
sensors

Article

Reliable Route Selection for Wireless Sensor Networks with
Connection Failure Uncertainties.

Jianhua Lyu 1,2,*, Yiran Ren 1, Zeeshan Abbas 1 and Baili Zhang 1,2

����������
�������

Citation: Lyu, J.; Ren, Y.; Abbas, Z.;

Zhang, B. Reliable Route Selection for

Wireless Sensor Networks with

Connection Failure Uncertainties.

Sensors 2021, 21, 7254. https://

doi.org/10.3390/s21217254

Academic Editors: Hamed Badihi,

Tao Chen and Ningyun Lu

Received: 3 October 2021

Accepted: 29 October 2021

Published: 31 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Southeast University, Nanjing 210096, China;
220201951@seu.edu.cn (Y.R.); ZeeshanAbbas5@hotmail.com (Z.A.); zhangbl@seu.edu.cn (B.Z.)

2 Key Laboratory of Computer Network and Information Integration (Southeast University),
Ministry of Education, Nanjing 210096, China

* Correspondence: lujianhua@seu.edu.cn

Abstract: For wireless sensor networks (WSN) with connection failure uncertainties, traditional
minimum spanning trees are no longer a feasible option for selecting routes. Reliability should come
first before cost since no one wants a network that cannot work most of the time. First, reliable
route selection for WSNs with connection failure uncertainties is formulated by considering the top-k
most reliable spanning trees (RST) from graphs with structural uncertainties. The reliable spanning
trees are defined as a set of spanning trees with top reliabilities and limited tree weights based
on the possible world model. Second, two tree-filtering algorithms are proposed: the k minimum
spanning tree (KMST) based tree-filtering algorithm and the depth-first search (DFS) based tree-
filtering algorithm. Tree-filtering strategy filters the candidate RSTs generated by tree enumeration
with explicit weight thresholds and implicit reliability thresholds. Third, an innovative edge-filtering
method is presented in which edge combinations that act as upper bounds for RST reliabilities are
utilized to filter the RST candidates and to prune search spaces. Optimization strategies are also
proposed for improving pruning capabilities further and for enhancing computations. Extensive
experiments are conducted to show the effectiveness and efficiency of the proposed algorithms.

Keywords: wireless sensor networks; connection failure uncertainty; route selection; reliable span-
ning tree; filtering

1. Introduction

Wireless sensor networks (WSN) are widely used in various applications, such as
military battlefield monitoring, traffic surveillance, environmental monitoring, intelligent
agriculture, industrial system health management and transportation [1–4]. They are often
deployed in cites that are not friendly to both human and chips. Moreover, the sensor nodes
have limited resources on power, communication, computation and storage. Therefore,
the communication channel between sensor nodes is susceptible to environmental events
and node failures due to weather conditions, atmospheric qualities, moving obstacles
and fabrication problems. Such connection failure obtains automatic recovery for the
time being while the environment becomes normal. We regard them as Wireless Sensor
Networks with Connection Failure Uncertainties. It is of great significance to develop
route selection strategies for such WSNs in order to obtain all sensors connected with low
cost and high reliability. We anticipate that a network with the highest reliability can serve
for a longer period of time than the others possibly can.

Route selection for wired communication networks have been studied for decades
and has become mature [5]. Connectivity and cost are two common objectives. Minimal
spanning trees (MST) has been widely used to achieve minimal communication cost when
all nodes are connected. However, cost is no longer the first consideration in addition to
connectivity for WSNs with connection failure uncertainties. The route with minimal cost
may serve only for a very short period of time since the connection edges it involves have

Sensors 2021, 21, 7254. https://doi.org/10.3390/s21217254 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21217254
https://doi.org/10.3390/s21217254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217254
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217254?type=check_update&version=5

Sensors 2021, 21, 7254 2 of 29

relatively low existence probabilities. Consequently, reliability should come first before
cost since no one wants a network that cannot work most of the time. A comprehensive
objective for route selection is to find a route plan that is most reliable while its connection
cost is upper-bounded by a practically accepted threshold. Actually, backup routes are also
essential in cases where the most reliable route encounters a connection failure and can no
longer be functional, which could be highly possible since every connection could fail with
a certain probability.

There are many investigations devoted to route selection for WSNs [6–16]. Most of
them assume that there are sink nodes that can transfer data with one another without any
obstructions. Their main concern is to find suitable cluster heads as sink nodes. As a matter
of fact, the inter-sink communications may also be unstable due to various disturbances in
real applications. Reliable routing mechanisms for WSNs were also studied [17–23]. Relia-
bility in these investigations was defined in terms of package loss ratio and transmission
failure due to energy issues. Route selection on Zigbee networks was studied recently.
Srikar and Benedito [24] focused on one-to-one and one-to-many reliable links. Kim and
Chung [25] proposed a route management scheme for mobile networks to minimize control
message collisions and delay time. All these works did not consider connection failure
uncertainties.

Motivated by route selection methods for wired networks, we propose (1) modeling
WSNs with connection failure uncertainties as uncertain graphs; and (2) searching reliable
spanning trees (RST) from uncertain graphs as reliable communication routes. Uncertain
graphs have structural uncertainties, and every weighted edge has a probability of ex-
istence, i.e., edge reliability. We propose using the possible world model [26] to define
a reliable spanning tree. According to the possible world model, every spanning tree
is a reliable spanning tree with a probability of existence. However, methods involving
enumerating all spanning trees and testing their reliabilities and costs are not pragmati-
cally acceptable. Therefore, the search space has to be reduced. After revisiting the MST
searching algorithms [27–29], two MST-based tree-filtering algorithms and an efficient
edge-filtering algorithm are proposed in order to improve RST’s searching efficiency from
different angles.

To the best of our knowledge, we are the first to systematically investigate the route
selection problem for WSNs with connection failure uncertainties.

The contribution of this paper is summarized as follows:

• The reliable route selection problem for WSNs with connection failure uncertainties is
formulated by querying top-k RSTs from an uncertain graph, named R-TopK Query.
RST reliability is defined based on the possible world model.

• Two tree-filtering algorithms for R-TopK Query processing are proposed: the k mini-
mum spanning trees filtering algorithm and the depth-first search based tree-filtering
algorithm, respectively. They are based on the traditional MST algorithms for deter-
ministic graphs with new filtering and pruning techniques.

• An innovative edge-filtering R-TopK Query algorithm is proposed in which edge
combinations that act as upper bounds for RST reliabilities are utilized to prune the
search space. In order to improve pruning capabilities, several optimization strategies
are introduced as well.

• Extensive experiments are conducted based on various datasets to show the effective-
ness and efficiency of the proposed algorithms.

The rest of this paper is organized as follows. Section 2 introduces related investiga-
tions including existing WSN route selection methods, the possible world model and the
MST finding algorithms on both deterministic and uncertain graphs. Section 3 presents
some basic concepts, defines the spanning tree reliability and proposes the top-k RSTs
problem to select reliable routes for WSNs with connection failure uncertainties. Two
tree-filtering algorithms are discussed in Section 4. The edge-filtering algorithms and opti-
mization techniques are explained in Section 5. Section 6 evaluates experimental results.
Finally, conclusions and future works are discussed in Section 7.

Sensors 2021, 21, 7254 3 of 29

2. Related Works
2.1. WSN Route Selection

There are many route selection methodologies for WSNs and Internet of Things (IoT).
Clustering based data transmission model was proposed for energy optimization [7,8]. In
order to address latency issues, fuzzy rules set for cluster head selection were discussed
in [9,10]. The congestion controlling mechanism is studied in [11], with which the traffic
load in WSNs could be mitigated. In [12], reliable data broadcasting for the IoT environment
was proposed in order to obtain a secure routing mechanism and to cluster the network.
A lightweight routing mechanism [13] was presented for routing Low-Power and Lossy
Networks in order to obtain better energy efficiency and reduce delay and packet loss
ratio. Buffer management and routing design were addressed for delay tolerant WSNs
in [14–16]. They obtained better message replication, communication overhead and packet
delivery performance. In [17–19], a mobile sink-based routing mechanism was proposed.
An improved energy efficient LEACH-based routing approach for WSNs was proposed
in [20], where cluster heads were selected based on node residual energy and average
energy of WSNs. Most of these works investigated methods for selecting cluster heads in
order to reduce communication costs.

Secure routing mechanisms for WSNs were also studied. A security trust-based model
was proposed in [20], and a low latency energy efficient cluster-based multipath routing
was presented in [21]. Multi-objective metrics for cluster head selection and multipath
transmission for reliability and lifetime improvement were discussed in [22]. Furthermore,
load balancing parameters were considered in routing metrics for providing reliability [23].
Route selection on Zigbee networks was studied by Srikar and Benedito [24], and they
aimed to search for one-to-one and one-to-many reliable links. Kim and Chung [25] pro-
posed a route management scheme for mobile networks in order to minimize control
message collisions and delay time. In [30], a trade-off between improving lifetime per-
formance and reliability requirement was discussed, and a reliable and energy efficient
routing scheme for WSNs was proposed.

The reliability adopted in the existing studies were all defined in term of package loss
ratio, transmission failure or delay time due to energy issues, which are different from the
objectives of this paper.

2.2. Possible World Model

The possible world model was widely used for modeling uncertain data in various
research fields [26,31,32]. The possible world space of an uncertain entity is composed of
many possible world instances, which include deterministic values from uncertain entity
attributes. A possible world instance is affiliated with a probability of the product of
confidence of all attributes in the instance and the non-existing confidence of all attributes
not in the instance. The sum of all instances’ probabilities should be one, which means
that all possibilities are taken into account. For uncertain graph management, Yuan [33]
and Zou [34] used a possible world model to study sub-graph searching and frequent
sub-graph mining from uncertain graphs. The possible world semantic was also adopted
by Yuan and Chen [35] for modeling the shortest paths over uncertain graphs. Liu, Jin and
Aggarwal [36] studied the approaches for finding the most reliable clusters from uncertain
graphs based on the possible world model.

