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Abstract
In this paper, a stochastic eco-epidemiological system with patchy structure and
transport-related infection is proposed and the stochastic dynamical behaviors are
investigated. Firstly, by constructing suitable Lyapunov functions, it is revealed that
there is a unique globally positive solution starting from the positive initial value.
Secondly, it is proved that the presented system is stochastically ultimately bounded
and the average in time of the second moment of solution is bounded. Thirdly, we
prove that the large enough stochastic perturbations may lead the predator population
and the diseases in the predator to be extinct while it is persistent in the deterministic
system. Finally, some numerical simulations are given to test our theoretical results.

Keywords Eco-epidemiological system · Patchy structure · Transport-related
infection · Stochastic perturbation

AMS Subject Classification 37C75 · 34F05 · 92B05 · 92D30 · 93E03

1 Introduction

Eco-epidemiology is an important branch in mathematical biology which both con-
siders the ecological and epidemiological factors. The influence of diseases in the
ecological system is an important issue from the mathematical and ecological per-
spectives. Many researchers presented eco-epidemiological systems and tended to
explore ecological systems being subject to epidemiological aspects (Anderson and
May 1986; Venturino 1993; Bhattacharyya andMukhopadhyay 2010; Venturino 2002;
Saha and Samanta 2019; Greenhalgh et al. 2020; Haque and Venturino 2007; Hethcote
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2000; Mainul 2010; Gulland 1995; Hsieh and Hsiao 2008; Fenton and Rands 2006).
Anderson andMay (Anderson andMay 1986) firstly proposed an eco-epidemiological
system which incorporates diseases into the interacting populations. After that, many
researchers proposed and investigated eco-epidemiological systems for the spread of
diseases among interacting species and revealed the spread mechanisms of diseases
based on their studies (Bhattacharyya andMukhopadhyay 2010; Venturino 2002; Saha
and Samanta 2019; Greenhalgh et al. 2020; Haque and Venturino 2007). Some works
studied the spread of diseases in predator/prey population in Lotka-Volterra type pre-
dation systems (Bhattacharyya and Mukhopadhyay 2010; Venturino 2002; Saha and
Samanta 2019; Mainul 2010; Saha and Samanta 2020; Saha et al. 2018; Mondal and
Samanta 2021). Hsieh and Hsiao (2008) and Fenton and Rands (2006) proposed a
predator-prey system with disease in both prey and predator populations and consid-
ered the system dynamical behaviors. The results showed that the dynamical behaviors
of predation systems with diseases are more complex than those without diseases. In
fact, a certain disease in predator populations is a very common phenomenon and the
biologically relevant examples in ecosystems are found by Gulland (1995). For exam-
ples, rabies and Sarcoptes spp. in foxes (Vulpis vulpis) and coyotes (Canis latrans),
where rabbits are prey populations. The Phocine Distemper Virus in both the common
seal (Phoca vitulina) and the striped dolphin (Stenella coeruleoalba), Oto- strongy-
lus circumlitis, and Uncinaria lucasi, which affect ringed seals (Phoca hispida) and
northern fur seals (Callorhinus ursinus), respectively. In this case, fishes are prey pop-
ulations. The other example is that common seals (Phoca vitulina) and striped dolphins
(Stenella coeruleoaba) are infected with canine distemper virus (PDV). In 1988, PDV
infectious disease was found in seals. In 1988, PDV was first identified as the cause
of death of 18,000 harbor seals (P. vitulina) and 300 gray seals (Halichoerus grypus)
on the Nordic coast. In this case, fish is considered as prey and the disease will not
cross the species barrier. The Avian Pox, Newcastle Disease, Influenza, Pasteurella
multocida, Apergillus fumigatus and Leukocytozoon simondi are infectious agents
and all affect a wide range of avian species, in which prey individuals are mainly
insects (Venturino 2002).

On the one hand, the environment habitats are heterogeneous and mainly formed
by a set of discrete patches. This induces populations survive in patchy habitats and
are associated with their migrations. The migration rate explicates the evolutionarily
stable patterns of the populations, and moreover plays an important role in persis-
tence of the interacting populations. One of the popular way is the classical idea of
evolutionary ecology where the less fit phenotypes, which are distinguished based on
their migration and/or dispersal properties, are replaced by fitter ones as a result of
evolution. Based on this issue, the ideal free distribution (IFD) as one of the popu-
lar concept are presented (Saha and Samanta 2019). Hence, the population systems in
patchy habitats with migration (dispersion) are more realistic. However, it is inevitable
that some infectious diseases may spread form one region to another as populations
migrate or transport between regions. The migration or transportation among regions
was one of the main factors which affected the outbreak of infectious diseases. The
migration or transportation will change the disease’s dynamics and induce infection
diseases to be endemic even if infectious diseases will go to extinction in each region
without transport-related infection. This will induce more serious consequences in
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population survival and evolution. Such as the influenza and COVID-19 will transmit
form one country/city to other countries/cities. Therefore, the patchy model systems
with the infectious diseases during transport are more realistic and essential, and have
been studied by many researchers (Hamilton and May 1977; Abrams et al. 2007;
Saha and Samanta 2019; Liu and Takeuchi 2006; Allen 2011; Cui et al. 2006; Allen
and Bokil 2012; Hu et al. 2019; Liu et al. 2018; Rudnicki 2003; Ji and Jiang 2011;
Liu et al. 2018; Bao and Shao 2015). For example, Liu and Takeuchi (2006) pro-
posed an SI QS system to study the effect of transport-related infection and entry
screening. The results revealed that the entry screening may be helpful for disease
eradication since it can always have the possibility to eradicate the disease led by
transport-related infection, and furthermore have the possibility to eradicate disease
even when the disease is endemic in both isolated cities. Cui et al. (2006) presented an
SI S epidemic model system to understand the effect of transport-related infection on
the disease’s spread and the corresponding mechanism. The results showed that the
transport-related infection intensifies diseases spread if infectious diseases break out
to cause an endemic situation in each region. However, almost all published researches
for eco-epidemiological systems do not consider the possibility for individuals which
may be infected during their travels. This factor plays a very important role in deter-
mining the spread and development of infectious diseases, and it is very essential
to strengthen restrictions of passengers once infectious diseases appear. Motivated
by this, this work firstly proposed an eco-epidemiological system incorporating the
transport-related infection.

