variegatum” seems to suffer less from
cold stress. This is evidenced by the significantly higher (p < 0.01) MDA in “Green Pittosporum” when
the temperature reached 10 ◦C (Figure 4D).

Overall, our results indicated that “Variegatum” is endowed with an efficient ROS-scavenging
enzymatic system, which is mainly triggered under low temperature. Hence, leaf variegation trait
plays a low temperature protective function in P. tobira.
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Figure 4. Antioxidant enzymatic activities during temperature decrease. (A) Peroxidase activity (POD),
(B) Superoxide dismutase activity (SOD), (C) Catalase activity (CAT), (D) malonaldehyde content
(MDA). ** above the lines represents significant difference between the two cultivars at p < 0.001, using
Tukey HSD test.
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2.3. Transcriptome Sequencing in Leaves of “Variegatum” and “Green Pittosporum” and Functional
Annotation of Unigenes

To get an insight into the molecular pathways and genes conferring the strong response to
low temperature in “Variegatum”, we synthesized six cDNA libraries from leaves collected from
“Variegatum” and “Green Pittosporum” plants under cold conditions (10 ◦C) and generated de novo
RNA-sequencing data for the first time in P. tobira.

The RNA-seq yielded a total of 40.88 Gb clean data with 92.78% of bases scoring Q30 and above
(Table 1). The assembly was performed using the Trinity software and a total of 112,875 unigenes
were obtained with N50 length about 1,017 bp. The assembly integrity was high and specific statistics
are shown in Table 2. A total of 51,718 unique genes were functionally annotated based on various
databases (Table 3, Table S1). The clean data of each sample was serialized with the assembled unigene
libraries and the mapping result statistics are presented in Table 4. Of these genes, 19,677 genes were
expressed with the number of fragments per kilobase of exon per million fragments mapped (FPKM)
values ranging from 0.04 to 22578.37 (Table S2, Figure 5A).

Hierarchical clustering of the samples based on FPKM showed that all the biological replicates
clustered together, suggesting a high reliability of our RNA-sequencing data (Figure 5B). Moreover, a
clear separation of the two leaf sample types was observed, implying that a large number of genes may
be differentially expressed between the two cultivars to explain the relative stronger response to cold
stress in “Variegatum”.
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Table 1. Overview of the transcriptome sequencing dataset and quality check. 

Cultivar Library-ID Read Number Base Number GC (%) % ≥ Q30 

“Green Pittosporum” T01 22,115,602 6,612,391,012 45.27 92.78 

“Green Pittosporum” T02 23,965,370 7,164,119,518 45.01 92.97 

“Green Pittosporum” T03 22,120,563 6,612,379,716 45.25 92.96 

“Variegatum”  T04 23,413,612 6,996,233,542 44.79 93.60 

“Variegatum” T05 22,179,179 6,627,936,224 44.64 93.36 

Figure 5. Overview of the transcriptome sequencing. (A) Gene expression profile in the 6 libraries.
T01-T03 represent the three replicates libraries of the cultivar “Green Pittosporum” and T04-T06
represent the three replicates libraries of the cultivar “Variegatum”. (B) Heatmap clustering showing
correlation among P. tobira different samples based on global expression profiles. Numbers in the
heatmap represent the Pearson correlation value.

Table 1. Overview of the transcriptome sequencing dataset and quality check.

Cultivar Library-ID Read Number Base Number GC (%) % ≥ Q30

“Green Pittosporum” T01 22,115,602 6,612,391,012 45.27 92.78
“Green Pittosporum” T02 23,965,370 7,164,119,518 45.01 92.97
“Green Pittosporum” T03 22,120,563 6,612,379,716 45.25 92.96

“Variegatum” T04 23,413,612 6,996,233,542 44.79 93.60
“Variegatum” T05 22,179,179 6,627,936,224 44.64 93.36
“Variegatum” T06 22,956,424 6,863,508,574 45.19 92.86
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Table 2. Statistics of the assembly results.

Length Range Transcript Unigene

200–300 53,860(25.64%) 46,279(41.00%)
300–500 38,333(18.25%) 27,916(24.73%)
500–1000 38,190(18.18%) 20,115(17.82%)

1000–2000 39,154(18.64%) 11,929(10.57%)
2000 40,551(19.30%) 6,636(5.88%)

Total number 210,088 112,875
Total length (bp) 241,105,749 72,533,944
N50 length (bp) 2,137 1,017

Mean length (bp) 1147.64 642.60

Table 3. Functional annotation statistics of the unigenes.

