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Abstract: Cutaneous melanomas are exceptional in children and represent a variety of clinical situa-
tions, each with a different prognosis. In congenital nevi, the risk of transformation is correlated with
the size of the nevus. The most frequent type is lateral transformation, extremely rare before puberty,
reminiscent of a superficial spreading melanoma (SSM) ex-nevus. Deep nodular transformation is
much rarer, can occur before puberty, and must be distinguished from benign proliferative nodules.
Superficial spreading melanoma can also arise within small nevi, which were not visible at birth,
usually after puberty, and can reveal a cancer predisposition syndrome (CDKN2A or CDK4 germline
mutations). Prognosis is correlated with classical histoprognostic features (mainly Breslow thickness).
Spitz tumors are frequent in adolescents and encompass benign (Spitz nevus), intermediate (atypical
Spitz tumor), and malignant forms (malignant Spitz tumor). The whole spectrum is characterized by
specific morphology with spindled and epithelioid cells, genetic features, and an overall favorable
outcome even if a regional lymph node is involved. Nevoid melanomas are rare and difficult to
diagnose clinically and histologically. They can arise in late adolescence. Their prognosis is currently
not very well ascertained. A small group of melanomas remains unclassified after histological and
molecular assessment.
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1. Introduction

Melanoma is a form of cancer arising from melanocytes that occurs mainly but not
exclusively in the skin. Melanocytes are cells located in the basal layer of the epidermis
that produce the melanin pigment responsible for skin color. They derive from neural
crest progenitors (melanoblasts) that have migrated toward the skin during embryonic life.
Melanocytes are nonadjacent and extend dendrites between the keratinocytes, through
which a transcellular transfer of melanosomes encapsulating melanin occurs. This phe-
nomenon in fine enables adjacent keratinocytes to protect their nuclei (i.e., DNA) from
ultraviolet-induced mutations.

Nevi are benign melanocytic tumors of the skin defined by an abnormal number of
melanocytes present in the epidermis and/or in the dermis, often arranged in “nests” where
many melanocyte bodies are grouped in clusters and self-pigment. A small number of nevi
can progressively undergo malignant transformation, usually through a multistep process
that combines genetic (somatic and germline mutations), environmental (ultraviolet light
exposure), and immunologic factors, to ultimately become malignant melanomas [1–4].
Children with a high count of nevi and a type I-II Fitzpatrick phototype or with a giant
congenital melanocytic nevus (CMN) are the most at risk of developing melanoma. The
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WHO classification of skin tumors (4th edition) separates melanocytic proliferations into
nine separate classes according to clinical, morphological, and genetic criteria [5].

If nevi are quite common in children, melanomas remain exceptional. They cannot
be grouped under a single entity as they represent a variety of clinical situations, each
with different prognoses. We will present an illustrated review depicting the specificities
of each of the various settings in which cutaneous melanoma can arise during childhood.
Nailbed, uveal, and mucous melanomas, which can exceptionally occur in children, will
not be discussed.

