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Abstract: The objective of this study was to elucidate the proteomic and transcriptomic
alterations within the cartilage in Kashin–Beck disease (KBD) compared to a normal control.
We conducted a comparison of the expression profiles of proteins, mRNAs, and lncRNAs via
data-independent acquisition (DIA) proteomics and transcriptome sequencing in six KBD
individuals and six normal individuals. To facilitate the functional annotation enrichment
analysis of the differentially expressed (DE) proteins, DE mRNAs, and DE lncRNAs, we
employed bioinformatic analysis utilizing Gene Ontology (GO) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG). Additionally, we conducted integration analysis of multi-
omics datasets using mixOmics. We revealed a distinct proteomic signature, highlighting
53 DE proteins, with notable alterations in the pathways related to tryptophan metabolism
and microbial metabolism. Additionally, we identified 160 DE mRNAs, with the functional
enrichment analysis uncovering pathways related to RNA metabolism and protein splicing.
Furthermore, our analysis of the lncRNAs demonstrated biological processes involved in
protein metabolism and cellular nitrogen compound metabolic processes. The integrative
analysis uncovered significant correlations, including the positive correlation between
superoxide dismutase 1 (SOD1) and mitochondrial import receptor subunit TOM6 homolog
(TOMM6), and the negative correlation between C-X9-C motif-containing 1 (CMC1) and
succinate–CoA ligase [GDP-forming] subunit beta, mitochondrial (SUCLG2). Our results
provide novel insights into the molecular mechanisms underlying KBD.

Keywords: Kashin–Beck disease; osteoarthritis; proteome; transcriptome; multi-omics

1. Introduction
Kashin–Beck disease (KBD) is a chronic, endemic osteochondropathy that primarily

affects children and adolescents. This disease is characterized by significant pathological
changes in the growth plate and articular cartilage, leading to necrosis of the chondrocytes,
which disrupts normal endochondral ossification [1]. Consequently, this disruption results
in a range of clinical manifestations, including growth retardation, joint deformities, and
functional impairments of multiple joints [2,3]. Typically, the disease presents in children
aged 3 to 12 years, with the symptoms becoming more pronounced as they age [4]. In
advanced stages, KBD can lead to severe complications, including dwarfism and permanent
disability, significantly impacting quality of life [5]. The pathogenesis of KBD is closely
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linked to genetic alterations, making the investigation of key genes and proteins essential for
understanding the disease’s progression and for developing potential therapeutic strategies.

Recent research on KBD has increasingly focused on transcriptomic analyses to eluci-
date the underlying biological mechanisms, particularly in relation to osteoarthritis (OA).
For instance, RNA sequencing has highlighted differences in the gene expression profiles
between KBD with OA and rheumatoid arthritis (RA), identifying key pathways involved
in cartilage metabolism and degradation [6–9]. While mRNAs are traditionally the fo-
cus of transcriptomic studies, lncRNAs are increasingly recognized as pivotal regulators
of gene expression at the transcriptional, post-transcriptional, and epigenetic levels [10].
Emerging evidence supports lncRNAs playing a key role in cartilage degradation and
skeletal diseases [11]. However, a notable limitation of the existing research is the lack of
normal controls, which limits comprehensive understanding of the disease mechanisms.
The integration of transcriptomic and proteomic data remains insufficient, underscoring
the necessity of combining multi-omics analyses to explore the mechanisms of KBD.

DIA proteomics has emerged as a powerful technique in the field of large-scale pro-
teomics, offering significant advantages over traditional data-dependent acquisition (DDA)
methods [12,13]. The high reproducibility and sensitivity of DIA make it particularly suit-
able for analyzing small amounts of clinical tissue specimens [14]. For bone-related diseases,
DIA has been effectively applied to investigate the proteomic landscape of the cartilage
and subchondral bone, providing insights into disease pathogenesis. For instance, a study
utilizing DIA mapped the cartilage and subchondral bone proteomes, identifying multiple
key proteins involved in osteogenesis and bone remodeling [15]. However, comprehensive
studies utilizing DIA to compare the proteomes of KBD and normal control cartilage tissues
remain lacking.

In this study, we employed DIA proteomics and RNA sequencing (RNA-seq) to profile
the proteomic and transcriptomic alterations in KBD by comparing the joint cartilage of
KBD patients to that of normal controls. Our integrated analysis revealed DE mRNAs,
lncRNAs, and proteins, elucidating their functional implications. These findings enhance
our molecular understanding of KBD and provide a foundation for developing targeted
therapeutic strategies based on these biomarkers.

2. Results
2.1. Proteomic Profiles of Cartilage from Patients with and Without KBD

Our comparative proteomic analysis revealed a distinct proteomic signature between
KBD and normal cartilage (Figure 1A), highlighting 53 proteins with significant differential
expression (Supplementary Table S1). Among these, 18 proteins were upregulated, while
35 were downregulated (Figure 1B). For example, ATP8B1, implicated in phospholipid
transport; A1BG, known for its acute-phase protein properties; SUCLG2, a key enzyme in
the citric acid cycle; ANXA1, an anti-inflammatory protein; and TOMM6, a component
of the mitochondrial import machinery. Three pathways emerged as significantly altered:
tryptophan metabolism, microbial metabolism in diverse environments, and biosynthesis
of secondary metabolites (Supplementary Table S2). Furthermore, our analysis identi-
fied 15 significant GO terms under the cellular component (CC) (Figure 1C), including
organelle membrane contact sites and cytoplasmic vesicles, suggesting alterations in intra-
cellular trafficking and organelle interactions. Under the biological process (BP) (Figure 1D),
117 significant GO terms were noted, such as chromosome organization, DNA conforma-
tion changes, and protein–DNA complex assembly, which may suggest disruptions to
cellular processes and genetic regulation. For the molecular function (MF) (Figure 1E),
19 significant GO terms were highlighted, focusing on calcium-dependent phospholipid
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binding and various enzymatic activities, reflecting changes in signal transduction and
metabolic regulation (Supplementary Table S2).