#Anno_Database Annotated_Number 300 <= length < 1000 Length >= 1000

COG_Annotation 17,065 6,007 6,317
GO_Annotation 28,283 10,378 9,062

KEGG_Annotation 19,595 7,857 6,277
KOG_Annotation 30,496 11,470 10,018
Pfam_Annotation 33,826 12,283 13,569

Swissprot_Annotation 28,074 10,455 11,043
eggNOG_Annotation 48,410 18,186 15,546

nr_Annotation 47,309 17,751 15,596
All_Annotated 51,718 19,526 15,881

Table 4. Statistics of the mapping of sequencing data with assembly results.

Cultivar Library-ID Clean Reads Mapped Reads Mapped Ratio

“Green Pittosporum” T01 22,115,602 17,518,471 79.21%
“Green Pittosporum” T02 23,965,370 19,005,314 79.30%
“Green Pittosporum” T03 22,120,563 17,599,921 79.56%

“Variegatum” T04 23,413,612 19,153,207 81.80%
“Variegatum” T05 22,179,179 17,804,804 80.28%
“Variegatum” T06 22,956,424 18,290,888 79.68%

2.4. Differential Gene Expression Analysis between “Variegatum” and “Green Pittosporum” under
Cold Condition

The differential gene expression analysis was performed on all expressed genes by comparing
their expression levels between “Variegatum” and “Green Pittosporum”. As shown in Figure 6A, a
total of 309 differentially expressed genes (DEG) were obtained, including 156 up-regulated and 153
down-regulated genes in the variegated leaves. To validate our differential expressed gene result, we
selected five up-regulated genes and five down-regulated genes (Table S3) and performed qRT-PCR
using the cDNAs from leaves of the two cultivars. The qRT-PCR results were strongly correlated with
the RNA-seq data (R2 = 0.89, Figure S1). This result confirms well the high reliability of the RNA-seq
data obtained in the present study.

We performed gene ontology (GO) enrichment analysis of these DEGs based on three ontologies:
biological process, cellular component and molecular functions. In the biological process components,
metabolic and cellular process was found to be the most dominant group (Figure 6B). Within the cellular
components, cell and cell part represented the most dominant functional groups. Meanwhile, the
catalytic activity and binding were the most abundant functional groups among the molecular functions,
showing that enzymes and transcription factors encoding genes may play key roles in the differential
cold response. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
of the DEGs showed that the biosynthesis of unsaturated fatty acids, sesquiterpenoid and triterpenoid
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biosynthesis, fatty acid metabolism, phenylalanine metabolism and protein processing in endoplasmic
reticulum were the main pathways contributed by the DEGs (Figure 6C). The diversity of these
molecular pathways highlights the complex mechanism of the improved cold response in relation with
leaf variegation in P. tobira.
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Figure 6. Differentially expressed genes (DEG) analysis between “Green Pittosporum” and
“Variegatum”. (A) Volcano plot depicting the up-, down- and no- regulated genes between the
two cultivars. (B) Gene ontology enrichment analysis of the DEGs. (C) KEGG enrichment analysis of
the DEGs. * represent the significantly enriched pathways.

2.5. Major Transcription Factors Differentially Regulated between “Variegatum” and “Green Pittosporum”
under Cold Conditions

Since the GO enrichment showed that differential binding activity was important for the cold
responses in “Variegatum”, we extended our study over the major transcription families (TF) present
within the DEGs. In total, 11 down-regulated and 14 up-regulated TFs in “Variegatum” were detected.
Among the down-regulated TFs, AP2-ERF, bHLH and MADS-box TFs were enriched (Figure 7A).
Distinct TF families were enriched in the up-regulated genes and included NAC, WRKY, HSF and MYB
(Figure 7B). Expression fold change of these TFs showed that two NAC genes (c67871.graph_c0 and
c63655.graph_c1) were strikingly up-regulated in “Variegatum” (Figure 7C) and may play prominent
positive regulatory roles for cold stress endurance.
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2.6. DEGs Related to the Biosynthesis of Unsaturated Fatty Acids and Fatty Acids Metabolism