On the other hand, the dynamical behaviors of ecological populations are always
affected by environmental noises or disturbances (Cui et al. 2006; Allen and Bokil
2012; Hu et al. 2019; Liu et al. 2018; Rudnicki 2003; Ji and Jiang 2011; Liu et al.
2018; Bao and Shao 2015; Mao 2007; Rebelo and Soresina 2020; Xin and Liu 2019;
Arifah and Mao 2004; Li and Mao 2009; Das and Samanta 2018). Deterministic
population models in ecology do not usually incorporate environmental fluctuation.
They are often justified by the implicit assumption that stochastic deviations are small
enough to be ignored in large populations. Deterministic models will be proved eco-
logically useful only if the dynamical patterns are still in evidence when stochastic
effects are introduced. Uncertain changes of populations are usually considered as an
effect of environmental stochasticity. In fact, the physical and biological environment
of populations is not totally predictable, such as the population reproduction depends
on temperature, humidity, parasites, pathogens, environmental pollution and so all.
Hence, the population’s development and growth should be considered as a stochastic
process rather than a deterministic one. Rudnicki (2003) provided a detailed analysis
for stability of a stochastic Lotka-Volterra system. Ji and Jiang (2011) and Liu et al.
(2018) studied a predator-prey system with modified Leslie-Gower and Holling type
II schemes with stochastic perturbations. Bao and Shao (2015) further extended this
system into a stochastic predation system with all coefficients exhibiting random fluc-
tuations. The published researches have revealed that the environmental fluctuations
will induce the birth rate, death rate, transmission coefficient and other parameters of
dynamical systems to exhibit randomness with a greater or lesser extent. Moreover,
the random fluctuations could apply to control some infectious diseases. Motivated
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by this, this paper proposed an eco-epidemiological system incorporating the patchy
structure, transport-related inflection and stochastic perturbation.

The paper is organized as follows. In Sect. 2, an stochastic eco-epidemiological
system with patchy structure and transport-related infection is proposed. The unique
global positivity of solutions of the presented system is given in Sect. 3. Section 4
shows that the presented model system is stochastically ultimately bounded and the
average in time of the second moment of solution is bounded. In Sect. 5, we will
deduce the condition of extinction of the total predator populations and disease in the
predators. Finally, the theoretical results are discussed and some numerical simulations
are given to test our theoretical results.

2 System description

Based on the above realistic issues, suppose that diseases only spread in predator pop-
ulation, and predator population is divided into two classes: the susceptible predator
and the infected predator. Let Xi , Si and Ii represent the number of prey, susceptible
predator, infected predator in patch i (i = 1, 2), respectively.

The basic assumptions for system formation are as follows:

(i) In the absence of predators, the prey population grows logisticallywith ri (1− Xi
Ki

)

in patch i (i = 1, 2), respectively.
(ii) Holling I functional response is adopted for susceptible predators, and they will

lose the predation ability after being infected by diseases.
(iii) The standard incidence rate is adopted in the spread of diseases among predator

populations, and βi Si Ii
Si+Ii

is the total number of new cases per unit time in patch
i (i = 1, 2), respectively. However, this paper supposes that the mass-action
incidence rate for the infection during transports due to the sufficient and frequent
contacts between susceptible and infected predators, that is, γiα2

i j Si Ii is the total
number of new cases per unit time during transport from patch i to patch j ,
(i, j = 1, 2, i �= j).

(iv) The birth rate and death rate of predator individuals who are traveling are omitted
since the birth and death processes are more fast than the predators’ one-way
transport between two patches.

(v) It is assumed that stochastic perturbations are white noises which are directly
proportional to Xi (t), Si (t) and Ii (t) (i = 1, 2), and influenced on the Ẋi (t),
Ṡi (t) and İi (t) in the proposed system (i = 1, 2) respectively. Hence, the random
perturbations incorporate into incidence functions in patch 1 and patch 2 are as
follows:

β1S1 I1
S1 + I1

dt → (β1 + η1 Ḃ4)S1 I1
S1 + I1

dt,
β2S2 I2
S2 + I2

dt → (β2 + η2 Ḃ8)S2 I2
S2 + I2

dt,

Based on the above assumptions and diagram, the following compartment diagram
is presented:
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Fig. 1 Compartment diagram

Based on the above assumptions and diagram, the following stochastic eco-
epidemiological system with patchy structure and transport-related infection is
proposed:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1(t) = [r1X1(1 − X1
K1

) − λ1X1S1]dt + a1X1dB1(t),

dS1(t) = [p1X1S1 − β1S1 I1
S1+I1

− σ1S1 + δ1 I1 − α12S1 + α21S2 − γ2α
2
21S2 I2]dt

+ b1S1dB2(t) − η1S1 I1
S1+I1

dB4(t),

d I1(t) = [β1S1 I1
S1+I1

− (σ1 + ω1)I1 − δ1 I1 − α12 I1 + α21 I2 + γ2α
2
21S2 I2]dt

+ c1 I1dB3(t) + η1S1 I1
S1+I1

dB4(t),

dX2(t) = [r2X2(1 − X2
K2

) − λ2X2S2]dt + a2X2dB5(t),

dS2(t) = [p2X2S2 − β2S2 I2
S2+I2

− σ2S2 + δ2 I2 − α21S2 + α12S1 − γ1α
2
12S1 I1]dt

+ b2S2dB6(t) − η2S2 I2
S2+I2

dB8(t),

d I2(t) = [β2S2 I2
S2+I2

− (σ2 + ω2)I2 − δ2 I2 − α21 I2 + α12 I1 + γ1α
2
12S1 I1]dt

+ c2 I2dB7(t) + η2S2 I2
S2+I2

dB8(t).

(2.1)

The ecological and epidemiological meanings of all parameters of system (2) are
given in Table 1, where ri ,Ki ,λi , pi , βi , σi , ωi , αi j , δi , γi , (i, j = 1, 2, i �= j)
are all positive. Bi (t) are independent standard Brownian motions with Bi (0) = 0
and a2j , b

2
j , c

2
j , η2j , ξ2j are all positive and denote the intensities of the white noises

(i = 1, 2, 3, 4, 5, 6, 7, 8, j = 1, 2).
From the biological point of view, the term αi j Si means that the susceptible preda-

tors leave the patch i and γiα
2
i j Si Ii denotes the susceptible predators become infected
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Table 1 Definition of the parameters in system (2.1)

Parameter Definitions

ri Intrinsic birth rate of the prey species at patch i

λi Predation rate at patch i

Ki Carrying capacity of prey species at patch i

pi Biomass conversion rate at patch i

βi The effective contact rate at patch i

σi Natural death rate of the predator at patch i

δi The individuals’ rate of recovery due to natural causes or treatment

ωi Disease-induced death rate of the predator at patch i

αi j The travel rate from patch i to patch j

γi The effective contact rate in the transportation from patch i to patch j

during their travels from patch i to patch j . Therefore, it is assumed that the term
αi j Si − γiα

2
i j Si Ii should be nonnegative and the term 1− γiαi j Ii is positive through-

out this paper.
Definingφ(t) = (X1(t), S1(t), I1(t), X2(t), S2(t), I2(t)), and the initial conditions

of system (2.1) are as follow:

φ(0) = (X1(0), S1(0), I1(0), X2(0), S2(0), I2(0)), Xi (0) > 0,

Si (0) > 0, Ii (0) > 0, i = 1, 2. (2.2)

Let (�,F , {Ft }t≥0,P) be a complete probability space with a filtration {Ft }t≥0
satisfying the usual condition (i.e., it is increasing and right continuous while F0
contains all P-null sets), Bi (t)(i = 1, 2, 3, 4, 5, 6, 7, 8) are defined on this complete
probability space. Meanwhile, defining R

d+ = {x ∈ R
d : xi > 0, 1 ≤ i ≤ d}.