Figure 1. Expression profiles of proteins. Overview of the protein expression (KBD n = 6, control
n = 6). (A) The heatmap is used to assess the expression of the proteins. Each DE protein is represented
by a single row of colored boxes, and each sample is represented by a single column. (B) Volcano
plots of the proteins. Red and blue denote high and low expression, respectively (p value < 0.05
and |log2FC| > 1). (C–E) CC, BP, and MF GO term analysis of the DE proteins (Fisher’s exact test
p value < 0.05).

2.2. mRNA Differences in Cartilage from Patients with and Without KBD

Our study revealed significant transcriptional differences between the KBD and control
samples (Figure 2A), with 158 DE mRNAs identified (Supplementary Table S3), of which
30 were upregulated and 128 were downregulated in KBD (Figure 2B). The functional
enrichment analysis of these DE mRNAs uncovered 226 significant pathways (Figure 2C,
Supplementary Table S4), including the metabolism of RNA, metabolism of proteins,
mRNA splicing—major pathway, and infectious disease. Furthermore, 316 significant GO
terms under BP were enriched, highlighting processes such as mRNA metabolic process,
RNA splicing, and cellular macromolecule catabolic process. Under CC, 79 significant GO
terms were identified, including the intracellular organelle part and cytoplasm. For MF, 32
significant GO terms were enriched, focusing on protein binding, RNA binding, and nucleic
acid binding (Figure 2D, Supplementary Table S4). To assess the transcriptomic–proteomic
concordance, we examined the mRNA fragments per kilobase of transcript per million
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mapped reads (FPKM) of genes encoding the top five DE proteins. Although these mRNAs
did not reach statistical significance, directional trends were observed. For instance, both
TMSB10 and ANXA1 exhibited upregulation in the KBD samples at both the RNA and
protein levels (Supplementary Figure S1).

Figure 2. Expression profiles of mRNAs. Overview of the mRNA expression (KBD n = 3, control
n = 3). (A) The heatmap is used to assess the expression of the mRNAs. Each DE mRNA is represented
by a single row of colored boxes, and each sample is represented by a single column. (B) Volcano
plots of the mRNAs. Red and blue denote high and low expression, respectively (p value < 0.05 and
|log2FC| > 1). (C) Pathway analysis of the DE mRNAs (Fisher’s exact test p value < 0.05). (D) GO
term analysis of the DE mRNAs (Fisher’s exact test p value < 0.05).

2.3. Differential lncRNA Expression and Target Gene Prediction and Functional Analysis

Our analysis revealed a significant alteration in the lncRNA landscape between the
KBD and control samples (Figure 3A), with 218 lncRNAs exhibiting differential expression—
111 being upregulated and 107 downregulated in KBD (Figure 3B, Supplementary Table S5).
To identify potential functional targets of the DE lncRNAs, we employed BLAST2GO to
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predict the target genes through sequence homology analysis. We identified 60 lncRNAs
that target DE genes (Supplementary Table S6). For the predicted target genes of the DE
lncRNAs, a total of 192 significant pathways were enriched (Figure 3C, Supplementary
Table S7), such as the metabolism of proteins, mRNA splicing, and signaling by Wnt.
Under the GO categories, we identified 170 significant BP terms, including RNA splicing
and cellular nitrogen compound metabolic process. For CC, 79 significant terms were
enriched, such as the intracellular organelle part and cytoplasm. For MF, 19 significant terms
were identified, including protein binding and RNA binding (Figure 3D, Supplementary
Table S7).

Figure 3. Expression profiles of long intergenic ncRNAs. (A) The heatmap is used to assess the
expression of the lncRNAs. (B) Volcano plots of the lncRNAs. (C) Pathway analysis of the target
genes of the DE lncRNAs. (D) GO analysis of the target genes of the DE lncRNAs.
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2.4. Functional Enrichment Comparison Among Multi-Omics Data

Due to the lack of overlap between the RNA and protein data, we investigated whether
there was overlap at the pathway or ontology level. The tri-omics (lncRNA–mRNA–
protein) pathway and ontology overlap included two GO terms, metabolic process and
cellular macromolecular complex assembly. These GO terms reflect core cellular processes
critical for maintaining cartilage homeostasis. The mRNA–protein overlap included eight
GO terms, such as secretion by cell, cell cycle G2/M transition, and RNA biosynthetic
process. The lncRNA–protein overlap included one GO term, single-stranded RNA binding.
lncRNAs may regulate protein activity by binding RNA-binding proteins. The lncRNA–
mRNA overlap included 135 GO terms, such as immune/inflammatory regulation, RNA
metabolic process, intracellular organelle, and regulation of macromolecule metabolic
process (Supplementary Table S8). The lncRNA–mRNA overlap included 123 pathways,
such as the metabolism of proteins, regulation of apoptosis, and MAPK family signaling
cascades (Supplementary Table S9). The extensive lncRNA–mRNA overlap highlights the
transcriptional and post-transcriptional regulatory networks in KBD.