An increase in polyunsaturated fatty acids has also been reported to play a crucial role in the
chilling tolerance of plants [33]. In this study, ten DEGs were mapped to the pathways related to
the biosynthesis of unsaturated fatty acids and fatty acids metabolism. Interestingly, all of these
DEGs were annotated as endoplasmic reticulum omega-6 fatty acid desaturase (FAD2) and were
all up-regulated in “Variegatum” (Table 5). Since the microsomal enzyme FAD2 principally acts on
the desaturation of C18:1 to C18:2 [34], we deduce that “Variegatum” strongly accumulates C18:2
in leaf as a protective molecule under cold conditions. Besides, we also detected nine GDSL-Lipase
involved in lipid biosynthesis in plants. All the GDSL genes were down regulated in “Variegatum”
(Table 5), suggesting a probable opposite function of GDSL and FAD2 genes during cold endurance in
“Variegatum”.

Table 5. Key DEGs related to the enriched KEGG pathways involved in the cold responses in variegated
P. tobira.

Pathway KO Gene ID Log2 Fold Change Gene Description

Phenylalanine metabolism
K00815 c55523.graph_c0 1.565 Aminotransferase TAT2
K00430 c68309.graph_c0 1.057 Peroxidase
K00430 c74970.graph_c1 1.157 Peroxidase

Sesquiterpenoid and triterpenoid biosynthesis
K15472 c29794.graph_c0 1.488 Premnaspirodiene oxygenase, Cytochrome P450
K15472 c43399.graph_c0 1.198 Premnaspirodiene oxygenase, Cytochrome P450

Biosynthesis of unsaturated fatty acids and fatty acid metabolism
K10256 c45880.graph_c0 1.973 FAD2
K10256 c72696.graph_c0 1.287 FAD2
K10256 c74068.graph_c0 1.493 FAD2
K10256 c74296.graph_c0 1.385 FAD2
K10256 c75682.graph_c0 1.284 FAD2
K10256 c45880.graph_c0 1.973 FAD2
K10256 c72696.graph_c0 1.287 FAD2
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Table 5. Cont.

Pathway KO Gene ID Log2 Fold Change Gene Description

K10256 c74068.graph_c0 1.493 FAD2
K10256 c74296.graph_c0 1.385 FAD2
K10256 c75682.graph_c0 1.284 FAD2
−− c52980.graph_c1 −1.179 GDSL
−− c52915.graph_c0 −1.582 GDSL
−− c62735.graph_c0 −2.134 GDSL
−− c28930.graph_c0 −1.998 GDSL
−− c79198.graph_c0 −1.068 GDSL
−− c63752.graph_c0 −1.502 GDSL
−− c28455.graph_c0 −1.267 GDSL
−− c71358.graph_c0 −1.635 GDSL
−− c76303.graph_c0 −1.713 GDSL

Protein processing in endoplasmic reticulum
K13993 c55937.graph_c0 −2.839 22.7kDa HSP IV
K13993 c60091.graph_c0 −1.125 15 kDa HSP
K13993 c60491.graph_c0 −1.961 17.9 kDa HSP II
K13993 c70233.graph_c1 −1.292 18.1 kDa HSP I
K04079 c74041.graph_c0 1.283 90 kDa HSP
K03283 c75081.graph_c0 1.095 70 kDa HSP
K09489 c68688.graph_c0 1.266 70 kDa HSP
K03283 c28616.graph_c1 1.018 70 kDa HSP
K03283 c69810.graph_c6 1.408 70 kDa HSP

2.7. Disturbance of Protein Processing in Endoplasmic Reticulum under Cold Conditions

The endoplasmic reticulum is a subcellular compartment where proteins and lipids are folded
with the help of chaperones. The enrichment of this pathway (Figure 6C) indicates a disturbance of
proteins and lipids synthesis under cold conditions. Nine DEGs, all being heat shock proteins (HSP)
were detected within this pathway. Notably, we observed that all the small HSP genes (15–22 kDa)
were down-regulated while the high molecular weight HSP genes (70–90 kDa) were up-regulated in
the variegated leaves (Table 5). This result highlights the weight dependent roles of HSP genes for a
stout cold response in variegated P. tobira.