2.3. Minimum Spanning Trees

There are many algorithms for finding minimum spanning trees from deterministic
graphs[37,38]. The k minimum spanning tree (KSMT) problem was discussed in [27,28].
Enumerating all spanning trees in a deterministic graph was investigated in [39,40]. With
uncertainties appearing in graphs, the traditional MST problem has to be revised [41–43].
The probabilistic minimum spanning tree (PMST) with vertex probabilities was proposed
in [44]. Considering that the random variables are not enough for describing uncertainties,
researchers studied the fuzzy minimum spanning tree (FMST) problem [45–47].

Sensors 2021, 21, 7254 4 of 29

Zhang and Zou [29] discussed the most reliable minimum spanning tree problem on
uncertain graphs. It is the most similar investigation with respect to the topics discussed
in this paper. Considering that the brutal-force method needs to enumerate all possible
world spanning trees and that time consumption grows exponentially with graph size,
they proposed an approximate algorithm. Their contribution was finding one single
minimum spanning tree and calculating its approximate probability efficiently. However,
the main concern for WSN reliable route selection is searching several spanning trees with
constrained costs and high probabilities.

3. Preliminaries and Problem Definition

WSNs with connection failure uncertainties are composed of several sensors and the
sensors communicate with others via unstable channels. We first introduce an uncertain
graph as the data model.

Definition 1 (Uncertain Graph). An uncertain graph is a system G = (V, E, W, P), where V
and E are the set of vertices and edges, respectively. Mapping W : E→ R is a function assigning
weights to edges, and P : E→ (0, 1] is a function assigning existence probabilities to edges.

Figure 1 shows an example of an uncertain graph. It models a WSN with five sensors
and six communication channels. Sensor node B can connect to node A, D, C and E,
costing 5, 8, 13 and 10, respectively. These connections are not stable, and each of them
has a probability of existence. For example, vertex B and E cost 10 to be connected
(W(< B, E >) = 10) with a probability of 0.8, i.e. P(< B, E >) = 0.8, which implies that
the connection does not work 20% of the time.

Figure 1. An example of uncertain graph: G1.

By applying the possible world model, an uncertain graph implicates a set of deter-
ministic graphs, and each one is a possible structure in which the uncertain graph may
exist. Each possible structure is defined as a possible world graph.

Definition 2 (Derived Graph). Given an uncertain graph G= (V, E, W, P), its derived graph
G′ = (V, E, W, 1) is a deterministic graph with all edges existing, and it is denoted as G ⇒ G′.

For G1 in Figure 1, its derived graph consists of all five vertices and all six edges with
their existence possibilities all equal to 1.

Definition 3 (Possible World Graph). Given an uncertain graph G = (V, E, W, P), a possible
world graph PW = (V, E′, W ′) is a sub-graph of its derived graph G′, where E′ ⊆ E and W ′ ⊆W.
The relationship between G and PW is noted as G ⇒ PW, and the set composed of all the possible
world graphs derived from G is denoted as PW(G).

A possible world graph is a graph instance derived from an uncertain graph when the
edges are deterministic.

Sensors 2021, 21, 7254 5 of 29

For the sake of simplicity, we assume that all existence probabilities of edges are mutually
independent. This assumption is reasonable in a range of practical applications [29,48–50].
Based on the independence assumption, the existence probability of a possible world graph
PW implicated by G is defined as follows:

P(G ⇒ PW) = ∏
e∈E(PW)

P(e) · ∏
e′∈E(G)−E(PW)

(1− P(e′)). (1)

where P(e) is the existence probability of any edge e.
Figure 2 lists some of the possible world graphs derived from G1 with their probabilities.

For example, possible world graph pw5 has two edges (< A, B > and < B, E >) and its
probability of existence is 0.00576 = 0.5× 0.8× (1− 0.9)× (1− 0.4)× (1− 0.2)× (1− 0.7).

Figure 2. Some possible world graphs of G1.

The minimum spanning tree in a deterministic graph is defined as the one with the
least amount of weight. In an uncertain graph, any spanning tree could be a minimum
one since its cost is minimum at least in the possible world graph formed by itself. As a
matter of fact, one spanning tree could be of minimum cost in multiple possible world
graphs as long as (1) it is contained by all these possible world graphs and (2) its cost is
the smallest among all the spanning trees of these possible world graphs. We define the
reliable spanning tree (RST) and RST reliability based on all the possible world graphs it
resides in.

Definition 4 (Reliable Spanning Tree, RST). Given an uncertain graph G = (V, E, W, P), the
corresponding possible world graph set PW(G) and a spanning tree T of G ⇒ G′, where T is a
Reliable Spanning Tree, and its reliability/probability are mathematically quantified as follows:

PRST(T) = ∑
PW∈PW(G)

P(G ⇒ PW) · I1(PW) · I2(PW). (2)

where I1(PW) and I2(PW) are indicator functions.

I1(PW) =

{
1, PW is connected,

0, otherwise.

I2(PW) =

{
1, T is a MST o f PW,

0, otherwise.

According to Definition 4, a RST could be the minimum spanning tree of multiple
possible world graphs, and its reliability is the summation of these possible world graph
probabilities. The computation cost of Equation (2) is high since the possible world graphs
need to be enumerated and checked one by one.

Sensors 2021, 21, 7254 6 of 29

In order to calculate RST reliabilities efficiently, we need to investigate RST in detail.
For a minimum spanning tree, there are safe edges and dangerous edges [27]. We can
similarly define RST safe edges and RST dangerous edges.

Definition 5 (Safe Edge and Dangerous Edge). Given an uncertain graph G and T ∈ RST(G ⇒
G′), for each e ∈ {E(G)− E(T)}, e is a safe edge if it has the largest weight in the cycle formed by
adding e to T, and the safe edge set is noted as S(T); otherwise, e is a dangerous edge relative to T,
and the dangerous edge set is noted as D(T).

From Definition 5, we can observe that adding a dangerous edge into a possible world
graph will render the original RST no longer reliable, while adding a safe edge will not
induce the same impact. Thus, the uncertain minimum spanning tree theorem [29] is still
valid for RSTs.

Theorem 1. Given an uncertain graph G = (V, E, W, P) and T ∈ RST(G ⇒ G′), the probability
of T being the minimum spanning tree of G can be calculated as follows.

PRST(T) = ∏
e∈E(T)

P(e) · ∏
e′∈D(T)

(1− P(e′)). (3)

Proof. The proof is quite similar to the one in reference [29].

Therefore, Equation (3) is equivalent to Equation (2). As a result, we can use Equa-
tion (3) to calculate RST reliabilities, which is more efficient for it finds edges that are not in
a RST and checks their safety.

Corollary 1. Given an uncertain graph G = (V, E, W, P) and a reliable spanning tree T, the time
complexity for calculating PRST(T) is O(|E||V|).

Proof. According to Theorem 1 and Definition 5, the procedure for calculating RST relia-
bility includes three steps: (1) enumerating the edges; (2) checking if one edge is dangerous
by cycle detection; and (3) combining the non-existence probability of the dangerous edges.
Steps 1 and 3 can be conducted in one edge set scan, which is of time complexity O(|E|).
The fast union-find algorithm [51] can be used to test whether one edge will cause a cycle
or not, which is of worst time complexity O(|V|). Thus, the overall cost for calculating
PRST(T) is O(|E||V|).

In order to facilitate WSN route selection, multiple routing strategies are needed in
the case where there are connection failures in the serving route scheme. Accordingly,
we must perform top-k reliable spanning tree query processing. There are many studies
concentrated on top-k query processing [52,53]. We define top-k RSTs similarly as follows.

Definition 6 (Top-k RSTs). Given an uncertain graph G, a positive integer k and a cost threshold
ω ∈ R, the top-k RSTs of G are the first k spanning trees with top probabilities/reliabilities, and
the tree weights are less than or equal to ω.
Suppose the reliability of the kth RST is λ, then we utilize R-TopK Query to find top-k RSTs.

R-TopK(G, k, ω) = {T|W(T) ≤ ω, PRST(T) ≥ λ, T ∈ RST(G ⇒ G′)}. (4)

Figure 3 lists all the candidate RSTs of G1 with corresponding weights and reliabilities.
Then, we obtain R-TopK(G1, 1, 25) = {T1} and R-TopK(G1, 2, 30) = {T3, T1}. Even the
backup route T1 has a lower cost, and T1 is the better choice for its higher reliability.

Sensors 2021, 21, 7254 7 of 29

Figure 3. The possible RSTs of G1.

According to Definition 4 and Theorem 1, the brute force method of navigating all
RSTs, calculating their reliabilities and then sorting is too time consuming. Thus, we
propose reducing the search space by filtering out unqualified RSTs.

4. The Tree-Filtering Algorithms

In order to find the top-k RSTs, candidate RSTs are first generated, and then their
reliabilities are tested for qualification.

4.1. The KMST Tree-Filtering Algorithm

R-TopK Query requires that tree costs/weights to be no higher than the given thresh-
old ω. First, a candidate set composed of spanning trees with weights no higher than
ω is generated. Then, the top-k RSTs are queried out by calculating and testing RST
probabilities of the candidates.

First, we introduce the algorithm for finding the k minimum spanning trees in deter-
ministic graphs [27]. The algorithm is called GENK, and it contains two procedures: EX
and GEN. Suppose we have i− 1 minimum spanning trees and we want to obtain the ith

MST. First, EX finds a pair of edges [e, f], where e ∈ ⋃i−1
j=1 E(Tj), f ∈ E(G)−⋃i−1

j=1 E(Tj) and
W(f)−W(e) are minimums among all possible edge pairs. Then, GEN replaces e with
f in order to obtain Ti+1. T1 is the minimum spanning tree, and it is obtained by using
Prim’s algorithm. Ti can be obtained by exchanging edges based on the i− 1 previously
generated trees.

A straightforward and brute force method of obtaining the top-k RSTs is to seek
the first k trees after sorting all the candidates on their probabilities. This is inefficient
both in terms of space and time if the candidate set is large. In this paper, we use a
priority queue, denoted as Q, to assist filtering and pruning procedures, e.g., reducing
search space. Q is used to store the spanning tree candidates, and the size of Q is k. The
priority in Q is the RST probability, and the spanning tree with top priority has the largest
RST probability. The smallest probability in Q is used as the active filtering probability
threshold ρ. As RSTs are inserted or removed from Q during query processing, the active
filtering probability threshold may change. The filtering and pruning rules of the KMST
tree-filtering algorithm(TF_KMST) are as follows:

• Rule 1: If size(Q) < k, call function GENK to generate the next spanning tree in weight
ascending order and add it to Q.