2.5. Integrative Analysis of Proteome and Transcriptome

Figure 4A shows the correlation of the top 20 features in the three datasets. The
first component of the sparse partial least squares discriminant analysis (sPLS-DA) [16]
of the combined proteome and transcriptome datasets clearly discriminated the normal
from the KBD cartilage samples (Figure 4B). This filtering identified proteins, mRNAs, and
lncRNAs that distinguished KBD from the normal control samples (Figure 4C). For example,
Q9BRF8 (serine/threonine-protein phosphatase CPPED1), P04217 (alpha-1B-glycoprotein),
Q86X76 (deaminated glutathione amidase), Q96B49 (mitochondrial import receptor subunit
TOM6 homolog), and P68371 (tubulin beta-4B chain) were highlighted. For example,
P04217 (alpha-1B-glycoprotein) and NONHSAG048636.2 were KBD-specific, which may
potentially distinguish the KBD samples from the controls. The DIABLO method identified
several important features discriminating KBD from the normal controls by interrogating
the correlations between the three omics datasets, with the lncRNA and proteome data
showing the highest correlations (Pearson’s r = 0.96) (Figure 4D). Finally, to visualize the
between-omics correlations in the DIABLO analysis, a Circos plot revealed numerous
strong positive and negative correlations (Pearson’s r > 0.70) (Figure 4E). For example,
SOD1 was positively correlated with Q96B49 (TOMM6). CMC1 was negatively correlated
with Q96I99 (SUCLG2) and positively correlated with P68371 (tubulin beta-4B chain).
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Figure 4. Sparse partial least squares discriminant analysis. (A) Correlation circle plot for the
combination of the three datasets. The variable types are indicated with different symbols and colors,
overlaid on the same plot. (B) The individual contribution of each dataset, showing the score plots
for the first two components, indicating the efficient separation capability for the three datasets. The
samples are plotted according to their scores for the first two components for each dataset, colored
by KBD or control. (C) Top 5 selected features shown in the pyramid bar plot. The most important
variables (according to the absolute value of their coefficients) are ordered from bottom to top. As
this is a supervised analysis, the colors indicate the class for which the median expression value is the
highest for each feature. The X-axis represents the correlation coefficient (r) between the molecule and
KBD or the control. (D) Sample scatterplot from plotDiablo displaying the first component in each
dataset (upper diagonal plot) and the Pearson’s correlation between each component (lower diagonal
plot). The samples are colored by KBD or control, with the 95% confidence ellipse plots represented.
(E) The Circos plot (cutoff: 0.7) shows positive or negative correlations greater than 0.7 between
variables of different types, denoted as red and blue lines, respectively.

3. Discussion
In this study, we established the proteomic and transcriptomic profiles of the articular

cartilage in KBD and normal control samples, aiming to elucidate the molecular mecha-
nisms of KBD. Our comprehensive analysis included proteins, lncRNAs and mRNAs, and
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it identified complex network of features and gene–protein interactions, offering novel
insights into KBD’s etiology.

Our findings identified metabolic and oxidative stress pathways as central to KBD’s
pathogenesis. For example, low selenium levels and T-2 toxin exposure have been impli-
cated in cartilage damage through mechanisms involving mitochondrial dysfunction and
reactive oxygen species (ROS) accumulation [17]. Our multi-omics data corroborated this
and revealed that downregulation of SUCLG2 (succinate-CoA ligase) and upregulation of
SOD1 align with the mitochondrial energy metabolism defects and compensatory antiox-
idant responses observed in KBD chondrocytes [18]. In addition, the enrichment of the
microbial metabolism pathways suggests a potential link between gut microbiota dysbiosis
and KBD progression, a hypothesis supported by a recent genomic study [19]. However, our
study provides novel insights by integrating proteomic and transcriptomic data to identify
the lncRNA-mediated regulation of protein metabolism. While both KBD and OA involve
cartilage degradation, our findings highlight key molecular distinctions. OA is primarily
driven by mechanical stress and age-related inflammation (e.g., IL-1β, TNF-α) [20], whereas
KBD exhibits early-onset mitochondrial dysfunction and a selenium-dependent redox im-
balance [21]. In OA, lncRNAs such as plasmacytoma variant translocation 1 (PVT1) regulate
chondrocyte apoptosis and matrix metalloproteinase (MMP) expression [22]. In contrast,
our study identifies KBD-specific lncRNAs enriched in nitrogen compound metabolism.

The transcriptome and proteomics analysis of KBD found that there were no overlap-
ping molecules. This finding indicated the potential roles of post-transcriptional regulation
and epigenetic regulation in this process. Firstly, the absence of overlapping genes between
the transcriptome and the proteome is not uncommon. Research has indicated that the
regulation of gene expression is influenced not only by the transcription level but also by
various factors, including post-transcriptional modification, post-translational modification
and protein degradation. For example, numerous genes may be regulated by lncRNAs and
other mechanisms after transcription [23]. Secondly, epigenetic alterations may contribute
to the inconsistencies observed between the transcriptome and the proteome. Epigenetic
modifications such as DNA methylation and histone modification can regulate gene ex-
pression without altering the DNA sequence. These alterations may be crucial to the
pathogenesis of KBD, as certain epigenetic modifications have been strongly linked to
the onset and progression of arthritis [24]. Additionally, the intricate environmental risk
factors associated with KBD may complicate the identification of key genes. Variations in
these processes can influence gene expression patterns, resulting in differences between the
transcriptomic and proteomic profiles.