2. Superficial Spreading Melanoma (SSM)

The occurrence of superficial spreading melanoma (SSM) is exceptional during child-
hood. Most often, the clinical setting is an adolescent with a type I-II phototype who
presents with a progressive modification of a small nevus located on a sun-exposed area.
A history of sunburns is common, on par with the phototype. The classic ABCDE rule
applies only to this type of melanoma in children. These lesions are very similar to most of
the SSMs found in adults. Histologically, a portion of the preexisting nevus can be visible
if it has not been replaced by the invasive phase. Distribution is usually asymmetrical
and/or haphazard with intraepidermal nests and isolated large melanocytes with a wide
foamy/hyperpigmented cytoplasm. Lateral pagetoid scatter of such melanocytes is the
histological hallmark of these tumors (Figure 1). In advanced SSM, the dermis is invaded,
often by nests of large melanocytes with similar morphology. A dense lymphocytic in-
filtrate is commonly present on the invasive front of the tumor. These tumor-infiltrating
lymphocytes (TILs) are in close connection with melanocytes (with cell-to-cell protein
interaction). Breslow thickness, dermal mitotic activity, and epidermal ulceration are to be
assessed. A BRAF.pV600E mutation is frequently present (>80%) both in the melanoma
and the nevus from which it arose [4,6–8]. The need for an oncogenetic consultation must
be evaluated according to the clinical setting. This will be discussed in the paragraph
related to melanomas arising in the setting of a germline predisposition syndrome. The
main differential diagnosis when no nevus is present is a pagetoid Spitz nevus (Figure 1).
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Figure 1. SSM melanoma and pagetoid Spitz nevus (hematoxylin, phloxin, safranin stain). (A): Low-
magnification silhouette of SSM, 14-year-old: SSM melanoma and pagetoid Spitz nevus (hematoxylin,
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phloxin, safranin stain). (A): Low-magnification silhouette of SSM, 14-year-old: mainly junctional dis-
organized melanocytic proliferation. (B): Close-up view showing dispersed junctional nests. Ascent
of isolated cell. Numerous lymphocytes and melanophages clutter the upper dermis. (C): Invasive
melanoma with “pseudo-maturation” and mitotic figure (arrow). (D): Large, junctional, foamy
melanocytes. (E): Low-magnification silhouette of a pagetoid Spitz nevus, 6-year-old. Epidermal
hyperplasia encasing numerous small nests with a regular distribution. (F,G): Close-up view with
isolated cells and small nests. An important pericellular retraction is seen. Ascent of small, isolated
cells. Arborescent vascular structure in the upper dermis surrounded by small lymphocytes.

3. Malignant Spitz Tumor (Melanoma with a Spitzoid Morphology and Specific
Genetic Features)

Melanocytic neoplasms of the Spitz group show distinctive features and encompass
benign, intermediate, and malignant tumors, all of which are characterized by prototypic
enlarged spindle or epithelioid cells. Benign Spitz nevi are frequent during childhood,
especially after puberty, and constitute a diagnostic pitfall of melanoma, mostly of the
SSM-type. They often appear located on the lower limbs, especially the knee area, or
on the face. Most are unique lesions, although rare cases of eruptive nevi have been
described, notably in the clinical setting of a nevus spilus [9]. These lesions grow rapidly,
and their important vascularization and lack of pigmentation clinically suggest a benign
vascular tumor, such as a botryomycoma or an angioma. Spitz tumors encompass many
morphological subtypes (pigmented, hyperpigmented spindle (Reed), plexiform, pagetoid,
desmoplastic, angiomatoid. . . ) and have specific, mutually exclusive genetic anomalies.
These include HRAS mutations, receptor tyrosine kinase fusions, and serine-threonine
kinase mutations and fusions, described in Table 1. For benign cases, the most common
fusions involve NTRK1/3, ALK1, and ROS1, whereas MAP3K8 and ALK1 predominate in
atypical and malignant Spitz tumors [6].

Table 1. Summary of the main genes involved in Spitz tumors, molecular alteration, and their function.

Gene Molecular Alteration Function Frequence References

NTRK1 Gene fusion Receptor tyrosine kinase Common [10–12]
HRAS Mutation amplification Serine/Threonine kinase Common [13]
ROS1 Gene fusion Receptor tyrosine kinase Common [14–17]
ALK Gene fusion Receptor tyrosine kinase Common [10,12,18,19]
RET Gene fusion Receptor tyrosine kinase Rare [10]

NTRK3 Gene fusion Receptor tyrosine kinase Common [20,21]
NTRK2 Gene fusion Receptor tyrosine kinase Rare [22]

MAP3K8 Gene fusion Serine/Threonine kinase Common [23–26]
BRAF Gene fusion Serine/Threonine kinase Uncommon [12,25,27–29]
MET Gene fusion Receptor tyrosine kinase Rare [30,31]