• Rule 2: If size(Q) = k, call function GENK to generate the next spanning tree in
weight ascending order. If the tree weight is not higher than ω, then calculate its RST
probability and try to insert it into Q.

• Rule 3: The procedure stops when the weight of the newly generated spanning tree is
higher than ω.

According to Rule 2, the newly generated spanning tree will not be inserted into Q
when its probability is less than the active probability threshold. In TF_KMST, the search

Sensors 2021, 21, 7254 8 of 29

space contains all spanning trees, and the ones with weights higher than ω are pruned
since function GENK generates spanning trees in weight ascending order, and the query
procedure stops instantly by Rule 3 when the weight threshold is broken.

The pseudo codes of the KMST tree-filtering algorithm are outlined in Algorithm 1.

Algorithm 1. The KMST tree-filtering algorithm, TF_KMST.

Input: An uncertain graph G, an integer k, a weight threshold ω.
Output: top-k RSTs.

1: Q← ∅; ρ← 0; T ← Prim(G)
2: while W(T) < ω do
3: T ← GenNext()
4: ρ← Q.min().probability()
5: if Q.size() < k then
6: Q.insert(T)
7: else if P(T) > ρ then
8: Q.remove_min();Q.insert(T)
9: end if

10: end while
11: return Q.all()

As Algorithm 1 shows, TF_KMST enumerates all the spanning trees with weights
no higher than ω. Time consumption grows linearly with the number of spanning trees
generated, which is affected by weight threshold ω. TF_KMST enumerates all the spanning
trees if ω is large enough. For a complete graph, the number of spanning trees is |V||V|−2,
which is very large. However, if ω is small, the efficiency of TF_KMST will be very good.
For each generated tree, we need to calculate its RST probability with time complexity
O(|E||V|) according to Theorem 1.

4.2. The DFS Based Tree-Filtering Algorithm

The search space pruning rules of TF_KMST are based on the weight threshold ω.
The cost is high when generating unqualified spanning trees and calculating their reliabil-
ities. In order to avoid this, we consider utilizing tree reliabilities as pruning conditions
in addition to the weight threshold. All the spanning trees of a deterministic graph
can be enumerated based on the depth-first graph search strategy with time complexity
O(|V|+ |E|+ N|V|) [40], where N is the number of spanning trees. By applying tree
weights and tree reliabilities to the search space pruning when enumerating spanning trees,
better performances may be achieved.

Algorithm ST_DFS lists all the spanning trees of a deterministic graph [40]. In ST_DFS,
procedure GROW is used to find all the spanning trees that contain sub-tree Γ by using
depth-first search. Initially, Γ only contains a root vertex r. By adding an edge e1 incident
to r to Γ in a depth-first manner, a new sub-tree Γ = Γ ∪ e1 with two vertices is produced.
Then, a three-vertex sub-tree containing Γ by adding the second edge in a depth-first
manner is obtained. Next, more sub-trees with more vertices are produced until a spanning
tree is generated. By traversing the underlying graph in a depth-first manner, all the
spanning trees are enumerated.

In ST_DFS, the spanning trees are generated by adding edges individually. Many
sub-trees with fewer edges emerge first before obtaining an MST. Inspired by ST_DFS, we
propose using sub-trees as upper bounds for the probabilities and as lower bounds for the
RST weights for processing R-TopK queries. The pruning rules are as follows:

• Rule 1: If W(Γ + e′) > ω, depth-first search starting from Γ via e′ stops.
• Rule 2: If ∏e∈E(Γ)∪{e′} P(e) < ρ and the size of Q is K, depth-first search starting from

Γ via e′ stops.

(Correctness of Rule 1) According to Definition 6, the weights of the top-k RSTs
must be smaller than ω. Any spanning tree obtained by using depth-first search starting

Sensors 2021, 21, 7254 9 of 29

from Γ via e′ contains sub-tree Γ + e′ with a weight larger than ω. Thus, the spanning
trees containing Γ + e′ are not qualified as the top-k RSTs. Rule 1 is correct for pruning
further searches.

(Correctness of Rule 2) Similar to Rule 1, according to Theorem 1, the reliability of a
spanning tree T generated from Γ via e′ is as follows.

PRST(T) = & ∏
e∈E(T)

P(e) · ∏
e′∈D(T)

(1− P(e′)) ≤ ∏
e∈E(T)

P(e). (5)

Since E(Γ) ∪ {e′} ⊆ E(T) and 0 ≤ P(e) ≤ 1(e ∈ E(T)), we have ∏e∈E(T) P(e) ≤
∏e′∈E(Γ)∪{e′} P(e) < ρ . Therefore, T is not qualified as one of the top-k RSTs. Rule 2
is correct.

Figure 4 illustrates the pruning procedures of G1 given in Figure 1. Here, k = 2 and
ω = 30.

Figure 4. The pruning procedures in TF_DFS.

In Figure 4, the solid lines represent the recursive procedures of a depth-first search.
The dashed lines are the procedures being pruned. T2, T4, T5, T1 and T3 are generated and
regarded as candidates (branch 1© 3© 4© 5© 7©), while the procedures of generating T7, T8 and
T6(branches 2© 6© 8©) stop midway at certain points as pruning rules are applied.

Algorithm 2 provides the pseudo codes for the DFS based tree-filtering algorithm
(TF_DFS).

ST_DFS takes time O(|V|+ |E|+ N|V|) and space O(|V|+ |E|), where N is the num-
ber of spanning trees of G. TF_DFS may not list N trees because it can prune the search
space by using the proposed two rules. We define N′(N′ ≤ N) in TF_DFS to replace N.
The RST probability is calculated for each of the listed spanning tree. In the worst cases,
we need to adjust the priority queue N′ times. The total time complexity of TF_DFS is
O(|V| + |E| + N′|V| + N′|E||V| + N′ log k). N′ is affected by parameter k and ω. The
smaller k and ω are, the smaller N′ is. When k is large enough, the second rule of TF_DFS
may prune nothing.

Sensors 2021, 21, 7254 10 of 29

Algorithm 2. The DFS based tree-filtering algorithm, TF_DFS.

Input: An uncertain graph G, an integer k, a weight threshold ω.
Output: top-k RSTs.

1: Q← ∅; ρ← 0; T ← {Vr}
2: while T ← SD_DFS_GROW(T) do
3: ρ← Q.min().probability()
4: if W(T) > ω then
5: prune_rule1()
6: else if Q.size()==k and T is not a spanning tree and P(T) < ρ then
7: prune_rule2()
8: else if Q.size() < k and T is a spanning tree then
9: Q.insert(T)

10: else if P(T) > ρ and Q.size()==k then
11: Q.remove_min();Q.insert(T)
12: end if
13: end while
14: return Q.all()

5. The Edge-Filtering Algorithms

The proposed tree-filtering algorithms need to enumerate (minimum) spanning
(sub-)trees and calculate their reliabilities. Every spanning tree of graph G = (V, E) can be
represented as a set of edges of size |V| − 1. Enumerating edge sets of size |V| − 1 is easier
than enumerating trees. We present an innovative strategy for R-TopK Query processing
in which edge sets are utilized to filter RST candidates and to prune the search space.

5.1. Edge Combinations and Edge Filtering

First, we provide some definitions and introduce the basic idea of edge filtering.

Definition 7 (k-Edge-Combination). Given an uncertain graph G = (V, E, W, P), a k-Edge-
Combination is a subset of E with k distinct edges.

The number of k-edge-combinations in G is Ck
|E| . Since a spanning tree of G has |V| − 1

edges, we only consider the combinations of k = |V| − 1. Without further information
specified, we call (|V| − 1)-Edge-Combination as an edge combination or combination for
short, and we denote it as C.

Definition 8 (Combination Probability). Given an edge combination C of G, the probability of
C is defined as follows.

P(C) = ∏
e∈E(C)

P(e). (6)

Proposition 1. Let C be an edge combination of G; if C forms a spanning tree TC, then PRST(TC) ≤
P(C).

Proof. From Equation (3), PRST(TC) = ∏
e∈E(C)

P(e) · ∏
e′∈D(C)

(1− P(e′)), then PRST(TC) =

P(C) · ∏
e′∈D(C)

(1− P(e′)). For every e′ ∈ D(C), 0 < P(e′) ≤ 1, then 0 ≤ (1− P(e′)) < 1.

Thus, we have PRST(TC) ≤ P(C).

Proposition 1 shows the edge combination probability serves as the upper bound for
the corresponding spanning tree reliability. Therefore, Edge Filtering can find top-k RSTs
in three phases: (1) enumerating all edge combinations; (2) sorting the combinations in
probability ascending order; and (3) filtering RST candidates using Proposition 1 and a
priority queue.

Sensors 2021, 21, 7254 11 of 29

Before presenting the details of Edge Filtering, we introduce an auxiliary data struc-
ture first. Let G = (V, E, W, P) be an uncertain graph in which V is the vertex set, and E
is the edge set. A (|V| − 1)-Edge-Combination C of G is represented as a bit vector X that
fulfills the following:

• |X| = |E|;
• For ∀ei ∈ E(G)(1 ≤ i ≤ |E|), if ei ∈ E(C), then X[i− 1] = 1; otherwise, X[i− 1] = 0;
• X[i, . . . , j] is empty when i > j.

By utilizing bit vector X, the method of enumerating all edge combinations of G(V, E,
W, P) is as follows:

1. Step 1. Initialization: X[0] to X[|V| − 2] are set to ‘1s’, and X[|V| − 1] to X[|E| − 1] are
set to ‘0 s’;

2. Step 2. Repeatedly scan X from left to right. Find the first ‘10’ sequence at position
i and exchange the two bits to ‘01’. Move all ‘1s’ in sub-vector X[0 . . . i − 1] to the
leftmost end of X;

3. Step 3. Enumeration stops when no ‘10’ exists.

Step 2 implies that the combinations are enumerated individually, and each combina-
tion except the first one is generated based on the previous combination.