Our integrated omics analysis has revealed a range of proteins and transcripts related
to metabolism that could serve as potential biomarkers for KBD. For instance, ANXA1,
a protein known for its anti-inflammatory and immunomodulatory functions, has been
associated with the resolution of inflammation in arthritic conditions [25]. TMSB10, rec-
ognized for its contributions to angiogenesis and osteogenesis, has been applied in bone
tissue engineering to enhance bone regeneration [26]. SUCLG2, which is part of the citric
acid cycle, has been shown to be upregulated by fibroblast growth factor 2 (FGF2) in os-
teoblasts, highlighting its significance in relation to bone development and metabolism [27].
The differential expression of these proteins in KBD implies that they may have crucial
impacts on cartilage metabolism. Upon differential gene expression analysis, we noticed
many DEGs were actually lncRNAs and therefore decided to investigate the target genes
of these lncRNAs. An RNA-seq study identified 4103 DE lncRNAs in the KBD cartilage,
implicating pathways such as Wnt signaling, lysosome function, and TNF signaling [11].
These pathways align with our proteomic findings, suggesting the lncRNAs may bridge
the transcriptional and metabolic dysregulation in KBD. In OA, the lncRNAs regulate chon-
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drocyte apoptosis and matrix degradation [28]. Similarly, our study identified lncRNAs
enriched in protein metabolism and nitrogen compound processes, potentially suggesting
these regulatory roles in KBD.

Our enrichment analyses revealed that several functions within bone- and cartilage-
related pathways may be critical to KBD’s pathogenesis. The enrichment analysis of
the DE proteins underscored the potential metabolic dysregulation associated with KBD,
particularly concerning tryptophan metabolism, which has been linked to inflammatory
responses [29]. Moreover, the identified GO biological processes suggested that changes in
genomic stability and transcriptional regulation may play a role in the disease’s progres-
sion [30]. The enrichment analysis of the DE mRNAs highlighted pathways related to RNA
metabolism and splicing, as well as immune system functions. The involvement of mRNA
splicing pathways emphasized the significance of post-transcriptional regulation in KBD,
which may influence the expression of key inflammatory mediators [31]. Additionally,
the GO biological processes associated with cellular nitrogen compound metabolism fur-
ther highlighted the metabolic alterations occurring in KBD, potentially affecting cellular
homeostasis and immune responses. The identification of RNA splicing and intracellular
transport processes among the enriched GO terms for the lncRNA targets suggested that
the lncRNAs may modulate the expression and function of proteins involved in these
essential pathways. The tri-omics overlaps highlighted metabolic pathways vulnerable to
KBD stressor selenium deficiency. The tri-omics enrichment of the metabolic pathways
supports the hypothesis that mitochondrial failure underlies KBD chondrocyte degenera-
tion. In addition, the immune pathways, such as NF-κB, overlapped in the lncRNAs and
mRNAs suggested inflammation progress in KBD. Collectively, these findings indicate that
immune responses, alterations in the endocrine system, and metabolic changes represent
the primary functional shifts observed between KBD and controls.

The integration of data through multi-omics approaches is essential for studies on
bone and cartilage metabolism [32]. Our integrative analysis has provided a comprehen-
sive perspective on the molecular alterations in KBD patients, emphasizing the association
between the proteome and the transcriptome in regulating phenotypes [33]. We iden-
tified numerous proteins, mRNAs, and lncRNAs that differentiate KBD from normal
controls. The SOD1 gene, a crucial component of the oxidative stress response, showed
positive correlations with TOMM6, a subunit of the mitochondrial import receptor. Pre-
vious studies have indicated that SOD1 is vital to managing oxidative stress [34,35] and
maintaining bone homeostasis [36]. The upregulation of SOD1 and downregulation of
glutathione-related enzymes suggested that boosting the endogenous antioxidant defenses
(e.g., N-acetylcysteine [37], selenium-rich diets [38]) may mitigate the oxidative damage
in KBD cartilage. Moreover, the microbial metabolism pathway enrichment suggested
that probiotics or dietary modifications to reduce T-2 toxin exposure may disrupt KBD
progression, aligning with the fungal toxin hypothesis of KBD’s etiology [39].

Our research utilized high-throughput technologies to characterize KBD from various
perspectives, encompassing both proteomic and transcriptomic analyses. DIABLO provides
a robust statistical framework for integrating disparate datasets—comprising RNA and
protein data. This approach offers a comprehensive view of the molecular landscape of
KBD. However, there are several limitations and future directions. Firstly, the modest
sample size may reduce the statistical power to detect subtle transcriptomic and proteomic
differences. While our multi-omics integration approach partially mitigates this issue
by prioritizing pathways across datasets, future studies with larger cohorts are needed
to validate these findings. Secondly, while this study focused on multi-omics discovery,
functional validation of the prioritized targets using in vitro or in vivo models is essential
to confirm their causal roles in KBD’s pathogenesis. Thirdly, it is difficult to correlate
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molecular signatures with clinical outcomes due to the small cohort size and limited clinical
metadata. Future studies integrating multi-omics profiling with detailed phenotyping in
larger KBD cohorts are essential.

In summary, our study presents a comprehensive analysis of the transcriptional and
proteomic alterations in KBD, highlighting the potential of integrated omics approaches
in unraveling the complexities of the disease pathology. By examining the functional
pathways and differential expression of RNAs and proteins, we identified key genes and
non-coding RNAs that may provide novel insights into KBD’s etiology.

4. Materials and Methods
4.1. Ethics Statement

This study was approved by the Human Ethics Committees of Xi’an Jiaotong Univer-
sity. Written informed consent was obtained from all the study participants.