ERBB4 Gene fusion Receptor tyrosine kinase Rare [24]
FGFR1 Gene fusion Receptor tyrosine kinase Rare [24]

LCK Gene fusion Tyrosine kinase Rare [9]
MAP2K1 Missense mutation Serine/Threonine kinase Rare [32]
MAP3K3 Gene fusion Serine/Threonine kinase Rare [24]
MERTK Gene fusion Receptor tyrosine kinase Rare [16]
PRKDC Gene fusion Serine/Threonine kinase Rare [24]

Histologically, Spitz nevi are symmetrical compound lesions with either a pediculated
or elevated silhouette. The junctional component is arranged in nests that are often large,
coalescent, and vertically oriented, intermingled with a hyperplastic epidermis, bearing
pseudo-epitheliomatous changes. Depending on the histological subtype, cytology can
range from small hyperpigmented spindled cells (Reed nevus prototypic morphology) to
large epithelioid melanocytes with a glassy eosinophilic cytoplasm (Spitz nevus prototypic
morphology), with every intermediate possibility. The dermal component is often of similar
cytology with variable deep maturation according to the subtype. A fibrotic background
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with multiple dilated blood vessel lumens is commonly present in the upper dermis.
Dermal mitotic activity is frequent (including atypical mitotic figures) on par with the rapid
clinical growth.

In a small subset of cases and at all ages, a progression toward malignant melanoma
can occur. Clinically, such lesions become rapidly bulky with heterochromatic melanocytic
pigmentation. Histologically, a dermal clone appears, showing severe cytological atypia,
increased mitotic activity, higher dermal density, a sheet-like pattern, and destructive
extension to the subcutis (Figure 2). Importantly, Breslow thickness and nodal metastases
do not carry the same weight in predicting outcome in pediatric Spitzoid neoplasms as in
adult conventional melanoma. Indeed, regional nodal extension of a Spitz group neoplasm
can commonly be observed without a dismal prognosis [33–35]. The diffuse widespread
disease remains exceptional in cases with canonical genetic mutations. Homozygous
deletions of CDKN2A and TERT promoter mutations are the most frequent secondary
events observed during this progression [36].
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Figure 2. Malignant Spitz tumor, with MYO5A-RET fusion, 4-year-old (hematoxylin, phloxin, safranin stain). (A): Low-
magnification silhouette: massive, sheet-like, destructive dermal expansion elevating the epidermis and invading the
subcutis. Central dermal tumoral necrosis patch. (B): Close-up view of junction with a thinned epidermis covered by a
crust. Obscuration of the grenz zone by dense fascicules. (C,D): High-power view of the dermal fascicules made of large
spindled atypical melanocytes with mitotic activity (arrow).

The majority of pediatric melanomas arising from such lesions are associated with a
good prognosis, even in cases with nodal extension [23]. Recent investigations recommend
conservative management for pediatric Spitzoid tumors due to the extremely low associated
death rate [33,37]. However, these studies were not always associated with a genetic
analysis of the tumors. In the future, the identification of genetic Spitz-driving anomalies
for each lesion could reveal itself useful to avoid overdiagnosis in pediatric populations
while identifying the tumors the most at risk of a negative outcome. The recent advances
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in the knowledge of genetic alterations present in this group need to be explored in larger
series. Indeed, there appears to be significant morphological overlap in lesions with similar
genetic anomalies, including specificities related to the 5′ fusion partners, enhancing the
complexity of this group. In our current vision, there could be significantly different
outcomes in malignant Spitz tumors with tyrosine kinase fusion (ALK, ROS1, NTRK1/3)
and serine-threonine fusion (BRAF, MAP3K8) with fatal cases published in the latter group
only [23,36].