The number of combinations grows exponentially with graph size and graph density.
Therefore, the basic edge filtering cost is high when enumerating and sorting combinations,
which is not acceptable.

5.2. Edge Filtering on the Fly

It is inefficient to generate, store and sort all the combinations because the total number
of combinations may be extremely large. Therefore, we propose generating combinations
on the fly and conducting filtering/pruning procedures at the same time.

Given an uncertain graph G = (V, E, W, P), we introduce some modifications to naive
edge filtering, which result in obtaining the edge filtering algorithm on the fly, abbreviated
as EF_OTF.

First, we rearrange bit vector X and categorized edge combinations into different
groups:

• Vector Rearrangement Rule: For X[i](0 ≤ i ≤ |E| − 1) and X[j](0 ≤ j ≤ |E| − 1), if
P(ei) > P(ej), then i < j;

• Edge Combination Grouping Rule: Suppose Ci is a combination of group Gk, de-
noted as Ci∈̃Gk. If there is only one sub-vector of ‘1s’ in X to the left of the first ‘10’
sequence but not at the leftmost positions, then Ci is the last combination of Gk. Ci+1
generated based on Ci, and it is the first combination of next group, Gk+1.

The edges in bit vector X are arranged in probability descending order. Due to Edge
Combination Grouping Rules, combinations within a group are arranged in probability
descending order, which is the basis of filtering and pruning. As the second column of
Table 1 shows, the combinations of size six with four ‘1s’ and two ‘0s’ are partitioned into
five groups.

Sensors 2021, 21, 7254 12 of 29

Table 1. A running example of EF_OTF

Group X C ρ P(C) PMST(TC) Description

G1 111100 e3e6e4e2 0 0.252 0.1512 Update Q
111010 e3e4e6e2 0.1512 0.2016 0.1008 Update Q
110110 e3e6e2e1 0.1008 0.144 Not tree Next C
101110 e3e4e2e1 0.1008 0.126 Not tree Next C
011110 e6e4e2e1 0.1008 0.112 0.112 Update Q

G2 111001 e3e6e4e5 0.112 0.1008 Not tree Next Group
110101 e3e6e2e5 − 0.072 − Pruned
101101 e3e4e2e5 − 0.063 − Pruned
011101 e6e4e2e5 − 0.056 − Pruned

G3 110011 e3e6e1e5 − 0.057 − Next Group
101011 e3e4e1e5 − 0.00504 − Pruned
011011 e6e4e1e5 − 0.0448 − Pruned

G4 100111 e3e2e1e5 0.112 0.036 − Stop
010111 e6e2e1e5 − 0.0032 − Pruned

G5 001111 e4e2e1e5 − 0.0028 − Pruned

Proposition 2. Let Gk be the kth group of edge combinations of G. If Ci(Cj∈̃Gk) is generated
before Cj, denoted as i < j, then P(Ci) > P(Cj).

Proof. First, we consider two consecutive combinations, Ci and Ci+1. By applying the
combination enumerating method to the rearranged bit vector X, Ci+1 is generated from Ci
by replacing an edge of larger probability with another edge with smaller probability (‘10’
to ‘01’). Thus, for Ci∈̃Gk and Ci+1∈̃Gk, P(Ci) > P(Ci+1). Since the relation ’>’ is transitive,
for any Ci and Cj(i < j), relationship P(Ci) > P(Cj) holds.

Distinct from tree-filtering algorithms, EF_OTF applies four filtering or pruning rules
for each combination Ci∈̃Gk in EF_OTF:

• Rule 1: If P(Ci) < ρ, ∀C ∈ {Cj|Cj∈̃Gk, j > i}canbesa f elypruned;
• Rule 2: If W(Ci) > ω, Ci can be safely filtered;
• Rule 3: If Ci cannot form a tree, Ci can be safely filtered;
• Rule 4: If PRST(TCi) < ρ, Ci can be safely filtered.

Combination probabilities computation is simple and involves multiplying edge
reliabilities. Tree testing of combinations requires vertex adjacency knowledge, while RST
reliability calculation is appropriate only when there are trees. Rule 1 is the only rule to
prune a search space, and its correctness can be deduced from Proposition 2. Therefore, we
apply these four rules in order. The presto codes of EF_OTF are outlined in Algorithm 3.

In EF_OTF, the combinations generated later in the same group have lower chances of
qualification for their lower reliabilities. For each combination, once it fails the condition
in line 4, the first combination of the next group is produced (line 15), which means that
the rest of the combinations in the current group are pruned from processing. When no
combination is pruned, the worst time cost is O(N(|E||V|+ |V|+ log k)), where N is the
number of combinations that are at most C|V|−1

|E| .
We provide a running example of EF_OTF in Table 1. G1 in Figure 1 is used and k = 2

and ω = 30. As Table 1 shows, the combinations are divided into five groups, and the
combinations in each group are in probability descending order. Seven combinations are
pruned because their probabilities are less than the active probability threshold ρ.

Sensors 2021, 21, 7254 13 of 29

Algorithm 3. The Edge Filtering Algorithm On The Fly, EF_OTF

Input: An uncertain graph G, an integer k, a weight threshold ω.
Output: top-k RSTs.

1: Q← ∅; ρ← 0; sort(E); C ← X.Initialize()
2: while C is not the last combination do
3: ρ← Q.min().probability()
4: if P(C) > ρ then
5: if W(C) < ω and isTree(C) then
6: PMST(TC)← caculate_MST_Probability(TC)
7: if Q.size() < k then
8: Q.insert(TC)
9: else if PMST > ρ then

10: Q.remove_min();Q.insert(TC)
11: end if
12: end if
13: C ← next combination
14: else
15: C ← f irst combination o f next group
16: end if
17: end while
18: return Q.all()

5.3. Multilayer Grouping Based Edge Filtering

In EF_OTF, the combinations within a groups are arranged in combination probability
descending order, which is essential for search space pruning. The Edge Combination
Grouping Rule is based on the combination enumerating process, where a new group
begins whenever a sub-vector of ‘1s’ is shifted to the leftmost end. Let us consider Table 1
as an example. Shifting ‘111’ of ‘011101’ from position 1 to position 0 creates a new group
starting with ‘111001’ (row 6), where ‘011101’ is the result of ‘1-0’ exchange of the previous
group’s last combination ‘011110’ (row 5).

Algorithm EF_OTF tests the first combination of every group in order to determine
whether the remaining combinations are pruned or not. It is inefficient when the number
of groups is large. Therefore, a multilayer grouping strategy is proposed for enhancing
pruning capacity.

We introduce a coding scheme for edge combinations that is also used for identify-
ing groups.

Definition 9 (Combination Encoding). Given an uncertain graph G = (V, E, W, P), |E| = m,
|V| = n, C is an edge combination, andX ⇔ C is the corresponding bit vector of C under reliability
order relation S. C is coded as G(C) = Gi1

1 Gi2
2 . . . Gid

d , 0 ≤ d ≤ n − 1, which is obtained by
scanning X from right to left. The details are as follows.

• Definition: For a bit vector X, r_rankp
c (X) is the number of bit ‘c’ in sub vector X[p . . . m− 1],

and r_selectp
c (X) is the index of the pth ‘c’ in X;

• Initialization: s1 = 0 and s2 = m− n + 1;
• Main procedure: Scan X from right to left repeatedly. Whenever a ‘1’ is encountered at position

p, set s1 = r_rankp
0(X)− s1 and s2 = s2− s1. Generate Gs2

j as one piece of combination code,

where j = r_rankp
1(X). If s2 is equal to 1 or 0, the scanning process terminates; otherwise,

the scanning continues;
• Output: The final code of G(C) is the concatenation of all generated encoding pieces.

Figure 5 shows an example of edge combination encoding. For X ⇔ C, “111010111010”,
m = 12 and n = 9, and the code of C is G3

1G2
2G2

3G2
4G1

5 .

Sensors 2021, 21, 7254 14 of 29

Figure 5. An example of combination encoding.

Definition 10 (Multilayer Groups). For G(Ci) = Gi1
1 Gi2

2 . . . Gid
d , there are d layers in which

layer k is noted as Gik
k . Given G(Ci) and G(Cj) = Gj1

1 Gj2
2 . . . Gjd

d , if k(1 ≤ k ≤ min(d, d′)) exists

such that Gi1
1 Gi2

2 . . . Gik
k is equal to Gj1

1 Gj2
2 . . . Gjk

k , then Ci and Cj are in the same group of layer k.
In layer k + 1(1 ≤ k ≤ min(d− 1, d′ − 1)), Ci is in group ik+1, and Cj is in group jk+1.

Proposition 3. Given an edge combination C with code G(C) = Gl1
1 Gl2

2 . . . Gld
d and the corre-

sponding bit vector X, suppose r_rankp(i)
0 (X)− r_rankp(i−1)

0 (X) = si, where p(i) is r_selecti
1(X)

and p(i− 1) is r_selecti−1
1 (X). Then, the maximum number of groups in layer k is as follows.

MaxGN(Lk) =

m− n + 1, k = 1,

m− n + 1−
k−1

∑
j=1

sj, 1 < k ≤ d.
(7)

Proof. From Definition 9 and Definition 10, we know that the layer index k in the multilayer
grouping code of a combination is the number of ‘1s’ in X that have been scanned. The
group index within layer k is the number of ‘0’s in X between the kth ‘1’ and the (k + 1)th

‘1’ from right. Thus, when k = 1, there are at most m− n + 1 ‘0s’ not yet read, while there
are at least ∑k−1

j=1 sj ‘0s’ that have been scanned when 1 < k ≤ d. Thus, we have proven
Equation (7).

Proposition 4. Let SC be the set of all combinations of the given graph. ∀Ci, Cj ∈ SC(1 ≤ i <
j ≤ |SC|), if Ci and Cj are in the same group of layer k, and Ci is generated before Cj, denoted as
i < j, then we have P(Ci) > P(Cj).

Proof. The proof is similar to that of Proposition 2.

Proposition 5. Let Ci and Cj be two combinations, i < j, G(Ci) = Gl1
1 Gl2

2 . . . Gld
d , ld = 0, and

Gl1
1 Gl2

2 . . . Gld−1
d−1is a prefix of G(Cj); then, we have P(Ci) > P(Cj).