2.8. DEGs in the Phenylalanine Metabolism

In this important pathway, we found three DEGs including two POD genes (c68309.graph_c0 and
c74970.graph_c1) and c55523.graph_c0 annotated as an aminotransferase TAT2. Interestingly, all these
genes were up-regulated in “Variegatum”, showing that they contribute positively to the enhanced
cold response (Table 5). More importantly, the activation of these genes correlates well with the
strong enzymatic activity of POD detected through our biochemical assay in “Variegatum” when the
temperature reached 10 ◦C (Figure 4A).

3. Discussion

3.1. Characteristics of Leaf Variegation in P. tobira

Leaf variegated plants have green/white (or yellow) sectors and cells in the green sectors contain
normal appearing chloroplasts, while cells in the white sectors have impaired chloroplast biogenesis
and lack photosynthetic pigments [12]. Moreover, it has been shown that leaf variegated plants
accumulate high levels of ROS [29,30]. Although these mechanisms are commonly found in variegated
plants, a recent study of the rice z3 mutant leaves showed a new mechanism of variegation, which
was caused by an unbalanced distribution of citrate in a transverse pattern in leaf tissues [34]. In our
study, we also noted a defected chloroplast development in the yellow sector, reduced chlorophyll
content and a high level of ROS in the variegated cultivar (Figures 2 and 3). We also observed an
abundance of starch granules in the yellow sector as compared to the green sector, suggesting that
the yellow sectors are nutrient sinks because they are unable to perform photosynthesis. Similar
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conclusions were previously reported in different species including variegated Arabidopsis [1,35,36],
tobacco [37], begonia [6] and fig [3]. However, the photosynthetic efficiency was not obviously affected
in “Variegatum” (Figure 3), contrasting with the reports that leaf variegation affects photosynthetic
efficiency [12]. In fact, the yellowish area on “Variegatum” leaves is located on the margin and has
a very low surface coverage. So, an explanation to this observation can be that the green part of
the leaf is large enough to ensure the photosynthetic activity. Leaf variegation has been attributed
to a deficiency or a significant reduction of photosynthetic pigments including carotenoids. In the
Arabidopsis white-green variegated mutant immutans (im), an inhibition of carotenoids formation was
observed [38]. Similarly, the white section in leaf of variegated Epipremnum aureum contains 10-fold less
carotenoids than the green section [39]. In Cyclamen purpurascens, the light green leaf stripes were found
with reduced carotenoids and chlorophyll contents [40]. In green/yellow patterns variegated species,
similar observations were also noticed in Aucuba japonica [41] and Coleus bluemei [42]. Intriguingly, we
observed a higher concentration of carotenoids in the variegated leaves of P. tobira as compared to the
complete green leaves (Figure 3), a phenomenon which has not yet been reported in variegated plants.
Since carotenoids function as accessory light-harvesting pigments, broadening the spectral range over
which light can support photosynthesis in plants [43], we deduce that the high carotenoids content in
“Variegatum” may compensate the reduced chlorophyll to maintain similar photosynthetic activity as
in leaves of “Green Pittosporum”.

3.2. Protective Role of Leaf Variegation in P. tobira under Cold Condition

The natural occurrence of variegation in plants suggests that the trait might play some adaptive
functions beyond their aesthetic value [32]. It has been suggested that leaf variegation plays several
physiological and ecological functions such as defense from enemies, adaptations to light, temperature,
etc. [16–25]. We tested the hypothesis that leaf variegation plays a low temperature protective function
in P. tobira, which is an ornamental shrub widely grown in temperate climate and therefore is annually
subjected to cold stress. It is well known that increased activities of antioxidant enzymes such as
POD, CAT, SOD under abiotic stress conditions including drought, salt, chilling, heat, etc., promote
enhanced stress tolerance in plants [44]. Our results demonstrated that “Variegatum” has much more
efficient ROS-scavenging machinery compared to “Green Pittosporum” and accumulates less MDA,
an indicator of limited cellular membrane damage due to lipid peroxidation. Hence, “Variegatum”
better tolerates low temperature stress than “Green Pittosporum” (Figure 4). We further sequenced
the transcriptomes of both leaf types under cold condition (10 ◦C). Differential gene expression (DEG)
analysis resulted in 309 DEGs between the two cultivars, enriched in biological pathways related to
the biosynthesis of unsaturated fatty acids, sesquiterpenoid and triterpenoid biosynthesis, fatty acid
metabolism, phenylalanine metabolism and protein processing in endoplasmic reticulum, which may
be crucial pathways involved in cold stress alleviation (Figure 6).