As a side note, the “Spitzoid” terminology is used inconsistently and currently refers
to cases with a Spitz-like cytomorphology, i.e., composed of large spindled or epithelioid
melanocytes, but for which the specific genetic background linking it to the Spitz group has
not been confirmed yet. Previous data have indicated that the Spitzoid histomorphology
per se is an unreliable predictor of Spitz lineage, also encompassing BRAF or NRAS-mutated
melanoma [38]. In other words, it means uncertainty about whether the prognosis will be
good (bona fide Spitz, with tyrosine kinase fusion), or conversely, the evolution could be
more aggressive and eventually lethal (BRAF or NRAS melanoma) (Figure 3). However, this
morphological uncertainty has been dramatically reduced by various ancillary techniques
aiming to reveal their genetic backgrounds, such as immunohistochemistry, FISH, and
sequencing techniques (Table 1).

Dermatopathology 2021, 8, FOR PEER REVIEW 6 
 

 

As a side note, the “Spitzoid” terminology is used inconsistently and currently refers 

to cases with a Spitz-like cytomorphology, i.e., composed of large spindled or epithelioid 

melanocytes, but for which the specific genetic background linking it to the Spitz group 

has not been confirmed yet. Previous data have indicated that the Spitzoid histomorphol-

ogy per se is an unreliable predictor of Spitz lineage, also encompassing BRAF or NRAS-

mutated melanoma [38]. In other words, it means uncertainty about whether the progno-

sis will be good (bona fide Spitz, with tyrosine kinase fusion), or conversely, the evolution 

could be more aggressive and eventually lethal (BRAF or NRAS melanoma) (Figure 3). 

However, this morphological uncertainty has been dramatically reduced by various an-

cillary techniques aiming to reveal their genetic backgrounds, such as immunohistochem-

istry, FISH, and sequencing techniques (Table 1). 

 

Figure 3. Spitzoid melanoma, 9-year-old (hematoxylin, phloxin, safranin stain). (A): Low-magnification silhouette: mainly 

dermal clonal proliferation, without pigmentation, elevating a slightly verrucous epidermis. Central vertical periadnexial 

expansion. (B): Confluent nests are present in the junction. Abrupt cytological hiatus and lymphocytes are seen in the 

dermis below. (C): Close-up view of the dermal component with spindled and epithelioid large melanocytes with mitotic 

figure (arrow). 

4. Melanoma Arising from a Congenital Nevus 

Congenital melanocytic nevi (CMNi) are benign melanocytic tumors that can be pre-

sent at birth or become apparent in early childhood. The size of these nevi ranges from a 

few millimeters to whole body segments. Genetic events occurring in melanoblasts or 

their immediate progenitors can explain the development of such lesions. 

During embryogenesis, highly multipotent cells undergo a complex selective triage 

leading to the formation of a variety of cell lineages in the transient neural crest. Among 

these, melanoblasts later colonize the epidermis in which they become melanocytes, fol-

lowing earlier dorsal and later ventral migration schemes. Therefore, a single, multipotent 

Figure 3. Spitzoid melanoma, 9-year-old (hematoxylin, phloxin, safranin stain). (A): Low-magnification silhouette: mainly
dermal clonal proliferation, without pigmentation, elevating a slightly verrucous epidermis. Central vertical periadnexial
expansion. (B): Confluent nests are present in the junction. Abrupt cytological hiatus and lymphocytes are seen in the
dermis below. (C): Close-up view of the dermal component with spindled and epithelioid large melanocytes with mitotic
figure (arrow).
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4. Melanoma Arising from a Congenital Nevus

Congenital melanocytic nevi (CMNi) are benign melanocytic tumors that can be
present at birth or become apparent in early childhood. The size of these nevi ranges from
a few millimeters to whole body segments. Genetic events occurring in melanoblasts or
their immediate progenitors can explain the development of such lesions.