Generally, we consider the following d-dimensional stochastic differential equa-
tion:

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t), (2.3)

with initial value x(0) = x0 ∈ R
d . Where f (x(t), t) is a function defined on R

d ×
[t0,+∞), g(x(t), t) is a d × m matrix, f , g are locally Lipschitz continuous in x ,
B(t)denotes an m-dimensional standard Brownian motion defined on the complete
probability space (�,F , {Ft }t≥0,P). The differential operator L of system (2.1) is
defined by

L = ∂

∂t
+

d∑

i=1

fi (t)
∂

∂xi
+ 1

2

d∑

i, j=1

[
gT (t, x)g(t, x)

]

i j

∂2

∂xi∂x j
.
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If L acts on a function V ∈ C2,1
(
R
d × [t0,+∞] ;R+

)
, then

LV (x, t) = Vt (x, t) + Vx (x, t) f (x, t) + 1

2
trace

[
gT (x, t)Vxx g(x, t)

]
,

where Vt = ∂V
∂t , Vx =

(
∂V
∂x1

, . . . , ∂V
∂xd

)
, Vxx =

(
∂2V

∂xi ∂xi

)

d×d
,C2,1

(
R
d × [t0,+∞] ;

R+) denote the family of all nonnegative functions defined on R
d × [t0,+∞) and

continuously twice differentiable in x and once in t . By I t ô′s f ormula, if x(t) ∈ R
d ,

we have

dV (x, t) = LV (x, t)dt + Vx (x, t)g(x, t)dB(t).

Definition 2.1 (Xin and Liu 2019) System (2.1) is said to be ultimately bounded in
mean if there is a positive constant L independent of initial conditions (2.2) such that

lim sup
t→∞

E|φ(t)| ≤ L.

Definition 2.2 (Arifah and Mao 2004; Li and Mao 2009). The solution φ(t) of system
(2.1) is said to be stochastically ultimately bounded, if for any ε ∈ (0, 1), there is a
positive constant B = B(ε), such that for any initial value (2.2), the solution φ(t) of
system (2.1) has the property that

lim sup
t→∞

P{|φ(t)| > B} ≤ ε.

3 Existence and uniqueness of the global positive solution

In this section, we will prove that system (2.1) has a unique global positive solution
by using Lyapunov analysis method.

Theorem 3.1 For any given initial conditions (2.2), there is a unique positive solution
φ(t) of system (2.1) on [0,∞), and the solutionφ(t)will remain inR6+ with probability
one.

Proof Since the coefficients of system (2.1) are locally Lipschitz continuous, for any
given initial value (2.2), there is a unique local solution in [0, τe), where τe denotes
the explosion time.

Now, we will prove that the solution is global, i.e. τe = +∞ a.s. To this end, let

k0 ≥ 1 be sufficiently large such that Xi (0) ∈
(

1
k0

, k0
)

, Si (0) ∈
(

1
k0

, k0
)

, Ii (0) ∈
(

1
k0

, k0
)

, i = 1, 2. For each integer k ≥ k0 define the stopping time as follow

τk = inf

{

t ∈ [0, τe) : Xi (t) /∈
(
1

k
, k

)

or Si (t) /∈
(
1

k
, k

)

or Ii (t) /∈
(
1

k
, k

)

, i = 1, 2

}

,
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we denote as the empty set and set inf = ∞ throughout this paper. Clearly, τk is
increasing as k → ∞. Set τ∞ = limk→∞ τk , hence τ∞ ≤ τe a.s. If we can show that
τ∞ = ∞ a.s., then τe = ∞ and φ(t) ∈ R

6+ a.s. for all t ≥ 0. If this assertion is not
true, then there exist T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T } > ε. For any k ≥ k0,
let �k = {ω ∈ � : τk(ω) ≤ T }. That is, P(�k) > ε for any k ≥ k0.
Define the C6-function V:R6+ → R+ by

V (φ(t)) =
2∑

i=1

(2Xi − 1 − lnXi + 2Si − 1 − lnSi + 2Ii − 1 − ln Ii ).

For any 0 ≤ t < (τk ∧ T ), using I t ô′s f ormula, we have

dV = LVdt + (2 − 1

X1
)a1X1(t)dB1(t) + (2 − 1

S1
)b1S1(t)dB2(t) + (2 − 1

I1
)c1 I1(t)dB3(t)

+ η1(I1 − S1)

S1 + I1
dB4(t) + (2 − 1

X2
)a2X2(t)dB5(t) + (2 − 1

S2
)b2S2(t)dB6(t)

+ (2 − 1

I2
)c2 I2(t)dB7(t) + η2(I2 − S2)

S2 + I2
dB8(t),

(3.1)

where

LV =
2∑

i, j=1,i �= j

{(2 − 1

Xi
)[ri Xi (1 − Xi

Ki
) − λi Xi Si ]

+ (2 − 1

Si
)[pi Xi Si − βi Si Ii

Si + Ii
− σi Si + δi Ii

− αi j Si + α j i S j − γ jα
2
j i S j I j ] + (2 − 1

Ii
)

[ βi Si Ii
Si + Ii

− (σi + ωi )Ii − δi Ii − αi j Ii + α j i I j

+ γ jα
2
j i S j I j ] + 1

2
[a2i + b2i + η2i I

2
i

(Si + Ii )2
+ c2i + η2i S

2
i

(Si + Ii )2
]}

≤
2∑

i, j=1,i �= j

{ (2Kiri + ri − Ki pi )2

8Kiri
− ri + 2σi + δi + ωi

+ 2αi j + βi + η2i + 1

2
(a2i + b2i + c2i ) + λi Si }.