Proof. From Definition 9, we know that when ld = 0, there is no ‘0’ between the (d− 1)th

‘1’ and the dth ‘1’. Therefore, the first group of the dth layer contains only one combination
Ci. Additionally, i < j means Cj is generated after Ci, and G(Cj) has Gl1

1 Gl2
2 . . . Gld−1

d−1 but

not Gl1
1 Gl2

2 . . . Gld−1
d−1G0

d as the prefix implies that there exists at least one more ‘0’ to the left
of the ‘1’ corresponding to the dth piece of G(Cj) than that of G(Ci). Since the encoding
procedure is from right to left and the edges in bit vector X are in probability descending
order from left to right, we have P(Ci) > P(Cj) according to Definition 8.

According to Proposition 5, for group Gl1
1 Gl2

2 . . . Gld
d , there is only one combination

when ld is equal to 0. We give the definition of succinct multilayer group identifier as
follows. Without any ambiguities, we will use it to identify combinations and combination
groups.

Sensors 2021, 21, 7254 15 of 29

Definition 11 (Succinct Multilayer Combination/Group Encoding). For G(C) = Gl1
1 Gl2

2 . . . Gld
d ,

if ld = 0(d > 1), G(C) is encoded as Gl1
1 Gl2

2 . . . Gld−1
d−1.

Proposition 6. Given an edge combination C, G(C) = Gl1
1 Gl2

2 . . . Gld
d , there are four cases for

locating the next group of G(C), noted as Next_G. The probability of the first combination of
Next_G is not necessarily less than P(C).

1. If ld = 1 and d < n− 1, Next_G is Gl1
1 Gl2

2 . . . Gld+1
d G0

d+1;

2. If ld = 1, d = n− 1 and ld + 1 ≤ MaxGN(Ld), Next_G is Gl1
1 Gl2

2 . . . Gld+1
d .;

3. If ld = 1, d = n − 1, lk ≤ MaxGN(Lk) and lk′ > MaxGN(Lk′) for all k < k′ ≤ d,
Next_G is Gl1

1 Gl2
2 . . . Glk+1

k G0
k+1. If k = 0, then Next_G receives nothing;

4. If ld = 0, Next_G is Gl1
1 Gl2

2 . . . Gld−1+1
d−1 G0

d. If lk ≤ MaxGN(Lk) and lk′ > MaxGN(Lk′)

for all k < k′ ≤ d, Next_G is Gl1
1 Gl2

2 . . . Glk+1
k G0

k+1. If k = 0, then Next_G is nil.

Proof. (1): From Definition 9 and Definition 10, when ld = 1 and d < n − 1, there is
a ‘10’ changed to a ‘01’ from the last combination of the current group and the first
combination of the next group. The bit ‘1’ is the basis of encoding G?

d, so the next group is

Gl1
1 Gl2

2 . . . Gld+1
d G0

d+1. (2) and (3): When ld = 1 and d = n− 1, every group in this layer has

only one combination, so the next group is the next combination Gl1
1 Gl2

2 . . . Gld+1
d . Due to the

fact that lk(k ≤ d) exceeds the maximum capacity of layer, k implies that all of the groups
of the current layer will run out, and we should consider the next bit ‘1’. Thus, we have to
move to lower layers. (4) From Proposition 5, ld = 0 means the first combination of the next
group is the first one not containing Gl1

1 Gl2
2 . . . Gld−1

d−1, so it should be Gl1
1 Gl2

2 . . . Gld−1+1
d−1 G0

d.
The cases that lk(k ≤ d) exceeds the maximum capabilities are similar to (3).

Based on the combination encoding method, the multilayer grouping strategy and
the multilayer group encoding based reliability upper bounding property introduced in
Proposition 4 and Proposition 5, we propose the multilayer grouping-based edge filtering
algorithm (EF_MLG) with the first pruning rule of EF_OTF replaced by the following
pruning rule.

• Multilayer Grouping based Pruning Rule:
If P(Ci) < ρ, ∀C ∈ {Cj|i < k < j, G(Cj) 6= Next_G, G(Ck) = Next_G} can be
safely filtered.

The algorithm structure of EF_MLG is similar to EF_OTF. We provide an example to
show the pruning capability of EF_MLG as follows. Here, k = 2 and ω = 30. As Table 2
shows, there are four layers in the multilayer grouping of G1 in Figure 1. The first layer
contains three groups, and all the combinations belong to them. The third group of the
first layer, denoted as G2

1 , is partitioned into three smaller sub-groups in the second layer.
Sub-group G2

1G2
2 is further partitioned in the third layer and so on. As shown in row six

of Table 2, when P(C) < ρ, the next combination group is located/generated based on
Proposition 6. Since G2

1G0
2 is the first combination of group G2

1 and does not fulfill the active
reliability criterion, all the remaining combinations in this group are pruned. The example
shows that EF_MLG has a better pruning capability than EF_OTF.

Sensors 2021, 21, 7254 16 of 29

Table 2. A running example of EF_MLG.

Group X 1st 2nd 3rd 4th ρ P(C) PMST(TC) Description

G0
1 111100 G0

1 0 0.252 0.1512 Update Q

G1
1 111010 G1

1 0.1252 0.2016 0.1008 Update Q
G1

1 110110 0.1008 0.144 Not tree Next C
G1

1 101110 0.1008 0.126 Not tree Next C
G1

1 011110 0.1008 0.112 0.112 Update Q

G2
1 G0

2 111001 G2
1 G0

2 0.112 0.1008 Not tree Next_G

G2
1 G1

2 110101 G1
2 - 0.072 - Pruned

G2
1 G1

2 101101 - 0.063 - Pruned
G2

1 G1
2 011101 - 0.056 - Pruned

G2
1 G2

2 G0
3 110011 G2

2 G0
3 - 0.0576 - Pruned

G2
1 G2

2 G1
3 101011 G1

3 - 0,00504 - Pruned
G2

1 G2
2 G1

3 011011 - 0.0448 - Pruned

G2
1 G2

2 G2
3 G0

4 100111 G2
3 G0

4 - 0.036 - Pruned

G2
1 G2

2 G2
3 G1

4 010111 G1
4 - 0.0032 - Pruned

G2
1 G2

2 G2
3 G2

4 001111 G2
4 - 0.0028 - Pruned

5.4. Optimization Strategies for Edge Filtering

The edge-filtering algorithms utilize edge combinations to act as an upper bound
relative to tree reliabilities and creates more possibilities for optimizing.

5.4.1. Optimized Priority Queue Initialization

The larger the initial active probability thresholds (ρ) in the edge-filtering algorithms,
the better pruning capabilities they have. Both in EF_OTF and in EF_MLG, ρ is updated on
the fly during combination enumerating and testing. They test RST candidates individually
and may insert them into the priority queue, and the active ρ is updated. However,
according to Proposition 2 and Proposition 4, combination probability decreases within
groups, which results in the poor quality of the initial ρ obtained the first time, and the
priority queue reaches its capacity k.

The combination grouping and multilayer grouping schemes allow us to locate all the
first combinations from each group (in EF_OTF) or from each group in the first layer (in
EF_MLG). These first combinations are in probability descending order according to the
combination enumerating rules. Therefore, we use them to initialize the priority queue
(i.e., through a top-k search over probabilities), which results in a bigger ρ at an early stage
of the querying process introduced by the edge filtering algorithms.

5.4.2. Bridge-Based Combination Space Reduction

In the edge-filtering algorithms, the number of edge combinations may be extremely
large. Since each combination may need to be enumerated, tested and processed, it is
important to develop combination space reduction strategies.

Definition 12 (Bridge). Let G(V, E) be a connected graph for e ∈ E. e is a bridge if and only if
graph G(V, E− {e}) and is not connected.

Every spanning tree of a graph must contain all the bridge edges. Given graph G and
its bridge edge set BE(G), the bridge-based combination space reduction rule is as follows.

• Bridge Rule: For all edges in BE(G), their corresponding bits in X are set to ‘1 s’
during the combination enumerating procedure.

By applying the bridge rule, the total number of edge combinations is reduced to
C|V|−|Eb |
|E|−|Eb |

.

Sensors 2021, 21, 7254 17 of 29

New bridges may emerge after removing certain edges.

Definition 13 (Latent Bridge). Given a connected graph G(V, E), e is a latent bridge covered by
edge set Se if and only if Se is the smallest set of edges such that after removing them from graph G,
e becomes a bridge edge noted as e = LB(Se).

The latent bridge rule is as follows.

• Latent Bridge Rule: Given a latent bridge e = LB(Se), in all edge combinations with
bits of Se reset to ‘0s’, the bit of e is set to ‘1’.

One latent bridge prunes away C|V|−|Se|
|E|−|Se| − C|V|−|Se|−1

|E|−|Se|−1 combinations. In practice, it is
inefficient to find all latent bridges. In this paper, we only utilize latent bridges covered by
single edges. For graph G1, six combinations out of fifteen are pruned by the bridge-based
space reduction rules.

5.4.3. Cycle Indexing

In edge-filtering algorithms, edge combinations need to be tested when determining
whether they are trees or not. An edge combination C forms a tree if it does not contain
any cycles. Otherwise, it is not a tree.

We propose indexing cycles in order to improve the performance of combination tree
testing. In order to be consistent and efficient, we use bit vectors to represent path cycles,
the cycle bit vector is similar to the bit vector X used in EF_OTF and EF_MLG. A cycle Cc of
t edges is of form t-Edge-Combination in which edges represented by bits are in reliability
descending order. For example, cycle ’e3e2e1’ is represented by a three-edge-combination
bit vector ‘1001100’ as shown in Figure 6b.

(a) (b)

Figure 6. Uncertain graph and cycle information. (a) Uncertain graph G2; (b) Cycle information of G2.

Definition 14 (Edge Mask Code of Cycles). Given a cycle Cc in G(V, E) and a set of edges
Se ⊆ E, the mask code of Cc with respect to Se is a bit vector of length |E| by applying bitwise
operator ‘AND’ (‘&’) on the bit vector of Cc and the |Se|-Edge-Combination of |Se|, noted as
MCCc(Se).