4.2. Samples

Cartilage specimens were obtained from the knee joints of patients diagnosed with
KBD and from age- and sex-matched control subjects. The diagnosis of KBD was established
based on clinical evaluations and imaging studies, adhering to the KBD diagnosis criterion
of China (WS/T 207-2010 [40], https://www.ndcpa.gov.cn/jbkzzx/c100200/common/
content/content_1666632341665943552.html accessed on 25 May 2025). Participants with
a history of genetic bone and cartilage disorders, RA, or other significant joint diseases
were excluded from this study. The KBD group included six individuals (three males
and three females) aged between 54 and 75 years (Figure 5), while the control group
comprised six subjects (three males and three females) aged between 57 and 71 years. For
the proteomic analysis, a total of six KBD and six control samples underwent differential
protein expression analysis using DIA liquid chromatography–mass spectrometry (LC-MS).
Additionally, RNA sequencing was performed on three KBD samples and three control
samples to investigate the gene expression profiles. The average ages of the KBD and
control groups were 66.5 ± 7.21 and 63.5 ± 5.12 years, respectively.

 

Figure 5. Characteristics of the study samples with Kashin–Beck disease. (A) Hand images of male
patient; (B) hand images of female patient; (C) hand X-ray of male patient; and (D) hand X-ray of
female patient. The image (A) and X-ray (C) are from the same patient, while the image (B) and
X-ray (D) are from the same patient.

https://www.ndcpa.gov.cn/jbkzzx/c100200/common/content/content_1666632341665943552.html
https://www.ndcpa.gov.cn/jbkzzx/c100200/common/content/content_1666632341665943552.html
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4.3. Proteomic Analysis
4.3.1. Sample Preparation

For the proteomic analysis, cartilage samples from KBD patients and control subjects
were processed following a standardized protocol. Initially, proteins were extracted from
the cartilage tissues using a lysis buffer containing 8 M urea and 50 mM ammonium
bicarbonate. The protein concentration was determined using the Bradford assay, ensuring
accurate quantification prior to further processing. Subsequently, the extracted proteins
underwent enzymatic digestion with trypsin at 37 ◦C for 16 h, allowing for the generation
of peptides suitable for mass spectrometry analysis. Following digestion, the samples were
desalted using C18 solid-phase extraction to remove any contaminants and concentrate the
peptides. Finally, the purified peptides were reconstituted in a suitable buffer for library
construction and mass spectrometry analysis.

4.3.2. LC-MS Analysis

The prepared peptide samples were subjected to LC-MS (Shimadzu, Inc., Shanghai,
China) for comprehensive proteomic profiling. The samples were loaded onto a C18 column
and separated using a gradient elution method. Mass spectrometry was performed on a Q
Exactive mass spectrometer (ThermoFisher, Inc., Shanghai, China), operating in both DDA
and DIA modes. The DDA mode was utilized for spectral library generation, while the DIA
mode allowed for the quantification of proteins across the samples. The mass spectrometer
settings included a resolution of 70,000 for the MS1 scans and 17,500 for the MS2 scans,
with a scan range of 300 to 1500 m/z. The data generated were processed to identify and
quantify proteins based on their peptide sequences.

4.3.3. DIA Proteomics Analysis

To facilitate the analysis of the mass spectrometry data, a customized spectral library
was constructed. The raw data files obtained from the LC-MS analysis were processed using
MaxQuant (v2.0.0), which enabled the identification of peptides and proteins based on
the UniProt protein database. The parameters for the database searching included trypsin
digestion with a maximum of two missed cleavages and a mass tolerance of 20 ppm for
precursor ions. The false discovery rate (FDR) for the protein identification was set at 1%.
The searching result was exported in a .tsv file format containing the annotation of the
precursors and fragment ions and their exact retention times. The .tsv file was then imported
into DIA-NN (v1.8.1) to generate the spectral library used for the DIA data analysis. The
DIA data were analyzed with DIA-NN, a mass spectrometer vendor-independent free
software for DIA data analysis. The raw data were analyzed according to the user guide
for the software, with default settings established for the protein identification and peak
area calculation. A target-decoy-based strategy was applied to control the FDR at lower
than 1%. A p value < 0.05 and |log2FC| > 1 were set as cutoffs to identify significantly
dysregulated proteins.

4.3.4. Functional Enrichment Analysis

The biological significance of the DE proteins was assessed through enrichment analy-
sis. GO enrichment analysis was performed to categorize the proteins based on their BP,
MF, and CC, implemented using the GOseq (v3.21) [41]. Additionally, KEGG pathway
analysis was conducted to identify the pathways associated with the DE proteins, utilizing
KOBAS (v3.0) [42]. The enrichment was considered significant for GO terms and KEGG
pathways with a corrected p value of less than 0.05.
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4.4. Transcriptomic Analysis
4.4.1. RNA Extraction, Library Preparation, and RNA-Sequencing

The total RNA was isolated and purified using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) following the manufacturer’s procedure. A targeted approach for RNA ex-
traction was employed, focusing on the removal of ribosomal RNA (rRNA) to enrich
the mRNA and long non-coding RNA (lncRNA). This process was facilitated using
the Ribo-Zero™ rRNA Removal Kit (Illumina, San Diego, CA, USA). The subsequent
library preparation was carried out following the manufacturer’s protocol, and the li-
brary was sequenced on the Illumina HiSeq 4000 platform (Illumina, Inc., San Diego, CA,
USA), utilizing paired-end sequencing technology. The post-sequencing data process-
ing involved a series of bioinformatics tools, including Cutadapt (v5.0) [43] for adapter
trimming and quality control, FastQ (v0.14.0) for sequence quality assessment (http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 10 January 2025),
Bowtie2 (v2.5.2) [44] for aligning the reads to the reference genome, Hisat2 (v2.1.0) [45] for
mapping the reads to the genome of hg38, StringTie (v1.3.3) [46] for transcript assembly
and quantification, and edgeR (v3.18.1) [47] for estimating the expression levels of all
the transcripts.