Using the inequality u ≤ 2u − 1 − lnu for any u ∈ R+, we have

LV ≤ G + max{λ1, λ2}V ,

where G = ∑2
i, j=1,i �= j { (2Kiri+ri−Ki pi )2

8Kiri
− ri + 2σi + δi + ωi + 2αi j + βi + η2i +

1
2 (a

2
i + b2i + c2i )} is a suitable constant which is independent of Xi , Si , Ii and t .
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Furthermore, for any k > k0, integrating both sides of (3.1) from 0 to τk ∧ T , and
then take the expectation, we get

EV(φ(τk ∧ T )) ≤ V (φ(0)) + GE(τk ∧ T ) + max{λ1, λ2}
∫ τk∧T

0
EV(φ(t)dt

≤ V (φ(0)) + GT + max{λ1, λ2}
∫ τk∧T

0
EV(φ(t))dt .

By the Gronwall inequality (Liu et al. 2018), it is obtained that

EV(φ(τk ∧ T )) ≤ (φ(0)) + GT )emax{λ1,λ2}T . (3.2)

Noting that for everyω ∈ �k , there is at least one of X1(τk, ω), S1(τk, ω), I1(τk, ω),

X2(τk, ω), S2(τk, ω) or I2(τk, ω) that is equal to k or 1
k . Hence, V (φ(τk, ω)) is no less

than either 2k − 1 − lnk or 2
k − 1 − ln 1

k = 2
k − 1 + lnk, i.e

V (φ(τk, ω)) ≥ (2k − 1 − lnk) ∧ (
2

k
− 1 + lnk). (3.3)

It follows from (3.2) and (3.3), we have

(V (φ(0)) + GT )emax{λ1,λ2}T ≥ EV(φ(τk ∧ T ))

≥ E[I�k(ω)V (φ(τk, ω))]
≥ ε1(2k − 1 − lnk) ∧ (

2

k
− 1 + lnk),

where I�k (ω) denotes the indicator function of �k . Let k → +∞, then

+∞ > (V (φ(0)) + GT )emax{λ1,λ2}T = +∞,

which leads to a contradiction. Hence, it must have τ∞ = +∞ a.s. as required.
Next, we claim that φ(t) is positive almost surely on [0,∞). On t ∈ [0,∞), for

the system (2.1), we have

Xi (t) = Xi (0)e
∫ t
0 (ri (1− Xi (θ)

Ki
)−λi Si (θ))dθ+ai Bk (t)

, (3.4)

where i = 1, k = 1, i = 2, k = 4.

Si (t) = Si (0)e
∫ t
0 [pi Xi (θ)− βi Ii (θ)

Si (θ)+Ii (θ)
−σi− δi Ii (θ)

Si (θ)
−αi j+ α j i S j (θ)

Si (θ)
− γ j α

2
j i S j (θ)I j (θ)

Si (θ)
]dθ

+bi Bk(t) −
∫ t

0

ηi Ii (θ)

Si (θ) + Ii (θ)
dBm(θ), (3.5)
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where i, j = 1, 2, i �= j , k = 2, 6, m = 4, 8.

Ii (t) = Ii (0)e
∫ t
0 (

βi Si (θ)

Si (θ)+Ii (θ)
−(σi+ωi+δi+αi j )+ α j i I j (θ)

Ii (θ)
+ γ j α

2
j i S j (θ)I j (θ)

Ii (θ)
)dθ+ci Bk (t)+

∫ t
0

ηi Si (θ)

Si (θ)+Ii (θ)
dBm (θ)

,

(3.6)

where i, j = 1, 2, i �= j , k = 3, 7, m = 4, 8.
Apparently, for the initial condition (2.2), we have Xi (0) > 0, Si (0) > 0, Ii (0) > 0,

then Xi (t) > 0, Si (t) > 0, Ii (t) > 0,i = 1, 2.
Therefore, (2.1) with (2.2) has the unique global solution φ(t) on t ∈ [0,∞) and

the solution will remain in R6+ with probability one.
This completes the proof.

4 Stochastically ultimate boundedness

In this section, we examine the ultimate boundedness in mean, stochastically ultimate
boundedness, and the average in time of the second moment of solution.

Theorem 4.1 For any given initial values (2.2), solution φ(t) of system (2.1) satisfies

lim sup
t→∞

E|φ(t)| ≤ K1(r1 + ξ)2

4r1ξ
+ K2(r2 + ξ)2

4r2ξ
,

where ξ = min{σ1, σ2}, Further, system (2.1) is ultimately bounded in mean.

Proof By Theorem 3.1, the solution φ(t) will remain in R
6+ for all t > 0 with proba-

bility one. Define the C6-function V:R6+ → R by

V1(t, φ(t)) = eξ t (X1 + X2 + S1 + S2 + I1 + I2).

Applying I t ô′s f ormula, we have

dV1(t, φ(t)) = LV1(t, φ(t)) + eξ t (a1X1dB1 + b1S1dB2 + c1 I1dB3

+a2X2dB5 + b2S2dB6 + c2 I2dB7), (4.1)

where

LV1(t, φ(t)) = eξ t
2∑

i=1

{− ri
Ki

X2
i + (ri + ξ)Xi − (λi − pi )Xi Si

− (σi − ξ)Si − (σi + ωi − ξ)Ii }

≤ eξ t [K1(r1 + ξ)2

4r1
+ K2(r2 + ξ)2

4r2
].
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Integrating both sides of (4.1) from 0 to t and using the above equality, we obtain

V1(t, φ(t)) ≤ V1(0, φ(0)) + [K1(r1 + ξ)2

4r1
+ K2(r2 + ξ)2

4r2
]
∫ t

0
eξsds

+
∫ t

0
eξs[a1X1(s)dB1(s) + b1S1(s)dB2(s) + c1 I1(s)dB3(s)]

+
∫ t

0
eξs[a2X2(s)dB5(s) + b2S2(s)dB6(s) + c2 I2(s)dB7(s)].

(4.2)

Now, multiplying both sides of (4.2) by e−ξ t , and taking the expectation, we have

E[X1(t) + X2(t) + S1(t) + S2(t) + I1(t) + I2(t)] ≤ e−ξ t V1(0, φ(0)) + [K1(r1 + ξ)2

4r1

+ K2(r2 + ξ)2

4r2
] 1
ξ

(1 − e−ξ t ).

Furthermore, letting t → ∞, we get

lim sup
t→∞

E[X1(t) + X2(t) + S1(t) + S2(t) + I1(t) + I2(t)] ≤ K1(r1 + ξ)2

4r1ξ

+K2(r2 + ξ)2

4r2ξ
.

Noting from the equality |φ(t)| ≤ X1(t) + X2(t) + S1(t) + S2(t) + I1(t) + I2(t),
for any φ(t) ∈ R

6, hence

lim sup
t→∞

E|φ(t)| ≤ K1(r1 + ξ)2

4r1ξ
+ K2(r2 + ξ)2

4r2ξ
.

This completes the proof.

By Chebyshev’s inequality and Theorem 4.1, we have the following conclusion.

Theorem 4.2 For any given initial values (2.2), the solution φ(t) of system (2.1) is
stochastically ultimately bounded.