Cell membrane structure, integrity and fluidity are affected by lipid composition and the degree
of fatty acid (FA) desaturation in plants [45]. It has been documented that changes in unsaturated
fatty acids content can improve plant tolerance to environmental stresses such as cold, heat and
drought [46–51], since modification of membrane fluidity results in an environment suitable for the
function of critical integral proteins, such as the photosynthetic machinery, during stresses [52]. In
this study, we detected ten FAD2 genes all significantly up-regulated in “Variegatum” leaves under
cold condition (Table 5). The microsomal enzyme FAD2 principally acts on the desaturation of C18:1
(monounsaturated FA) to C18:2 (polyunsaturated FA) [53], suggesting that “Variegatum” tends to
increase polyunsaturated FA (PUFA) level, a mechanism to maintain cell membrane fluidity under low
temperature [54,55]. This skill of adjusting membrane fluidity by varying the unsaturated fatty acid
content is characteristic of cold-responsive plants [52]. Cold acclimating potato (Solanum commersonii)
was found to accumulate linoleic acid (18:2) in the membrane glycerolipids of the leaves, whereas
commercial, non-acclimating potato (Solanum tuberosum) did not show this trait during cold stress [56].
Our findings are in perfect accordance with reports of Liu et al. [51], who showed that over-expression of
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tomato FAD2 gene alleviates the photoinhibition of photosystems 2 and 1 and improves tolerance under
chilling stress. Similar observations were reported in various plants such as cotton [57], A. thaliana [58],
Olea europaea [59], Synechocystis sp. [60], etc., under low temperature conditions.

Membrane fatty acid composition is, to a great extent, determined by the activities of complexly
regulated integral fatty acid desaturases and lipases [52]. GDSL-lipase participates in fatty acid
catabolism and studies have shown that the linoleic acid and other PUFAs contents are significantly
decreased when GDSL genes are over-expressed [61–64]. Here, we detected nine GDSL-lipase genes all
down-regulated in “Variegatum” under low temperature stress (Table 5), denoting a strategy to keep
the high level of PUFA for the maintenance of cell membrane stability. We deduce that down-regulation
of GDSL genes and up-regulation of FAD2 genes is therefore an integrated and efficient mechanism to
cope with cold stress in P. tobira cv. “Variegatum”.

Another group of genes detected within the DEGs between “Variegatum” and “Green Pittosporum”
under cold condition are heat shock proteins (HSP) (Table 5). HSPs are molecular chaperones that
are constantly present in cells to correctly fold proteins involved in routine cellular processes such as
translocation, cell-signaling and metabolism [65]. However, HSPs become abundant in most organisms
in response to protein denaturation caused by environmental, metabolic and pathological stresses [66].
For example, Arabidopsis, grape, rice, Brassicas increase the production of HSPs to augment survival in
cold environments [67–70]. On the other hand, it was reported that a complex coordination of HSPs
underlines cold tolerance in plants [65]. In fact, some HSPs are either up- or down-regulated when heat
shock factors (HSFs) bind to their promoter regions [71,72]. This suggests that not all HSPs positively
participate in cold or stress tolerance in plants. Each group of these HSPs has a unique mechanism [65].
In our study, we observed that small HSPs were all down-regulated while high molecular weight HSP
genes were up-regulated in “Variegatum”, pointing out an opposite function of HSPs for cold response
in P. tobira with respect to their molecular weights. For now, a clear explanation for this phenomenon
is yet to be found, hence, an in-depth investigation of the role of HSP genes and their relation with the
significantly altered HSF transcription factors under cold condition in P. tobira is necessary in order to
clarify this intriguing finding.

Our transcriptome analysis also unveiled several peroxidase genes from the phenyalanine pathway
as well as some cytochrome P450 genes from the sesquiterpenoid and triterpenoid biosynthesis
as candidate genes, which positively contribute to the enhanced cold responses in “Variegatum”
(Table 5). Peroxidase genes have been extensively studied in plants for their ROS-scavenging
activity under various biotic and abiotic stresses, including chilling [73–75]. Similarly, Liu et al. [76]
recently investigated the prominent biological pathways engaged in wild banana tolerance to chilling.
They observed significant changes in the sesquiterpenoid and triterpenoid biosynthesis, particularly
cytochrome P450 genes, a finding that supports well the results of our study.