According to Definition 14, if combination C contains one cycle Cc, for any edge subset
Se of Cc, the result of ‘C&MCCc(Se)’ contains at least one bit ‘1’.

For edge set {e1} of G1, its bit vector is ‘0000100’. The mask code of cycle ’e3e2e1’
with respect to {e1} is ‘0000100’ obtained by bitwise ANDing ‘1001100’ and ‘0000100’.
Combination ‘1001101’ contains cycle “e3e2e1”. The result of ANDing ‘1001101’ and mask
code ‘0000100’ is ‘0000100’.

(Cycle Indexing) The bit vector-based cycle index structure, CCIndex_bv, is formed
as follows:

• A CCIndex_bv is a four-level tree with three indexing levels of combination mask
codes and one data level of edge combinations.

Sensors 2021, 21, 7254 18 of 29

• The root of CCIndex_bv contains the mask codes from the rightmost ‘1’ of all cycles.
Similarly, the nodes of the second and third levels contain the mask codes of second
and third rightmost ‘1 s’.

• The fourth level is the data level that stores all the cycle vectors.

The bit vectors and the index structure of G2 are shown in Figure 7.

Figure 7. Index structure of cycles in G2.

The space overhead of CCIndex_bv is O(|E|+ |CC|) regarding vectors, where |CC|
is the number of cycles. The constructing times and worst searching times are O(|CC|).
CCIndex_bv does not necessarily have three indexing levels, which can be up to |E|. The
reason we chose three in this paper is that a cycle contains at least three edges.

The tree testing procedure of an edge combination C searches CCIndex_bv using
bitwise operator ‘AND’ in a top-down manner. The search rules are as follows:

1. For each indexing node, test all the mask codes against C. If the result of operation ‘&’
is a vector containing bit ‘1’, then the corresponding subtree needs to be tested.

2. If no subtree needs to be tested, then C is a tree, and the tree testing terminates.
3. For each data node, if needed, test all the cycle vectors against C. If one result is equal

to the cycle, then C is not a tree, and the tree testing terminates.

In the worst case, the entire tree is scanned. However, the search usually termi-
nates midway.

When calculating a RST probability, each edge e needs to be tested as dangerous or not
by (1) adding it to an RST to form a sub-graph Gs with |V| edges (in the form of |V|-Edges
Combination), (2) locating the cycles contained by Gs and (3) testing e against the pre-
calculated safe edges with maximum weights in cycles (emax_w in Figure 6a). CCIndex_bv
can facilitate steps (2) and (3).

6. Performance Evaluation

In this section, we present the experimental results for the effectiveness and efficiency
of the algorithms we proposed.

6.1. Setups and Data Sets

(Platform settings) All algorithms were implemented by using the C++ programming
language, with the help of the Standard Template Library (STL) and the Boost Library. The
hardware was an Intel(R) Core(TM) i7-3770 @3.40 GHz CPU with 16GB main memory and
MS Windows 7-x64.

(Datasets) The experiments were conducted on two datasets. One was a synthetic
dataset generated by GraphGen [54], and the other was from a experimental WSN with
Connection Failure Uncertainties named Ncfu. Ncfu had 29 cites and 60 connections, and
each connection would fail according to a given reliability. Crossbow Imote sensors were
used as network nodes since the communication channel can be programmed to avoid

Sensors 2021, 21, 7254 19 of 29

broadcasting. The connection costs were simulated by setting different transfer distances
for the communication energy, and consumption is distance relevant. We used randomly
moving blocks between connected sensors to simulate connection failures. The failure
uncertainties were obtained by recording blocking frequencies.

(Parameters of weight) We used µ to set the weight threshold ω by ω = W(RST) +
µ ∗ ω̄, where W(RST) was the reliable spanning tree weight of G, and ω̄ was the average
weight of all the edges in G. ω is linear to µ.

(Algorithms tested) There were six different algorithms tested including two tree-
filtering algorithms, TF_KMST and TF_DFS, the naïve edge filtering algorithm EF_OTF,
algorithm EF_Bridge that is the bridge-based combination space reduction version of
EF_OTF, the multilayer grouping based edge filtering algorithm EF_MLG_Basic with
bridge optimizing and the complete version of the multilayer grouping edge filtering
algorithm EF_MLG with cycle indexing.

6.2. Performance Evaluation and Analysis

Experiment 1. Experiment 1 investigated the performance of the proposed algorithms
on GraphGen with different graph sizes. This experiment was not conducted on Ncfu for
its size was fixed.

Since the probabilities of edge combinations act as an upper bound to the correspond-
ing RST reliabilities, many unqualified combinations were pruned by utilizing a priority
queue in the edge filtering algorithms.

As Figure 8 shows, the combination pruning capabilities of EF_MLG and EF_MLG_Basic
were the same since cycle indexing in EF_MLG was not proposed for pruning and were
ten times better than EF_Bridge in terms of combination candidates by applying multilayer
grouping on the datasets of different settings. Algorithm EF_Bridge outperformed EF_OTF
by at least ten times in most cases since the bridge-based combination reduction rules were
very effective. The total number of combinations increased exponentially as the graph size
increased, while the increasing ratio of combination candidates was linear. The underlying
reason is that the qualified combination candidates contain exactly |graphsize-1| edges,
which is linear to graph size. The increasing trend did not hold in all cases. In certain cases,
the significance of multilayer grouping was very large so that bigger graphs had fewer
combination candidates. In most query settings, the number of combination candidates of
EF_OTF was very large; thus, we did not show them for the sake of better readability.

Figure 8. Combination pruning on GraphGen vs. graph size with k = 40 and µ = 9.

Not every edge combination forms a tree. The edge filtering algorithms test the
combination candidates first in order to determine whether they could form trees or not
before compute the corresponding RST reliabilities. Figure 9 shows the tree combination
pruning abilities of different edge filtering algorithms in terms of tree combination number.
We can see EF_Bridge, EF_MLG_Basic and EF_MLG with the same query settings having

Sensors 2021, 21, 7254 20 of 29

the same #Tree-combination-candidates, which was at least 10 times smaller than that
of EF_OTF. The underlying reason is the multilayer grouping in EF_MLG_Basic, and
EF_ML is for combination pruning so that it can perform nothing for tree pruning, and
the bridge-based combination reduction strategy adopted by the three algorithms except
EF_OTF contributed to tree combination pruning all by itself and eliminated the un-
tree combinations without bridge edges. We can also observe that the number of tree
combination candidates increased when the graph size increased, except for the graph with
42 edges in which many of them were bridges. Similarly to Figure 8, we did not show some
results of EF_OTF.

Figure 9. Tree combination pruning on GraphGen vs. graph size with with k = 40 and µ = 9.

Figure 10 shows the spanning tree pruning abilities of all the tree-filtering and edge-
filtering algorithms in terms of spanning tree number. Algorithm TF_KMST was the worst
for its pruning rule was only based on the weight threshold and did not consider tree
probabilities that were crucial in R-TopK queries. Algorithm TF_DFS was much better
since it utilized both the weights and probability thresholds to prune searching. The four
edge filtering algorithms all had the same number of spanning-tree-candidates because the
bridge-based, multilayer-grouping-based and indexing-based optimizations are all combi-
nation space pruning oriented. The advantages of EF_OTF, EF_Bridge, EF_MLG_Basic and
EF_MLG are from the inherent essence of edge filtering that acts as upper bounds relative
to RST reliabilities with combination probabilities.

Figure 10. Spanning tree pruning on GraphGen vs. graph size with k = 40 and µ = 9.

Figure 11 shows the running time of all proposed R-TopK Query processing algo-
rithms. All costs increased exponentially when the graph size increased. The reason is that

Sensors 2021, 21, 7254 21 of 29

there were more combination candidates, more tree candidates and more computing tasks
as the graph size increased.

Figure 11. Runtime on GraphGen vs. graph size with k = 40 and µ = 9.

TF_KMST was the worst algorithm. TF_DFS outperformed EF_OTF since there were
too many EF_OTF combination candidates. When the graph sizes were small, the combina-
tion space was also small; EF_Bridge was better than TF_DFS. However, the superiority
did not hold when there were few bridges, e.g., in dense graphs.

Multilayer grouping was proved to be efficient in Figure 11 by showing EF_MLG_Basic
and EF_MLG were at least 10 times faster than the others. The bit vector-based cycle
indexing made EF_MLG two to three times faster than EF_MLG_Basic.

Experiment 2. This experiment tested the performance on GraphGen and Ncfu when
parameter k varied.

Figures 12–14 show the pruning capabilities of the proposed algorithms with a differ-
ent parameter k. EF_OTF and EF_Bridge had so many groups that the increase in ρ caused
by a larger k had very little impact. EF_MLG_Basic and EF_MLG were affected more by k
for multilayer grouping and had fewer groups. A larger k implies a bigger active ρ so that
the inter-group jumping occurred more frequently in the lower layers, resulting in poor
pruning effects. In Figure 12, EF_MLG_Basic and EF_MLG were in line for cycle indexing
and cannot filter combinations. In Figure 13, EF_Bridge, EF_MLG_Basic and EF_MLG were
in line since multilayer grouping can perform nothing on filtering tree combinations. In
Figure 14, EF_OTF, EF_Bridge, EF_MLG_Basic and EF_MLG were in line because bridges
were only used for filtering un-tree combinations.

Figure 12. Combinations pruning on GraphGen vs. k with graphsize = 42 and µ = 9.

Sensors 2021, 21, 7254 22 of 29

Figure 13. Tree combination pruning on GraphGen vs. k with graphsize = 42 and µ = 9.

Figure 14. Spanning tree pruning on GraphGen vs. k with graphsize = 42 and µ = 9.

TF_KMST had an almost identical number of spanning tree candidates as Figure 14
shows since k was not used in pruning. Therefore, we can observe its steady but poor
performance in Figure 15. TF_DFS was also not affected by k since a larger k here only
meant a larger active ρ but not a larger initial ρ which was much more important to the
pruning procedure in TF_DFS.

Figure 15. Runtime on GraphGen vs. k with graphsize = 42 and µ = 9.