4.4.2. LncRNA Identification

Transcripts that overlapped with known mRNAs and those shorter than 200 bp were
discarded. We utilized CPC (v0.9r2) [48] and CNCI (v2.0) [49] to predict transcripts with
coding potential. All the transcripts with a CPC score of <−1 and a CNCI score of <0 were
removed, and the remaining transcripts were considered lncRNAs. We focused on long
intergenic non-coding RNAs, defined as transcripts of >200 nucleotides lacking protein-
coding potential, to investigate their regulatory roles in KBD.

4.4.3. Different Expression Analysis of mRNAs and lncRNAs

StringTie [46] was used to perform the expression level calculations for the mRNAs
and lncRNAs by calculating the FPKM [50]. The DE mRNAs and lncRNAs were selected
with |log2FC| > 1, with statistical significance defined as an adjusted p value < 0.05, using
the R package edgeR (v3.18.1) [47].

4.4.4. Target Gene Prediction and Functional Analysis of lncRNAs

To elucidate the functional implications of the identified lncRNAs, we employed
BLAST2GO (v6.0.1) [51] for the prediction of potential target genes. This tool enables the
functional annotation of genes based on the sequence homology, providing insights into
the potential biological roles of lncRNAs. By focusing on genes in proximity to lncRNAs,
we aimed to uncover the cis-regulatory mechanisms that may influence the gene expression
patterns. Significant differences in gene expression were assessed with |log2FC| > 1 and
p < 0.05, followed by GO and pathway analysis. Enrichment analysis was performed to
calculate the p value by Fisher’s exact test, with p < 0.05 set as the significance threshold.

4.5. Integration Analysis of Multi-Omics Datasets

To uncover the intricate relationships and novel insights that span different molecular
levels, we conducted an integrated analysis using mixOmics (v6.10.9) [52], which facilitates
the integration of heterogeneous omics data through multivariate statistical approaches.
Our analysis focused on 3 KBD and 3 healthy controls. From each of the three omics
layers—proteomics, mRNA, and lncRNA—we selected the top 20 features based on their
statistical significance. The integration process leveraged the Data Integration Analysis

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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for Biomarker discovery using DIABLO framework [53], which is embedded within the
mixOmics package (v6.10.9).

4.6. Data and Software Availability

The original contributions of this study are provided in the Supplementary Material.

4.7. Statistical Analysis

All the statistical analyses were performed by using R software (version 4.3.0). All
the results are presented as the mean ± standard deviation (SD), and a p value < 0.05 was
considered statistically significant in our study.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms26115146/s1.

Author Contributions: Conceptualization, L.H. and B.C.; methodology, B.C. and F.Z.; software, B.C.;
validation, J.X. and B.C.; formal analysis, S.C.; investigation, X.Y.; resources, L.H.; data curation, B.C.;
writing—original draft preparation, B.C. and L.H.; writing—review and editing, F.Z.; visualization,
B.C.; supervision, F.Z and B.C.; project administration, F.Z.; funding acquisition, F.Z. and B.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (2022YFC2503100), National Natural Science Foundation of China (82304265, 82361138566),
and Key Laboratory of Environmental Pollution and Disease Control of the Ministry of Education
(Guizhou Medical University)/High Level School of Public Health of Guizhou Medical University
Building Open Project Funding Project and Joint Key Laboratory of Endemic Diseases Open Project
Funding Project (GMU-2024-HJZ-LH08).

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki, and it was approved by the Institutional Review Board (or Ethics Committee) of Xi’an
Jiaotong University (protocol code LLSBPJ-2023-296 and 28.2.2023 date of approval).

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: All the transcriptomic (RNA-seq) and proteomic (DIA-MS) data
generated in this study have been deposited in the figshare repository under accession https://doi.
org/10.6084/m9.figshare.29060792.v1.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xu, J.; Wang, J.; Zhao, H. The Prevalence of Kashin-Beck Disease in China: A Systematic Review and Meta-Analysis. Biol. Trace

Elem. Res. 2023, 201, 3175–3184. [CrossRef]
2. Xie, D.; Liao, Y.; Yue, J.; Zhang, C.; Wang, Y.; Deng, C.; Chen, L. Effects of five types of selenium supplementation for treatment

of Kashin-Beck disease in children: A systematic review and network meta-analysis. BMJ Open 2018, 8, e017883. [CrossRef]
[PubMed]

3. Xiong, G. Diagnostic, clinical and radiological characteristics of Kashin-Beck disease in Shaanxi Province, PR China. Int. Orthop.
2001, 25, 147–150. [CrossRef]

4. Cheng, B.; Liang, C.; Yang, X.; Li, P.; Liu, L.; Cheng, S.; Jia, Y.; Zhang, L.; Ma, M.; Qi, X.; et al. Genetic association scan of
32 osteoarthritis susceptibility genes identified TP63 associated with an endemic osteoarthritis, Kashin-Beck disease. Bone 2021,
150, 115997. [CrossRef]