During embryogenesis, highly multipotent cells undergo a complex selective triage
leading to the formation of a variety of cell lineages in the transient neural crest. Among
these, melanoblasts later colonize the epidermis in which they become melanocytes, fol-
lowing earlier dorsal and later ventral migration schemes. Therefore, a single, multipotent
neural crest stem cell bearing a somatic mutation can differentiate into a melanoblast-
competent progenitor that, after population expansion and dissemination along peripheral
nerves, will cause the formation of CMNiat the periphery. Due to the potentially early
nature of this developmental anomaly, the resulting nevus may involve up to the whole
thickness of the skin, but also the central nervous system (CNS). The risk of nevus de-
posits in leptomeninges increases when multiple lesions are observed in a newborn, a
phenomenon sometimes called nevus satellitosis or neurocutaneous melanocytosis (NCM),
but these are, in fact, simply disseminated nevi of identical genetic makeup to the largest
CMN [39].

Activating missense mutations of NRAS (predominantly NRAS Q61K/L/R) are the
most frequent genetic alterations associated with CMNi, found in 60% to 80% of the
largest lesions [40,41]. Other anomalies such as the V600E mutation of BRAF and rarer
gene rearrangements (ZEB2-ALK, SOX5-RAF1, SAA6-RAF1, and BRAF) have also been
described [41–43].

Nonetheless, despite affecting the phenotype of the lesion, these alterations are not
predictive of patient outcome [41]. Rather than genotype, the number of satellites (dissemi-
nated lesions) and the projected adult size (PAS) of the largest tumor are both linked to the
risk of developing melanoma [44]. Therefore, small, solitary congenital nevi carry a lower
risk of transformation than larger and multiple lesions. It is estimated that 1% of children
worldwide are born with a visible nevus, but only 1/20,000 births will have a nevus over
10 cm, and as few as 1/500,000 births will have a nevus over 40 cm in PAS [45].

Both cutaneous and CNS sites can potentially give rise to melanomas in early child-
hood. The risk of transformation is most important in the first few years [46–48], but
remains present throughout the whole patient’s life, with a lifetime risk of transformation
estimated at up to 5% [49], thus requiring patient education about clinical and auto-
evaluation methods on a regular basis.

Melanoma can develop from epidermal or dermal melanocytes of CMNi through
lateral or deep nodular transformation, respectively.

The most frequent is lateral transformation, which is fully reminiscent of a superficial
spreading melanoma (SSM) ex-nevus (as described above). Such melanoma is virtually
absent before puberty, except in patients with xeroderma pigmentosum (see below). Its
low-magnification silhouette is typically asymmetrical: on one side of the nevus, an
intraepidermal melanoma arises, first extending superficially, increasing the surface of
the lesion in an asymmetrical and variably pigmented clinical pattern. Secondly, the
proliferation will invade the dermis during the vertical phase. The prognosis of such
melanoma parallels the prognosis of adult-type SSMs of identical Breslow thickness. Early
recognition by regular skin screening is the most preventive method (Figure 4).
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Figure 4. Superficial spreading melanoma ex-congenital nevus, 13-year-old (hematoxylin, phloxin, safranin stain). (A):
Low-magnification silhouette: asymmetrical lesion with on the left side a compound, mainly dermal, congenital nevus with
a loose horizontal band of melanocytes under a slightly verrucous epidermis, and on the right side a mainly junctional
melanocytic proliferation underlined by a pigmented inflammatory reaction. (B): Close-up view on the transition between
the nevus and melanoma. (C): Close-up view disorganized confluent junctional nests of large spindled hyperpigmented
melanocytes in a slightly atrophic epidermis with numerous.