Theorem 4.3 Assume that there are positive numbers mi , ni , li , θi , such that Ri :=
2σi + (2−mi )αi j −miα j i − 2pi Ki − niδi − b2i − η2i

2 > 0,Ui := 2(σi + ωi ) + (2−
ni )δi − 2βi + (2 − li )αi j − liα j i − c2i − η2i

2 − θi max{γ1α2
12, γ2α

2
21}B > 0, i = 1, 2,

where m1m2 = 1, n1n2 = 1, l1l2 = 1, θ1θ2 = 1. Then, for any given initial values
(2.2), the solution φ(t) of system (2.1) satisfies

lim sup
t→∞

1

t

∫ t

0
E|φ(s)|2ds ≤ Q + K 2

1 + K 2
2 ,
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where Q :=
∑2

i, j=1,i �= j {2σi+2αi j+βi+ωi+δi+ 1
2 (b2i +c2i +2η2i )}

min
i, j=1,2,i �= j

{Ri ,Ui } is a positive constant. That is

to say, the average in time of the second moment of solution φ(t) is bounded.

Proof Firstly, Integrating both sides of d(X1(t)) ≤ r1X1(1− X1
K1

)+a1X1dB1(t) from
0 to t and taking the expectation, we have

0 ≤ EX1(t) ≤ X1(0) + E

∫ t

0
[− r1

K1
X2
1(s) + r1X1(s)]ds.

This implies

lim sup
t→∞

1

t

∫ t

0
EX

2
1(s)ds ≤ K 2

1 .

By the same calculation, we can obtain that

lim sup
t→∞

1

t

∫ t

0
EX

2
2(s)ds ≤ K 2

2 .

By theorem4.1 and theorem4.2,wehave S1(t)+S2(t) < B = K1(r1+ξ)2

4r1ξε
+ K2(r2+ξ)2

4r2ξε
for any sufficiently small ε > 0.

Define the C6-function V:R6+ → R by

V =
2∑

i=1

{(S2i − lnSi + I 2i − ln Ii )}.

Applying I t ô′s f ormula and the inequality 2ab ≤ a2 + b2, we have

dV ≤
2∑

i, j=1,i �= j

{−[2σi + (2 − mi )αi j − miα j i − 2pi Ki − ni δi − b2i − η2i

2
]S2i − [2(σi + ωi )

+ (2 − ni )δi − 2βi + (2 − li )αi j − liα j i − c2i − η2i

2
− θi max{γ1α2

12, γ2α
2
21}B]I 2i

+ 2σi + 2αi j + βi + ωi + δi + 1

2
(b2i + c2i + 2η2i )}dt + (2S1 − 1

S1
)b1S1dB2(t)

+ (2I1 − 1

I1
)c1 I1dB3(t) + η1(I1 − S1)(2S1 I1 + 1)

S1 + I1
dB4(t) + (2S2 − 1

S2
)b2S2dB6(t)

+ (2I2 − 1

I2
)c2 I2dB7(t) + η2(I2 − S2)(2S2 I2 + 1)

S2 + I2
dB8(t).
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Integrating both sides of the above inequality from 0 to t and taking the expectation,
we get

0 ≤ EV(φ(t)) ≤ V (φ(0)) +
2∑

i, j=1,i �= j

{[2σi + 2αi j + βi + ωi + δi

+ 1

2
(b2i + c2i + 2η2i )]t − [2σi

+ (2 − mi )αi j − miα j i − 2pi Ki − ni δi − b2i − η2i
2

]
∫ t

0
ES

2
i (s)ds − [2(σi + ωi ) + (2 − ni )δi

− 2βi + (2 − li )αi j − liα j i − c2i − η2i
2

− θi max{γ1α2
12, γ2α

2
21}B]

∫ t

0
EI

2
i (s)ds}.

It is straightforward to see that

lim sup
t→∞

1

t

∫ t

0
E(S1(s)

2 + I1(s)
2 + S2(s)

2 + I2(s)
2)ds ≤ Q.

Hence

lim sup
t→∞

1

t

∫ t

0
E|φ(s)|2ds ≤ Q + K 2

1 + K 2
2 .

This completes the proof.

5 Asymptotic pathwise estimation and extinction

In this section, we consider asymptotic pathwise estimation the solution of system
(2.1) and the extinction of the total predator and the extinction of ecological epidemics
with probability one. Because the predator can travel freely between two patches, the
extinction considered in the section must occur simultaneously in two patches. Firstly,
we give the proof of the extinction of the total predator with probability one.

Theorem 5.1 For any given initial values (2.2), the solution φ(t) of system (2.1)
satisfies

lim sup
t→∞

ln(S1(t) + I1(t) + S2(t) + I2(t))

t
≤ H1 a.s.,

where H1 is defined in (5.1). Moreover, if H1 < 0 holds, then the total predator of
system (2.1) will tend to zero exponentially with probability one.

Proof Let

V2(φ(t)) = ln(S1 + I1 + S2 + I2).
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Applying I t ô′s f ormula, we have

dV2 = LV2dt + 1

S1 + I1 + S2 + I2
(b1S1dB2(t) + c1 I1dB3(t) + b2S2dB6(t) + c2 I2dB7(t)),

where

LV2 = 1

S1 + I1 + S2 + I2
[p1X1S1 − σ1S1 − (σ1 + ω1)I1 + p2X2S2 − σ2S2 − (σ2 + ω2)I2]

− 1

2(S1 + I1 + S2 + I2)2
(b21S

2
1 + c21 I

2
1 + b22S

2
2 + c22 I

2
2 )

≤ 1

S1 + I1 + S2 + I2
[p1K1S1 − σ1S1 − (σ1 + ω1)I1 + p2K2S2 − σ2S2 − (σ2 + ω2)I2]

− 1

2
min{b21, c21, b22, c22}

S21 + I 21 + S22 + I 22
(S1 + I1 + S2 + I2)2

≤ − min{σ1 − p1K1, σ1 + ω1, σ2 − p2K2, σ2 + ω2} − 1

8
min{b21, c21, b22, c22}

:=H1.

(5.1)

Hence,

dV2 ≤ H1dt + b1dB2(t) + c1dB3(t) + b2dB6(t) + c2dB7(t). (5.2)

Integrating both sides of (5.2) from 0 to t and then dividing t , we get

ln(S1(t) + I1(t) + S2(t) + I2(t))

t
≤ ln(S1(0) + I1(0) + S2(0) + I2(0))

t

+ H1 + b1B2(t)

t
+ c1B3(t)

t
+ b2B6(t)

t
+ c2B7(t)

t
.

By the Strong law of large numbers for martingales, we have limt→∞ Bi (t)
t = 0,

i = 2, 3, 6, 7.
Thus,

lim sup
t→∞

ln(S1(t) + I1(t) + S2(t) + I2(t))

t
≤ H1.