The experimental results on Ncfu are shown in Figure 16–19. The overall trends were
similar to those from GraphGen. We noticed that there was no bridge in Ncfu; thus, the

Sensors 2021, 21, 7254 23 of 29

bridge-based pruning did not work in the edge filtering algorithms. Algorithm EF_MLG
was the best algorithm, while its superiority relative to EF_MLG_Basic weakened. The
reason is that, as a sparse graph, the ratio of cycles of Ncfu was lower than that of GraphGen.
There are also many in-line curves, and the reasons are the same to that of experiments
on GraphGen.

Figure 16. Combination pruning on Ncfu vs. k with graphsize = 29 and µ = 9.

Figure 17. Tree combination pruning on Ncfu vs. k with graphsize = 29 and µ = 9.

Figure 18. Spanning tree pruning on Ncfu vs. k with graphsize = 29 and µ = 9.

Sensors 2021, 21, 7254 24 of 29

Figure 19. Runtime on Ncfu vs. k with graphsize = 29 and µ = 9.

Experiment 3. Experiment 3 evaluated the performance on GraphGen and Ncfu when
µ changed.

As had been analyzed, a larger initial ρ resulted in better pruning capability. In
the edge filtering algorithms with optimized priority queue initializing, the initial ρ was
obtained by scanning the first combinations in all the groups. According to the introduced
combination enumerating rules and the grouping rules, in addition to the local order within
the groups, there is a global order among the first combinations that is used in multilayer
grouping and the optimized priority queue initialization. Therefore, by applying larger
weight thresholds, the first combinations with larger global orders were more involved in
the determination of the initial ρ. Therefore, the combination pruning capability would be
better. This is why the runtime of the edge filtering algorithms had decreasing trends as µ
increased in Figure 20 and Figure 23.

The overall trends of tree combination candidates shown in Figure 21 are increasing
since there were more qualified tree combinations with a bigger µ. As long as there are k
RSTs, µ does not affect the spanning tree candidates. Thus, in Figure 22, there are no clear
deviations except for TF_KMST and TF_DFS.

However, if µ becomes large enough such that all the necessary first combinations for
finding the best initial ρ are obtained, the number of combination candidates will no longer
decrease. TF_KMST was the fastest with a small µ since it only needs to enumerate a few
RST candidates as shown in Figure 23.

Figure 20. Combination pruning on GraphGen vs. µ with graphsize = 42 and k = 5.

Sensors 2021, 21, 7254 25 of 29

Figure 21. Tree combination pruningon GraphGen vs. µ with graphsize = 42 and k = 5.

Figure 22. Spanning tree pruning on GraphGen vs. µ with graphsize = 42 and k = 5.

Figure 23. Runtime on GraphGen vs. µ with graphsize = 42 and k = 5.

Figures 24–27 show the experimental results on Ncfu, in which there was one differ-
ence from the synthetic dataset. We can observe that TP_KMST costs slightly more when µ
increased from 7 to 9. The reason is that for a small and sparse graph such as Ncfu, µ was
larger than seven in TF_KMST, which means enumerating almost all the RSTs such that a
different µ makes little difference.

Sensors 2021, 21, 7254 26 of 29

Figure 24. Combinations pruning on Ncfu vs. µ with graphsize = 29 and k = 40.

Figure 25. Tree combination pruning on Ncfu vs. µ with graphsize = 29 and k = 40.

Figure 26. Spanning tree pruning on Ncfu vs. µ with graphsize = 29 and k = 40.

Sensors 2021, 21, 7254 27 of 29

Figure 27. Runtime on Ncfu vs. µ with graphsize = 29 and k = 40.

There are also many in-line curves from Experiment 3, such as EF_MLG_Basic and
EF_MLG have the same combination pruning abilities. EF_Bridge, EF_MLG_Basic and
EF_MLG have the same tree combination pruning performance. EF_OTF, EF_Bridge,
EF_MLG_Basic and EF_MLG are no different on spanning tree pruning. The reasons are
studied when analyzing Experiments 1 and 2.

7. Conclusions and Future Works

This paper explores route selection for WSNs with connection failure uncertainties by
searching the top-k RSTs in uncertain graphs. Two tree-filtering algorithms are proposed.
TF_KMST is inefficient for only using tree weights to prune the search space, so TF_DFS
utilizes both tree reliabilities and tree weights when traversing and testing. Its performance
is acceptable on small graphs, but it is poor when the graph size increased. Edge combina-
tion is then proposed as its probability upper bounds RST reliability. It can identify a small
set of spanning tree candidates but is still inefficient. Various performance optimization
techniques including multilayer grouping, edge combination space reducing and cycle
indexing are introduced. Extensive experiments on both synthetic and simulation datasets
are conducted. The evaluation and analysis show the superiority of edge filtering relative
to tree filtering in most of the cases. To conclude, TF_DFS is a performance steady method;
TF_KMST is suitable for cost limited scenarios where the acceptable weight threshold is
low; EF_MLG is recommended for most of the occasions; and a larger weight threshold is
always preferred.

The environmental dynamics of WSNs may change over time. Then, the connection
failure uncertainties may not be consistent. For example, in a WSN deployed for logistical
field monitoring, the reliability of one connection could rise when there are fewer vehicles
crossing between the two sensors. Therefore, one of the future works is to develop online
update strategies for obtaining new top-k RSTs based on the out-of-date ones. Some WSNs
may have multiple-state connection failure uncertainties, where a connection has more than
one connecting cost, and each cost has a corresponding probability. For example, the sensors
can have multiple communication channels or protocols. Then, the entire framework
should be re-studied, including the uncertain graph model, definition of reliability and
top-k RSTs query processing algorithms.

Author Contributions: Conceptualization, J.L. and B.Z.; methodology, J.L.; software, Y.R.; validation,
Y.R.; writing—review and editing, J.L. and Z.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was support by Natural Science Foundation of China (61873122).

Conflicts of Interest: The authors declare no conflicts of interest.

Sensors 2021, 21, 7254 28 of 29

References
1. Masudi, J.K.O.; Ramotsoela, T.D.; Hanckem, G.P. A wireless communication system for environmental monitoring in smart cities.

In Proceedings of the AFRICON’17, Cape Town, South Africa, 18–20 September 2017; pp. 1541–1546.
2. Hodge, V.J.; O’Keefe, S.; Weeks, M.; Moulds, A. Wireless sensor networks for condition monitoring in the railway industry: A

survey. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1088–1106. [CrossRef]
3. Aponte-Luisetal, J. An efficient wireless sensor network for industrial monitoring and control. Sensors 2018, 18, 182. [CrossRef]
4. Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G. Applications of wireless sensor networks: an up-to-date survey. Appl. Syst.

Innov. 2020, 3, 14. [CrossRef]
5. Zhu, C.; Zheng, C.; Shu, L.; Han, G. A survey on coverage and connectivity issues in wireless sensor networks. J. Netw. Comput.

Appl. 2012, 35, 619–632. [CrossRef]
6. Seferagic, A.; Famaey, J.; de Poorter, E.; Hoebeke, J. Survey on wireless technology trade-offs for the industrial Internet of things.

Sensors 2020, 20, 488. [CrossRef]
7. Kulkarni, P.H.; Malathi, P.P. FuzzyACO: Fuzzy-based optimization approach for energy-aware cluster head selection in WSN. J.

Internet Technol. 2019, 20, 1787–1800.
8. Kulkarni, P.H.; Jesudason, P.M. Multipath data transmission in WSN using exponential cat swarm and fuzzy optimisation. IET

Commun. 2019, 13, 1685–1695. [CrossRef]
9. Movva, P.; Rao, P.T. Novel two-fold data aggregation and MAC scheduling to support energy efficient routing in wireless sensor

network. IEEE Access 2019, 2019, 1260–1274. [CrossRef]
10. Khabiri, M.; Ghaffari, A. Energy-aware clustering-based routing in wireless sensor networks using cuckoo optimization algorithm.

Wirel. Pers. Commun. 2018, 98, 2473–2495. [CrossRef]
11. Ghaffari, A. Congestion control mechanisms in wireless sensor networks: A survey. J. Netw. Comput. Appl. 2015, 52, 101–115.

[CrossRef]
12. Seyfollahi, A.; Ghaffari, A. Reliable data dissemination for the Internet of Things using Harris hawks optimization. Peer-to-Peer

Netw. Appl. 2020, 13, 1886–1902. [CrossRef]
13. Seyfollahi, A.; Ghaffari, A. A lightweight load balancing and route minimizing solution for routing protocol for low-power and

lossy networks. Comput. Netw. 2020, 179, 107368. [CrossRef]
14. Mottaghinia, Z.; Ghaffari, A. Fuzzy logic based distance and energy-aware routing protocol in delay-tolerant mobile sensor

networks. Wirel. Pers. Commun. 2018, 100, 957–976. [CrossRef]
15. Jazebi, S.J.; Ghaffari, A. RISA: Routing scheme for Internet of Things using shuffled frog leaping optimization algorithm. J.

Ambient Intell. Humaniz. Comput. 2020, 11, 4273–4283. [CrossRef]
16. Chauhan, V.; Soni, S. Mobile sink-based energy efficient cluster head selection strategy for wireless sensor networks. J. Ambient

Intell. Humaniz. Comput. 2020, 11, 4453–4466. [CrossRef]
17. Jaiswal, K.; Anand, V. EOMR: An energy-efficient optimal multi-path routing protocol to Improve QoS in wireless sensor network

for IoT applications.Wirel. Pers. Commun. 2020, 111, 2493–2515. [CrossRef]
18. Smaragdakis, G.; Matta, I.; Bestavros, A. Sep: A stable election protocol for clustered heterogeneous wireless sensor networks. In

Proceedings of the Second International Workshop on Sensor and Actor Network Protocols and Applications (SANPA 2004),
Boston, MA, USA, 22 August 2004; pp. 1–11.

19. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor
networks. In Proceedings of the HICSS 2000, Maui, HI, USA, 4–7 January 2000.

20. Santosh, P.; Deshpande, D.S. Energy efficient clustering protocol to enhance performance of heterogeneous wireless sensor
network. J. Comput. Netw. Commun. 2018, 2018, 2078627:1–2078627:12.