5. Ning, Y.; Hu, M.; Chen, S.; Zhang, F.; Yang, X.; Zhang, Q.; Gong, Y.; Huang, R.; Liu, Y.; Chen, F.; et al. Investigation of selenium
nutritional status and dietary pattern among children in Kashin-Beck disease endemic areas in Shaanxi Province, China using
duplicate portion sampling method. Environ. Int. 2022, 164, 107255. [CrossRef]

6. Yu, F.; Duan, C. RNA-seq analysis reveals different gene ontologies and pathways in rheumatoid arthritis and Kashin-Beck
disease. Int. J. Rheum. Dis. 2018, 21, 1686–1694. [CrossRef] [PubMed]

7. Wu, W.; He, A.; Wen, Y.; Xiao, X.; Hao, J.; Zhang, F.; Guo, X. Comparison of microRNA expression profiles of Kashin-Beck disease,
osteoarthritis and rheumatoid arthritis. Sci. Rep. 2017, 7, 540. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms26115146/s1
https://www.mdpi.com/article/10.3390/ijms26115146/s1
https://doi.org/10.6084/m9.figshare.29060792.v1
https://doi.org/10.6084/m9.figshare.29060792.v1
https://doi.org/10.1007/s12011-022-03417-x
https://doi.org/10.1136/bmjopen-2017-017883
https://www.ncbi.nlm.nih.gov/pubmed/29511006
https://doi.org/10.1007/s002640100248
https://doi.org/10.1016/j.bone.2021.115997
https://doi.org/10.1016/j.envint.2022.107255
https://doi.org/10.1111/1756-185X.13358
https://www.ncbi.nlm.nih.gov/pubmed/30256536
https://doi.org/10.1038/s41598-017-00522-z


Int. J. Mol. Sci. 2025, 26, 5146 14 of 15

8. Wu, C.; Liu, H.; Zhang, F.; Shao, W.; Yang, L.; Ning, Y.; Wang, S.; Zhao, G.; Lee, B.J.; Lammi, M. Long noncoding RNA expression
profile reveals lncRNAs signature associated with extracellular matrix degradation in kashin-beck disease. Sci. Rep. 2017, 7, 17553.
[CrossRef] [PubMed]

9. Duan, C.; Guo, X.; Zhang, X.D.; Yu, H.J.; Yan, H.; Gao, Y.; Ma, W.J.; Gao, Z.Q.; Xu, P.; Lammi, M. Comparative analysis of gene
expression profiles between primary knee osteoarthritis and an osteoarthritis endemic to Northwestern China, Kashin-Beck
disease. Arthritis Rheum. 2010, 62, 771–780. [CrossRef]

10. Hon, C.C.; Ramilowski, J.A.; Harshbarger, J.; Bertin, N.; Rackham, O.J.; Gough, J.; Denisenko, E.; Schmeier, S.; Poulsen, T.M.;
Severin, J.; et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 2017, 543, 199–204. [CrossRef]

11. Dai, Y.; Jian, C.; Wang, X.; Dai, X. Comprehensive expression profiles of mRNAs, lncRNAs and miRNAs in Kashin-Beck disease
identified by RNA-sequencing. Mol. Omics 2022, 18, 154–166. [CrossRef] [PubMed]

12. Stahl, D.C.; Swiderek, K.M.; Davis, M.T.; Lee, T.D. Data-controlled automation of liquid chromatography/tandem mass spectrom-
etry analysis of peptide mixtures. J. Am. Soc. Mass Spectrom. 1996, 7, 532–540. [CrossRef] [PubMed]

13. Venable, J.D.; Dong, M.Q.; Wohlschlegel, J.; Dillin, A.; Yates, J.R. Automated approach for quantitative analysis of complex
peptide mixtures from tandem mass spectra. Nat. Methods 2004, 1, 39–45. [CrossRef]

14. Guo, T.; Kouvonen, P.; Koh, C.C.; Gillet, L.C.; Wolski, W.E.; Röst, H.L.; Rosenberger, G.; Collins, B.C.; Blum, L.C.; Gillessen, S.; et al.
Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat. Med.
2015, 21, 407–413. [CrossRef]

15. Bundgaard, L.; Åhrman, E.; Malmström, J.; Auf dem Keller, U.; Walters, M.; Jacobsen, S. Effective protein extraction combined
with data independent acquisition analysis reveals a comprehensive and quantifiable insight into the proteomes of articular
cartilage and subchondral bone. Osteoarthr. Cartil. 2022, 30, 137–146. [CrossRef]

16. KA, L.C.; Boitard, S.; Besse, P. Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for
multiclass problems. BMC Bioinform. 2011, 12, 253.

17. Deng, H.; Lin, X.; Xiang, R.; Bao, M.; Qiao, L.; Liu, H.; He, H.; Wen, X.; Han, J. Low selenium and T-2 toxin may be involved in the
pathogenesis of Kashin-Beck disease by affecting AMPK/mTOR/ULK1 pathway mediated autophagy. Ecotoxicol. Environ. Saf.
2024, 279, 116503. [CrossRef]

18. Liu, R.; Xiao, Y.; Huang, S.; Wu, H.; Dong, J.; Zeng, S.; Li, Y.; Ye, J.; Wu, W.; Wang, M.; et al. LncRNA XIST inhibits mitophagy
and increases mitochondrial dysfunction by promoting BNIP3 promoter methylation to facilitate the progression of KBD. Mol.
Immunol. 2025, 182, 62–75. [CrossRef]

19. Wang, X.; Ning, Y.; Li, C.; Gong, Y.; Huang, R.; Hu, M.; Poulet, B.; Xu, K.; Zhao, G.; Zhou, R.; et al. Alterations in the gut
microbiota and metabolite profiles of patients with Kashin-Beck disease, an endemic osteoarthritis in China. Cell Death Dis. 2021,
12, 1015. [CrossRef]