It is straightforward to see that, when H1 < 0 is satisfied, S1 + I1 + S2 + I2 will go
to zero exponentially with probability one, i.e the total predator of two patches will
go to extinction simultaneously exponentially with probability one.

This completes the proof.

Remark 1 On the one hand, it is easy to see that H1 = −min{σ1−p1K1, σ1 + ω1, σ2−
p2K2, σ2 + ω2} − 1

8 min{b21, c21, b22, c22} is decreasing with b21, c
2
1, b

2
2, c

2
2 increasing.

Hence, the total number of predators in two patches will die out exponentially as long
as b21, c

2
1, b

2
2 and c22 are large enough such that H1 < 0. This means that the white

noise may lead predator population to be extinction while they are persistent in the
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deterministic system. On the other hand, we can obtain that lim sup
t→∞

ln Xi (t)
t ≤ ri − a2i

2

a.s. (i = 1, 2). That is to say, if the white noise is large enough, the prey population
will be extinct in statistic system while they are persistent in the deterministic sys-
tem. Therefore, the larger white noise will have negative effects on the population
coexistence.

Next, we will give the proof of the extinction of the disease with probability one
by using the same method as Theorem 5.1.

Theorem 5.2 For any given initial values (2.2), solution φ(t) of system (2.1) satisfies

lim sup
t→∞

ln(I1(t) + I2(t))

t
≤ H2 a.s.

where H2 is defined in (5.6). Moreover, if H2 < 0 holds, then the disease of system
(2.1) will go to extinction exponentially with probability one.

Proof Define

V3(φ(t)) = ln(I1 + I2).

Applying I t ô′s f ormula, we have

dV3 = LV3dt + 1

I1 + I2
(c1 I1dB3(t) + η1S1 I1

S1 + I1
dB4(t) + c2 I2dB7(t)

+ η2S2 I2
S2 + I2

dB8(t)). (5.3)

where

LV3 = 1

I1 + I2
(
β1S1 I1
S1 + I1

− (σ1 + ω1)I1 − δ1 I1 + γ2α
2
21S2 I2 + β2S2 I2

S2 + I2
− (σ2 + ω2)I2 − δ2 I2

+ γ1α
2
12S1 I1) − 1

2(I1 + I2)2
[c21 I 21 + η21S

2
1 I

2
1

(S1 + I1)2
+ c2 I

2
2 + η22S

2
2 I

2
2

(S2 + I2)2
]

≤ − min{σ1 + ω1 + δ1, σ2 + ω2 + δ2} + 1

I1 + I2
(
β1S1 I1
S1 + I1

+ β2S2 I2
S2 + I2

) + γ2α
2
21S2 I2

I1 + I2

+ γ1α
2
12S1 I1

I1 + I2
− 1

2(I1 + I2)2
[ η21S

2
1 I

2
1

(S1 + I1)2
+ η22S

2
2 I

2
2

(S2 + I2)2
] − c21 I

2
1 + c2 I 22

2(I1 + I2)2
.

Next, by theorem 4.1 and theorem 4.2, we have S1(t) + S2(t) < B = K1(r1+ξ)2

4r1ξε
+

K2(r2+ξ)2

4r2ξε
for any sufficiently small ε > 0.

Hence,

LV3 ≤ D + 1

I1 + I2
(
β1S1 I1
S1 + I1

+ β2S2 I2
S2 + I2

) − 1

2(I1 + I2)2
[ η21S

2
1 I

2
1

(S1 + I1)2
+ η22S

2
2 I

2
2

(S2 + I2)2
],

where D = −min{σ1+ω1+δ1, σ2+ω2+δ2}− 1
4 min{c21, c22}+max{γ2α2

21, γ1α
2
12}B.
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Integrating both sides of (5.3) from 0 to t , we get

ln(I1(t) + I2(t)) ≤ ln(I1(0) + I2(0)) + Dt +
∫ t

0

1

I1 + I2
(
β1S1 I1
S1 + I1

+ β2S2 I2
S2 + I2

)du

−
∫ t

0

1

2(I1 + I2)2
[ η21S

2
1 I

2
1

(S1 + I1)2
+ η22S

2
2 I

2
2

(S2 + I2)2
]du

+ c1B3(t) + c2B7(t) + N (t),

(5.4)

where N (t) = ∫ t
0

1
I1+I2

[ η1S1 I1
S1+I1

dB4(t) + η2S2 I2
S2+I2

dB8(t)] is a continuous local martin-
gale whose quadratic variation is as follows

〈N , N 〉t =
∫ t

0

1

(I1 + I2)2
[ η21S

2
1 I

2
1

(S1 + I1)2
+ η22S

2
2 I

2
2

(S2 + I2)2
]du.

By virtue of the exponential martingale inequality (Liu et al. 2018), it is obtained
that

P{ sup
0≤t≤k

[N (t) − c

2
〈N , N 〉t ] >

2

c
lnk} ≤ 1

k2
,

where 0 < c < 1,k is a random integer.
Applying Borel-Cantelli lemma (Liu et al. 2018) leads to that for almost all ω ∈ �,

there exists a random integer k0 > 0, such that for k > k0, we have

sup
0≤t≤k

[N (t) − c

2
〈N , N 〉t ] ≤ 2

c
lnk,

that is to say, for any 0 ≤ t ≤ k, we get

N (t) ≤ c

2

∫ t

0

1

(I1 + I2)2
[ η21S

2
1 I

2
1

(S1 + I1)2
+ η22S

2
2 I

2
2

(S2 + I2)2
]du + 2

c
lnk. (5.5)

Substituting (5.5) into (5.4), we have

ln(I1(t) + I2(t)) ≤ ln(I1(0) + I2(0)) + Dt +
∫ t

0

1

I1 + I2
(
β1S1 I1
S1 + I1

+ β2S2 I2
S2 + I2

)du

−
∫ t

0

1 − c

2(I1 + I2)2
[ η21S

2
1 I

2
1

(S1 + I1)2
+ η22S

2
2 I

2
2

(S2 + I2)2
]du

+ c1B3(t) + c2B7(t) + 2

c
lnk.
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Since

β1S1 I1
(S1 + I1)(I1 + I2)

− 1 − c

2

η21S
2
1 I

2
1

(S1 + I1)2(I1 + I2)2
≤ β2

1

2(1 − c)η21
β2S2 I2

(S2 + I2)(I1 + I2)
− 1 − c

2

η22S
2
2 I

2
2

(S2 + I2)2(I1 + I2)2
≤ β2

2

2(1 − c)η22
.