Taken together, we showed that leaf variegation in P. tobira is associated to defected chloroplast
development, reduced chlorophyll content, high content of carotenoids and a high level of ROS.
The results of transcriptome analysis were consistent with the enzymatic activity under cold conditions.
These results pointed out that the leaf variegation trait plays low temperature protective effect in
P. tobira by inducing a strong ROS-scavenging activity through catalase and peroxidase enzymes,
inducing heat shock proteins for cellular homeostasis and, more importantly, by maintaining high
levels of PUFA for cell membrane stability and fluidity through a coordinated up-regulation of FAD2
and down-regulation of GDSL-lipase genes. The modulation of the expression levels of these key genes
may be orchestrated by transcription factors from the families of NAC, WRKY, HSF and AP2/ERF.
A proposed schematic model for the stronger cold response in “Variegatum” is summarized in Figure 8.
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4. Materials and Methods

4.1. Plant Materials

The naturally occurring variegated cultivar of Pittosporum tobira “Variegatum” and the widely
grown cultivar “Green Pittosporum” were originally collected from Pingdingshan, Henan in China
and used as experimental materials. Biochemical data were recorded on three different plants of each
cultivar at different dates corresponding to various temperature gradients (20–10 ◦C) from August to
November (Figure 1).

4.2. Transmission Electron Microscopy (TEM)

TEM analysis was performed as described by Shih et al. [3]. Green and yellow sectors of leaves
were cut into small cubes in the field and placed in a fixation solution containing 2.5% glutaraldehyde
and 4% paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.0). Samples underwent 20 min of
rinsing three times and were post-fixed in 1% osmium tetroxide for 2 h. After being dehydrated through
an ethanol series, samples were infiltrated and embedded in Spurr’s resin and then polymerized at
70 ◦C for 8 h. Ultrathin sections (~70–90 nm) were collected and stained with ethanol uranyl acetate and
lead citrate. The morphology of plastids was observed with Tecnai F20S TEM (The Thermo Scientific™,
Waltham, MA, USA) at 200 kV.

4.3. Measurement of Physio-Biochemical Parameters

A total of 50 mg fresh leaves were used to extract chlorophyll. The total chlorophyll content
(ChlT, mg g−1FW) and carotenoids content (Ca, mg g−1 FW) were determined as described by
Wellburn [77]. The net photosynthetic rate (Pn, µmol m−2 s−1), intercellular CO2 concentration
(Ci/ppm) and transpiration rate (Tr, mmol.m−2 s−1) were determined with a portable L-6400XT
(LI-COR, Lincoln, NB, USA). The measurements of photosynthetic parameters were taken at the
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saturation irradiance with an incident photosynthetic photo flux density (PPFD) of 1200 µmo m−2 s−1

and an airflow rate at 500 µmol s−1. The enzymatic activities of superoxide dismutase (SOD, U g−1),
catalase (CAT, U g−1.min−1), peroxidase (POD, U g−1.min−1) and the content of malonaldehyde
(MDA, µmol g−1) were calculated by following the manufacturer’s instructions (Biological Engineering
Institute of Nanjing Jiancheng, China). Means from three replicates were used for statistical analysis.

4.4. RNA Extraction, cDNA Library Construction, and Transcriptome Sequencing

The complete leaves from the cultivars “Green Pittosporum” and “Variegatum” were collected in
replicates from three different plants under cold conditions at November 15th (Temperature = 10 ◦C),
immediately frozen in liquid nitrogen and stored at −80 ◦C until further use. Total RNAs were extracted
using Spin Column Plant total RNA Purification Kit following the manufacturer’s protocol (Sangon
Biotech, Shanghai, China). Purity of the extracted RNAs was assessed on 1% agarose gels followed by
NanoPhotometer spectrophotometer (IMPLEN, Los Angeles, CA, USA). We quantified the RNA using
Qubit RNA Assay Kit in Qubit 2.0 Flurometer (Life Technologies, Carlsbad, CA, USA). RNA integrity
was checked using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, USA).