20. Buckwalter, J.A.; Anderson, D.D.; Brown, T.D.; Tochigi, Y.; Martin, J.A. The Roles of Mechanical Stresses in the Pathogenesis of
Osteoarthritis: Implications for Treatment of Joint Injuries. Cartilage 2013, 4, 286–294. [CrossRef]

21. Liu, J.; Wang, L.; Guo, X.; Pang, Q.; Wu, S.; Wu, C.; Xu, P.; Bai, Y. The role of mitochondria in T-2 toxin-induced human
chondrocytes apoptosis. PLoS ONE 2014, 9, e108394. [CrossRef] [PubMed]

22. Xu, J.; Fang, X.; Qin, L.; Wu, Q.; Zhan, X. LncRNA PVT1 regulates biological function of osteoarthritis cells by regulating
miR-497/AKT3 axis. Medicine 2022, 101, e31725. [CrossRef] [PubMed]

23. Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [CrossRef]
24. Wang, W.; Yu, Y.; Hao, J.; Wen, Y.; Han, J.; Hou, W.; Liu, R.; Zhao, B.; He, A.; Li, P.; et al. Genome-wide DNA methylation profiling

of articular cartilage reveals significant epigenetic alterations in Kashin-Beck disease and osteoarthritis. Osteoarthr. Cartil. 2017,
25, 2127–2133. [CrossRef]

25. Kitahara, K.; Ebata, T.; Liyile, C.; Nishida, Y.; Ogawa, Y.; Tokuhiro, T.; Shiota, J.; Nagano, T.; Takasuka, T.E.; Endo, T.; et al.
Chondroprotective functions of neutrophil-derived extracellular vesicles by promoting the production of secreted frizzled-related
protein 5 in cartilage. Cell Commun. Signal. 2024, 22, 569. [CrossRef]

26. Gao, J.; Ren, J.; Ye, H.; Chu, W.; Ding, X.; Ding, L.; Fu, Y. Thymosin beta 10 loaded ZIF-8/sericin hydrogel promoting angiogenesis
and osteogenesis for bone regeneration. Int. J. Biol. Macromol. 2024, 267 Pt 1, 131562. [CrossRef] [PubMed]

27. Park, S.J.; Kim, S.H.; Choi, H.S.; Rhee, Y.; Lim, S.K. Fibroblast growth factor 2-induced cytoplasmic asparaginyl-tRNA synthetase
promotes survival of osteoblasts by regulating anti-apoptotic PI3K/Akt signaling. Bone 2009, 45, 994–1003. [CrossRef]

28. Han, L.; Cheng, B.; Wei, W.; Liu, L.; Cheng, S.; Liu, H.; Jia, Y.; Wen, Y.; Zhang, F. Whole-Transcriptome Sequencing of Knee Joint
Cartilage from Kashin-Beck Disease and Osteoarthritis Patients. Int. J. Mol. Sci. 2024, 25, 4348. [CrossRef]

29. Binvignat, M.; Emond, P.; Mifsud, F.; Miao, B.; Courties, A.; Lefèvre, A.; Maheu, E.; Crema, M.D.; Klatzmann, D.; Kloppenburg, M.;
et al. Serum tryptophan metabolites are associated with erosive hand osteoarthritis and pain: Results from the DIGICOD cohort.
Osteoarthr. Cartil. 2023, 31, 1132–1143. [CrossRef]

30. Zheng, H.; Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 2019,
20, 535–550. [CrossRef]

https://doi.org/10.1038/s41598-017-17875-0
https://www.ncbi.nlm.nih.gov/pubmed/29242531
https://doi.org/10.1002/art.27282
https://doi.org/10.1038/nature21374
https://doi.org/10.1039/D1MO00370D
https://www.ncbi.nlm.nih.gov/pubmed/34913457
https://doi.org/10.1016/1044-0305(96)00057-8
https://www.ncbi.nlm.nih.gov/pubmed/24203425
https://doi.org/10.1038/nmeth705
https://doi.org/10.1038/nm.3807
https://doi.org/10.1016/j.joca.2021.09.006
https://doi.org/10.1016/j.ecoenv.2024.116503
https://doi.org/10.1016/j.molimm.2025.03.016
https://doi.org/10.1038/s41419-021-04322-2
https://doi.org/10.1177/1947603513495889
https://doi.org/10.1371/journal.pone.0108394
https://www.ncbi.nlm.nih.gov/pubmed/25264878
https://doi.org/10.1097/MD.0000000000031725
https://www.ncbi.nlm.nih.gov/pubmed/36397317
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1016/j.joca.2017.08.002
https://doi.org/10.1186/s12964-024-01953-8
https://doi.org/10.1016/j.ijbiomac.2024.131562
https://www.ncbi.nlm.nih.gov/pubmed/38626832
https://doi.org/10.1016/j.bone.2009.07.018
https://doi.org/10.3390/ijms25084348
https://doi.org/10.1016/j.joca.2023.04.007
https://doi.org/10.1038/s41580-019-0132-4


Int. J. Mol. Sci. 2025, 26, 5146 15 of 15

31. Carpenter, S.; Ricci, E.P.; Mercier, B.C.; Moore, M.J.; Fitzgerald, K.A. Post-transcriptional regulation of gene expression in innate
immunity. Nat. Rev. Immunol. 2014, 14, 361–376. [CrossRef] [PubMed]
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