21. Rani, S.; Talwar, R.; Malhotra, J.; Ahmed, S.H.; Sarkar, M.; Song, H. A novel scheme for an energy efficient Internet of Things
based on wireless sensor networks. Sensors 2015, 15, 28603–28626. [CrossRef]

22. Rani, S.; Ahmed, S.H.; Rastogi, R. Dynamic clustering approach based on wireless sensor networks genetic algorithm for IoT
applications. Wirel. Netw. 2020, 26, 2307–2316. [CrossRef]

23. Rani, S.; Malhotra, J.; Talwar, R. Energy efficient chain based cooperative routing protocol for WSN. Appl. Soft Comput. 2015, 35,
386–397. [CrossRef]

24. Srikar, M., Benedito, J.B., Jr. Improving route selections in ZigBee wireless sensor networks. Sensors 2020, 20, 164.
25. Kim, M.; Chung, S. Efficient route management method for mobile nodes in 6TiSCH network. Sensors 2021, 21, 3074. [CrossRef]

[PubMed]
26. Fuhr, N.; Rölleke, T. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM

Trans. Inf. Syst. 1997, 15, 32–66. [CrossRef]
27. Harold, N.G. Two algorithms for generating weighted spanning trees in order. SIAM J. Comput. 1977, 6, 139–150.
28. Katoh, N.; Ibaraki, T.; Mine, H. An algorithm for finding k minimum spanning trees. SIAM J. Comput. 1981, 10, 247–255.

[CrossRef]
29. Zhang, A.; Zou, Z.; Li, J.; Gao, H. Minimum spanning tree on uncertain graphs. In Proceedings of the Web Information Systems

Engineering —WISE 2016, Shanghai, China, 8–10 November 2016; pp. 259–274.
30. Nayagi, D.S.; Sivasankari, G.G.; Ravi, V.; Venugopal, K.R.; Sennan, S. REERS: Reliable and energy-efficient route selection

algorithm for heterogeneous Internet of Things applications. Int. J. Commun. Syst. 2021, 34, e4900. [CrossRef]

http://doi.org/10.1109/TITS.2014.2366512
http://dx.doi.org/10.3390/s18010182
http://dx.doi.org/10.3390/asi3010014
http://dx.doi.org/10.1016/j.jnca.2011.11.016
http://dx.doi.org/10.3390/s20020488
http://dx.doi.org/10.1049/iet-com.2018.5708
http://dx.doi.org/10.1109/ACCESS.2018.2888484
http://dx.doi.org/10.1007/s11277-017-4983-8
http://dx.doi.org/10.1016/j.jnca.2015.03.002
http://dx.doi.org/10.1007/s12083-020-00933-2
http://dx.doi.org/10.1016/j.comnet.2020.107368
http://dx.doi.org/10.1007/s11277-018-5360-y
http://dx.doi.org/10.1007/s12652-020-01708-6
http://dx.doi.org/10.1007/s12652-019-01509-6
http://dx.doi.org/10.1007/s11277-019-07000-x
http://dx.doi.org/10.3390/s151128603
http://dx.doi.org/10.1007/s11276-019-02083-7
http://dx.doi.org/10.1016/j.asoc.2015.06.034
http://dx.doi.org/10.3390/s21093074
http://www.ncbi.nlm.nih.gov/pubmed/33925073
http://dx.doi.org/10.1145/239041.239045
http://dx.doi.org/10.1137/0210017
http://dx.doi.org/10.1002/dac.4900

Sensors 2021, 21, 7254 29 of 29

31. Dalvi, N.; Suciu D. Efficient query evaluation on probabilistic databases. VLDB J. 2007, 16, 523–544. [CrossRef]
32. Volk, P.B.; Rosenthal, F.; Hahmann, M.; Habich, D.; Lehner, W. Clustering uncertain data with possible world. In Proceedings of

the ICDE’09, Shanghai, China, 29 March–2 April 2009; pp. 1625–1632.
33. Yuan, Y.; Wang, G.; Wang, H.; Chen, L. Efficient subgraph search over large uncertain graphs. Proc. VLDB Endow. 2011, 4, 876–886.

[CrossRef]
34. Zou, Z.; Li, J.; Gao, H.; Zhang, S. Mining frequent subgraph patterns from uncertain graph data. IEEE Trans. Knowl. Data Eng.

2010, 22 1203–1218.
35. Yuan, Y.; Chen, L.; Wang, G. Efficiently answering probability threshold-based shortest path queries over uncertain graphs. In

Proceedings of the DASFAA 2010 : The 15th International Conference on Database Systems for Advanced Applications, Tsukuba,
Japan, 1–4 April 2010; pp. 155–170.

36. Liu L.; Jin, R.; Aggarwal, C.; Shen, Y. Reliable clustering on uncertain graphs. In Proceedings of the 2012 IEEE 12th International
Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; pp. 459–468.

37. Nesetril, J.; Milková, E.; Nesetrilová, H. Otakar Boruvka on minimum spanning tree problem Translation of both the 1926 papers,
comments, history. Discret. Math. 2001, 233, 3–36. [CrossRef]

38. Prim, R.C. Shortest connection networks and some generalizations. Bell Labs Tech. J. 1957, 36, 1389–1401. [CrossRef]
39. Minty, G.J. A simply algorithm for listing all the trees of a graph. IEEE Trans. Circuit Theory 1965, CT-12, 120. [CrossRef]
40. Gabow, H.N. Finding all spanning trees of directed and undirected graphs. SIAM J. Comput. 1978, 7, 280–287. [CrossRef]
41. Peng, J.; Li, S. Spanning tree problem of uncertain network. In Proceedings of the ICCDA 2011: International Conference on

Computer Design and Applications, Xi’an, China, 27 May 2011.
42. Dey, A.; Broumi, S.; Son, L.H.; Bakali, A.; Talea, M.; Smarandache, F. A new algorithm for finding minimum spanning trees with

undirected neutrosophic graphs. Granul. Comput. 2009, 4, 63–69. [CrossRef]
43. Gitik, R.; Bartal, O.; Joskowicz, L . Euclidean minimum spanning trees with independent and dependent geometric uncertainties.

Comput. Geom. 2021, 96, 101744. [CrossRef]
44. Bertsimas, D.J. The probabilistic minimum spanning tree problem. Networks 1990, 20, 245–275. [CrossRef]
45. Gao, J.; Lu, M. Fuzzy quadratic minimum spanning tree problem. Appl. Math. Comput. 2005, 164, 773–788. [CrossRef]
46. Janiak, A; Kasperski, A. The minimum spanning tree problem with fuzzy costs. Fuzzy Optim. Decis. Mak. 2008, 7, 105–118.

[CrossRef]
47. Almeida, T.A.; Yamakami, A.; Takahashi, M.T. An evolutionary approach to solve minimum spanning tree problem with fuzzy

parameters. In Proceedings of the 2005 International Conference on Computational Intelligence for Modelling Control and
Automation (CIMCA 2005), International Conference on Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC
2005), Vienna, Austria, 28–30 November 2005; pp. 203–208.

48. Asthana, S.; King, O.D.; Gibbons, F.D.; Roth, F.P. Predicting protein complex membership using probabilistic network reliability.
Genome Res. 2004, 14, 1170–1175. [CrossRef] [PubMed]

49. Jiang, R.; Tu, Z.; Chen, T.; Sun, F. Network motif identification in stochastic networks. Proc. Natl. Acad. Sci. USA 2006, 103,
9404–9409. [CrossRef]

50. Ghosh, J.; Ngo, H.Q.; Yoon, S.; Qiao, C. On a routing problem within probabilistic graphs and its application to intermittently
connected networks. In Proceedings of the 26th IEEE International Conference on Computer Communications INFOCOM 2007,
Anchorage, AK, USA, 6–12 May 2007; pp. 1727–1725.

51. Horowitz, E.; Sahni, S.; Mehta, D. Fundamentals of data structures in C++; Silicon Press: Summit, NJ, USA, 2007.
52. Soliman, M.A.; Ilyas, I.F.; Chang, K. Top-k query processing in uncertain catabases. In Proceedings of the 2007 IEEE 23rd

International Conference on Data Engineering Workshop, Istanbul, Turkey, 17–20 April 2007; pp. 896–905.
53. Hua, M.; Pei, J.; Zhang, W.; Lin, X. Efficiently answering probabilistic threshold Top-k queries on uncertain data. In Proceedings

of the 24th IEEE International Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008; pp. 1403–1405.
54. Cheng, J.; Ke, J.; Ng, W. GraphGen: A Graph Synthetic Generator. Available online: http://www.cse.ust.hk/graphgen/ (accessed

on 20 August 2019).

http://dx.doi.org/10.1007/s00778-006-0004-3
http://dx.doi.org/10.14778/3402707.3402726
http://dx.doi.org/10.1016/S0012-365X(00)00224-7
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dx.doi.org/10.1109/TCT.1965.1082385
http://dx.doi.org/10.1137/0207024
http://dx.doi.org/10.1007/s41066-018-0084-7
http://dx.doi.org/10.1016/j.comgeo.2020.101744
http://dx.doi.org/10.1002/net.3230200302
http://dx.doi.org/10.1016/j.amc.2004.06.051
http://dx.doi.org/10.1007/s10700-008-9030-5
http://dx.doi.org/10.1101/gr.2203804
http://www.ncbi.nlm.nih.gov/pubmed/15140827
http://dx.doi.org/10.1073/pnas.0507841103
http://www.cse.ust.hk/graphgen/

	Introduction
	Related Works
	WSN Route Selection
	Possible World Model
	Minimum Spanning Trees

	Preliminaries and Problem Definition
	The Tree-Filtering Algorithms
	The KMST Tree-Filtering Algorithm
	The DFS Based Tree-Filtering Algorithm

	The Edge-Filtering Algorithms
	Edge Combinations and Edge Filtering
	Edge Filtering on the Fly
	Multilayer Grouping Based Edge Filtering
	Optimization Strategies for Edge Filtering
	Optimized Priority Queue Initialization
	Bridge-Based Combination Space Reduction
	Cycle Indexing

	Performance Evaluation
	Setups and Data Sets
	Performance Evaluation and Analysis

	Conclusions and Future Works
	References