It is obtained that

ln(I1(t) + I2(t)) ≤ ln(I1(0) + I2(0)) + Dt + c1B3(t) + c2B7(t)

+ 2

c
lnk + [ β2

1

2(1 − c)η21
+ β2

2

2(1 − c)η22
]t .

Therefore, for k − 1 < t < k, one can see that

ln(I1(t) + I2(t))

t
≤ ln(I1(0) + I2(0))

t
+ c1

B3(t)

t
+ c2

B7(t)

t
+ 2lnk

c(k − 1)

+ D + β2
1

2(1 − c)η21
+ β2

2

2(1 − c)η22
.

Letting k → +∞, i.e., t → +∞ and in view of the Strong law of large numbers
to the Brownian motion, we derive limt→∞ Bi (t)

t = 0, i = 3, 7.
Consequently, we have

lim sup
t→+∞

ln(I1(t) + I2(t))

t
≤ D + β2

1

2(1 − c)η21
+ β2

2

2(1 − c)η22
.

Letting c → 0, we get

lim sup
t→+∞

ln(I1(t) + I2(t))

t
≤ D + β2

1

2η21
+ β2

2

2η22
:= H2. (5.6)

It is straightforward to see that, when H2 < 0 holds, I1 + I2 will go to zero
exponentially with probability one, i.e. the disease of two patches will go to extinction
simultaneously exponentially with probability one.

This completes the proof.

Remark 2 It is easy to see that H2 = −min{σ1+ω1+δ1, σ2+ω2+δ2}− 1
4 min{c21, c22}+

min{γ2α2
21, γ1α

2
12}B + β2

1
2η21

+ β2
2

2η22
is decreasing in c21, c

2
2, η

2
1, η

2
2. Hence, the disease in

two patches will exponentially die out simultaneously as long as c21, c
2
2, η

2
1 and η22 are

large enough such that H2 < 0. This means that the white noise may lead diseases to
be extinct while these diseases will be endemic in the deterministic system. Therefore,
the white noise is beneficial to the infectious disease control.
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Table 2 Table of parameter values

r1 K1 λ1 p1 β1 σ1 ω1 δ1 γ1 α12 a1 b1 c1 η1

2 3.8 1 0.3 0.2 1.14 0.84 0.2 0.2 0.5 0.2 0.7 0.15 0.35

r2 K2 λ2 p2 β2 σ2 ω2 δ2 γ2 α21 a2 b2 c2 η2

1.5 2 1 0.5 0.3 1.5 1.24 0.15 0.3 0.63 0.3 0.65 0.4 0.2

Fig. 2 The influence of the white noises when only the prey is present in the system (2.1), where a:
a1 = 0.2, a2 = 0.3, b: a1 = 2.2, a2 = 2

6 Numerical results

In this section, some numerical simulations for system (2.1) are conducted to illustrate
our analytical results. The system parameter values are shown in Table 2 and we take
initial values φ(0) = (2.5, 1.5, 0.5, 2.5, 1.5, 0.5). Some of these parameter values
have been taken from literatures (Saha and Samanta 2019).

In order to investigate the influence of stochastic perturbations on system (2.1), the
numerical simulations on the stochastic system and the corresponding deterministic
system under the same parameters are compared.

From Fig. 2a shows r1 − a21
2 = 1.98 > 0 and r2 − 1

a22
= 1.455 > 0, and reveals

that the relatively small white noise make the solutions of system (2.1) fluctuating

in a large scale. Figure 2b shows r1 − a21
2 = −0.42 < 0 and r2 − 1

a22
= −0.5 < 0,

and means that large enough white noise will lead to the extinction of prey population
while it is persistent in the deterministic system .

Choosing σ1 = 0.56 and σ2 = 0.51 for Fig. 3, and the other parameters are the
same as those in Table 2. Figure 3a shows H1 = 0.9871875 > 0, and reveals that the
relatively small white noise make the solutions of system (2.1) fluctuating in a large
scale, while Fig. 3b illustrates that the large enough white noise will lead to extinction
of the predator population while it is persistent in the deterministic system because of
H1 = −0.5853125 < 0, which is consistent with the theoretical results of Theorem
5.1.
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Fig. 3 The influence of the white noises when the prey and predator coexist in the system (2.1), where a:
b1 = 0.7, b2 = 0.65, c1 = 0.15, c2 = 0.4, b: b1 = 3.4, b2 = 3.5, c1 = 3, c2 = 3.15

For the effect of the white noise to disease spread, selecting σ1 = 0.09, σ2 = 0.1,
ω1 = 0.02 and ω2 = 0.04, the other parameters are the same as those in Table 2.
Figure 4a shows that the relatively small white noisemake the solutions of system (2.1)
fluctuating in a large scale. Figure 4b illustrates that large enough white noise leads
diseases in predator population to be extinct while it is persistent in the deterministic
system, which is consistent with the theoretical results of Theorem 5.2.

7 Discussion

In this paper, a predator-prey system with diseases in predator population only incor-
porating stochastic perturbations, patchy structure and transport-related inflection has
been proposed and investigated. By constructing different Lyapunov functions, we
proved that the existence and uniqueness of the global positive solution, stochasti-
cally ultimate boundedness of the solution and extinction of diseases of system (2.1).
Compared with some published researches, ecological epidemics and white noise
are incorporated in our model since infectious diseases and environmental noises are
widely exist in natural world, and paly an important effect on population’s evolution.
Furthermore, the existing evidences show that infectious diseases will be endemic
while environmental noises are ignored. However, our study shows that environmen-
tal noises are very important factors to control infectious diseases, and infectious
diseases will be extinct under a certain strength of environmental noises, which is
disagreement with some published works.

Moreover, the outbreak of COVID-19 shows that the transport-related inflec-
tion plays an importantly positive role in the spread of infectious diseases, and the
transport-related inflection make diseases to be transmitted in a more large scale. Our
investigation will also provide a strong evidence for the positive effect of the transport-
related inflection on the transmission of infectious diseases. Based on this issue, our
results are agreement with previous works in this filed. Some previous works sug-
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Fig. 4 The influence of thewhite noiseswhen the disease exist in the system (2.1), where a: c1 = 0.03, c2 =
0.04, η1 = 0.02, η2 = 0.014, b: c1 = 3.15, c2 = 3.3, η1 = 4, η2 = 3.75

gested that the population’s transport among different regions should be completely
prohibited while infectious diseases outbroke. However, our research suggests that the
transport should be prohibited under a certain scale while infectious diseases spread,
and the corresponding threshold value is obtained. This controlling measure for infec-
tious diseases could reduce economic and other losses of countries and cities as far as
possible. Based on this issue, our conclusions are disagreement with some previous
researches.