Libraries preparation, and sequencing on Illumina HiSeq 4000 platform (Illumina Inc., San Diego,
CA, USA) were performed as described by Zhuang et al. [78].

4.5. De novo Assembly, Functional Annotation, Classification and Metabolic Pathway Analysis

Raw transcriptome data were submitted to NCBI SRA, freely accessible at www.ncbi.nlm.nih.
gov/bioproject/PRJNA553027. The clean reads were retrieved after trimming adapter sequences,
removal of low quality (containing > 50% bases with a Phred quality score < 15) and reads with
unknown nucleotides (more than 1% ambiguous residues N) using the FastQC tool (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). The high-quality reads from all the six libraries were
de novo assembled into transcripts using Trinity (Version r20140717) [79] by employing paired-end
method. Next, the transcripts were realigned to construct unigenes. The assembled unigenes were
then annotated by searching against various databases such as Kyoto Encyclopedia of Genes and
Genomes (KEGG) [80], Gene Ontology (GO) [81], Clusters of Orthologous Groups (COG) [82], Pfam [83],
Swissprot [84], egNOG [85], NR [86], euKaryotic Orthologous Groups (KOG) [87] using BLAST [88]
with a threshold of E-value <1.0 E−5.

The software KOBAS2.0 [89] was employed to get the unigene KEGG orthology; the analogs
of the unigene amino acid sequences were searched against the Pfam database [83] using HMMER
tool [90] with a threshold of E-value < 1.0 E−10. The sequenced reads were compared with the unigene
library using Bowtie [91], and the level of expression was estimated in combination with RSEM [92].
The gene expression level was determined according to the fragments per kilobase of exon per million
fragments mapped (FPKM).

4.6. Differential Expression and Enrichment Analysis

The read count was normalized and EdgeR Bioconductor package [93] was used to determine the
differential expressed genes (DEGs) between the two cultivars with the fold change of > 2 [94] and
false discovery rate correction (FDR) set at p < 0.01. GO enrichment analysis was performed using
the topGO method [95] based on the wallenius non-central hypergeometric distribution with p < 0.05.
KEGG pathway enrichment analysis of the DEGs was done using KOBAS2.0 [89]. The FDR correction
was employed (p < 0.05) to reduce false positive prediction of enriched KEGG pathways.

4.7. Validation of Gene Expression Using Quantitative Real Time-PCR

The qRT-PCR was performed on RNA extracted from leaf samples of “Variegatum” and “Green
Pittosporum” as described by Dossa et al. [96] using the Actin gene as the internal control. Specific

www.ncbi.nlm.nih.gov/bioproject/PRJNA553027
www.ncbi.nlm.nih.gov/bioproject/PRJNA553027
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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primer pairs of ten selected genes were designed using the Primer Premier 5.0 [97] (Table S3). Data are
presented as relative transcript level based on the 2-∆∆Ct method [98].

4.8. Statistical Analysis

Data were analyzed with the R software (www.r-project.org) using the one-way analysis of
variance (ANOVA) for significant difference. The error bars were calculated with data from three
replicates. ANOVA results were considered significant at p < 0.05 and mean comparisons were done
using the Tukey HSD test.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/19/
4857/s1. Table S1. Full list of the unigenes annotated in Pittosporum tobira leaf; Table S2. Full list of the genes
expressed in Pittosporum tobira leaf and their FPKM values. T01-T03 represent the three replicates libraries of the
cultivar “Green Pittosporum” and T04-T06 represent the three replicates libraries of the cultivar “Variegatum”;
Table S3. The primer sequences of genes used for real time quantitative PCR; Figure S1. qRT-PCR results of 10
selected genes and correlation between transcriptome data and real time PCR results.
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Abbreviations

CAT Catalase
DEG Differentially expressed gene
FAD2 Fatty acid desaturase 2
FPKM Fragments per kilobase of exon per million fragments mapped
GO Gene ontology
HSF Heat shock factor
HSP Heat shock protein
KEGG Kyoto Encyclopedia of Genes and Genomes
MDA Malonaldehyde
POD Peroxidase
PUFA Poly-unsaturated fatty acids
ROS Reactive oxygen species
SOD Superoxide dismutase
TF Transcription factor
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