Furthermore, compared with stochastic models which has presented by previous
works (Hu et al. 2019; Xin and Liu 2019), few of them incorporated the patchy struc-
ture into corresponding models. In fact, habitat on which populations survive are
fragmented as human activities. The environmental fragmentation is negative to the
population’s permanence and coexistence, and will cause the loss of species biodi-
versity. In this paper, the patchy structure is incorporated into a stochastic ecological
epidemic model, and two patches are connected by population’s migrations. Hence,
our model is more realistic compared with some previous researches. Meanwhile,
the coexistence threshold values of interacting populations and the extinct threshold
values of infectious diseases are found respectively. Our results show that the pop-
ulation’s permanence and the disease extinction will be achieved for populations or
species which survive in more complex environment. Based on this issue, our study
is more useful for the biodiversity conservation and the diseases control.

Although our investigation considered many realistic issues and obtained some
reasonable results, There are existing some interesting issues to be investigated fur-
therly. On the one hand, it is necessary to incorporate the time-delay which measures
the length of the time to complete one-way transport between two patches. On the
other hand, one may propose some more realistic model systems, such as considering
the nonlinear incidence rate and the generalized functional response. These will be
considered in future work.

123



A stochastic eco-epidemiological... Page 21 of 22 62

Funding This work was supported by Natural Science Foundation of Gansu Province (No. 21JR7RA165,
20JR5RA238, 21JR7RA535) and the Fundamental Research Funds for the Central Universities (lzujbky-
2021-54).

References

Abrams PA, Cressman R, Krivan V (2007) The role of behavioral dynamics in determining the patch
distributions of interacting species. Am Nat 169:505–518

Allen LJS (2011) An introduction to stochastic processes with applications to biology, 2nd edn. CRC Press,
FL, Boca Raton

Allen LJS, Bokil VA (2012) Stochastic models for competing species with a shared pathogen. Math Biosci
Eng 9:461–485

Anderson RM, May RM (1986) The invasion, persistence, and spread of iufectious diseases within animal
and plant communites. Phil Trans R Soc London B 314:533–570

Arifah B, Mao X (2004) Stochastic delay Lotka-Volterra model. J Math Anal Appl 292:364–380
Bao J, Shao J (2015) Permanence and extinction of regime-switching predator-prey models. SIAM J Math

Anal 48:725–739
Bhattacharyya R, Mukhopadhyay B (2010) On an eco-epidemiological model with prey harvesting and

predator switching: Local and global perspectives. Nonlinear Anal-Real 11:3824–3833
Cui J, Takeuchi Y, Saito Y (2006) Spreading disease with transport-related infection. J Theor Biol 239:376–

90
Das A, Samanta GP (2018) Stochastic prey-predator model with additional food for predator. Physica A:

Stat Mech Appl 512:121–141
Fenton A, Rands SA (2006) The impact of parasite manipulation and predator foraging behaviour on

predator-prey communities. Ecol 87:2832–2841
Greenhalgh D, Khan QJA, Al-Kharousi FA (2020) Eco-epidemiological model with fatal disease in the

prey. Nonlinear Anal-Real 53:103072
Gulland F. M. D. (1995) The impact of infectious diseases on wild animal populations—a review, Ecology

of Infectious Diseases in Natural Populations. (B. T. Grenfell and A. P. Dobson, eds). Cambridge:
Cambridge University Press, 13: 20-51

Hamilton WD, May RM (1977) Dispersal in stable habitats. Nat 269:578–581
Haque, M., Venturino E. (2007) An ecoepidemiological model with disease in predator: the ratio-dependent

case, Math Method Appl Sci, 30 (14)
Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42:599–653
Hsieh YH, Hsiao CK (2008) Predator-prey model with disease infection in both populations. Math Med

Biol 25:247–266
Hu H, Xu L, Wang K (2019) A comparison of deterministic and stochastic predator-prey models with

disease in the predator. Discrete Cont Dyn-B 24:2837–2863
Ji C, Jiang D (2011) Dynamics of a stochastic density dependent predator-prey system with Beddington-

DeAngelis functional response. J Math Anal Appl 381:441–453
Li X, Mao X (2009) Population dynamical behavior of non-autonomous Lotka-Volterra competitive system

with random perturbation. Discret Con Dyn Syst 24:523–593
Liu X, Takeuchi Y (2006) Spread of disease with transport-related infection and entry screening. J Theor

Biol 242:517–28
Liu M, He X, Yu J (2018) Dynamics of a stochastic regime-switching predator-prey model with harvesting

and distributed delays. Nonlinear Anal Hybri 28:87–104
Liu M, Du C, Deng M (2018) Persistence and extinction of a modified Leslie-Gower Holling-type II

stochastic predator-prey model with impulsive toxicant input in polluted environments. Nonlinear
Anal Hybri 27:177–190

Mainul H (2010) A predator-prey model with disease in the predator species only. Nonlinear Anal RWA
11:2224–2236

Mao X (2007) Stochastic differential equations and applications. Horwood Publishing Limited, Chichester
Mondal S, Samanta G (2021) Time-delayed predator-prey interaction with the benefit of antipredation

response in presence of refuge. Zeitschriftfr Naturforschung A 76(1):23–42

123



62 Page 22 of 22 Z. Ma et al.

Rebelo C, Soresina C (2020) Coexistence in seasonally varying predator-prey systems with Allee effect.
Nonlinear Anal-Real 55:103140

Rudnicki R (2003) Long-time behaviour of a stochastic prey-predator model. Stoch Proc Appl 108:93–107
Saha S, Samanta GP (2019) Influence of dispersal and strong Allee effect on a two-patch predator-prey

model. Int J Dyna Control 7:1321–1349
Saha S, Samanta GP (2019) Analysis of a predator-prey model with herd behavior and disease in prey

incorporating prey refuge. Int J Biomath 12:133–174
Saha S, Samanta GP (2020) A Prey-predator system with disease in prey and cooperative hunting strategy

in predator. J Phys A: Math Theor 53:485601
Saha S, Maiti A, Samanta GP (2018) A Michaelis-Menten Predator-prey model with strong Allee effect

and disease in prey incorporating prey refuge. Int J Bifurc Chaos 28(6):1850073
Venturino E (1993) The influence of diseases on Lotka-Volterra systems. Rocky Mount J Math 24:381–402
Venturino E (2002) Epidemics in predator-prey models: disease in the predators. Math Medic Biol 19:185–

205
Xin Y, Liu G (2019) Analysis of stochastic Nicholson-type delay system with patch structure. Appl Math

Lett 96:223–229

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A stochastic eco-epidemiological system with patchy structure and transport-related infection
	Abstract
	1 Introduction
	2 System description
	3 Existence and uniqueness of the global positive solution
	4 Stochastically ultimate boundedness 
	5 Asymptotic pathwise estimation and extinction
	6 Numerical results
	7 Discussion
	References