Deep nodular transformation can occur before puberty and is much rarer. Nodular
transformation must be distinguished from benign proliferative nodules, which are more
frequent. Indeed, rapidly growing, variably pigmented, and often multiple nodules can
arise from giant CMNi during childhood before either stabilizing or becoming malignant.
Nodular transformation usually shows higher mitotic activity and ulceration [48]. More-
over, melanoma and proliferative nodules seem to harbor different DNA-methylation
patterns, suggesting a role for these studies in the differential diagnosis of such tumors [44].
In this context, epigenetic loss of H3K27me3 or 5-hmC expression, detected by immuno-
histochemistry, suggests a melanoma rather than a benign proliferative nodule [50–52].
Array-CGH can also be used to discriminate melanoma and proliferative nodules [53,54].
On prognostic grounds, the metastatic potential is greater in these melanomas, with a
dismal prognosis and high mortality [50,55] (Figure 5).
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Figure 5. Melanoma ex-giant congenital nevus, 8-year-old (hematoxylin, phloxin, safranin stain). (A): Low-magnification
silhouette: loose horizontal band of melanocytes under a verrucous epidermis elevated by a large cellular dermal nodule
with hyperpigmented areas and patch of tumoral necrosis. (B): Close-up view on transition area with the congenital nevus
made of loose bland melanocytes in the upper dermis separated by fibrous collagen from the dense nests of the melanoma
underneath. (C,D): High-power view of the melanoma with confluent nests of large epithelioid and nevoid melanocytes;
mitotic figure (arrow).
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Malignant transformation can also occur in the leptomeningeal CNS nevus deposits
of NCM. They are usually detected at an advanced stage when neurological symptoms
are triggered by tumor compression of adjacent structures and can be associated with
hydrocephalus. At such stages of development, these melanomas are most often unre-
sectable with a rapidly fatal outcome, and can disseminate through ventriculo-peritoneal
shunts placed to treat the intracranial pressure [56–58]. However, CNS melanoma in a
child with a large or giant CMN is not always fatal, and can develop in the presence of
other brain malformations [59]. In evolved lesions, the presence of pigmented spindled
and/or epithelioid cells in the cytology of cerebrospinal fluid is diagnostic [60].

5. Nevoid Melanomas

Nevoid melanoma is rare and difficult to diagnose clinically as it usually grows slowly,
simulating an exophytic, verrucous, warty nevus. Nevoid melanoma can, however, reach
large clinical sizes. Histologically, nevoid melanoma constitutes an important diagnostic
pitfall as it mimics a benign compound nevus, especially at low power. Indeed, nevoid
melanoma provides the most important share of false-negative diagnoses of malignancy. A
high density of melanocytes, an asymmetrical distribution of melanocytes, a perivascular
and horizontal dermal extension that extends beyond the limit of the epidermal component
are all suggestive of nevoid melanoma. Mitotic activity and Ki67 staining are frequently
limited to the upper dermis. The immunophenotype is usually aberrant regarding the
expression of Melan-A, HMB45, and p16. Nevoid melanoma mostly arises in adults, but it
can also be observed in late adolescence (Figure 6). Their prognosis is currently not very
well ascertained [61–64].
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Figure 6. Nevoid melanoma, 17-year-old (hematoxylin, phloxin, safranin stain). (A): Low-
magnification silhouette: massive dermal invasion by a pigmented clonal proliferation with the
destruction of hair follicles. The grenz zone is obscured, and the epidermis is elevated. (B): Close-up
view displaying sheets of large epithelioid melanocytes with mitotic figures (arrows) and dispersed
melanophages.
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6. Melanomas Arising in the Setting of a Germline Predisposition Syndrome

A personal or familial history of previous melanoma is present in less than 10% of
melanoma cases. Oncogenetic studies have identified several germline mutations that
predispose to melanoma, even during childhood. Anomalies that only predispose adults
to melanoma will, however, not be discussed.

Germline mutations in CDKN2A (encoding for the p16ink and p14arf proteins) are
the most frequently (38%) found anomalies [65,66]. CDKN2A mutations are responsible
for dysplastic nevus syndrome (OMIM #155601) in patients presenting a clinically large
number of atypical nevi. In this setting, the risk of developing melanoma nears 100% dur-
ing the person’s lifetime. This justifies recommending solar exposition avoidance as much
as possible and skin surveillance starting at age 10. These melanomas occur mainly after
puberty, as superficial spreading melanomas (SSM) arising from a preexisting compound
nevus. This anomaly also predisposes to pancreatic adenocarcinoma, glioblastomas, sarco-
mas, and head and neck squamous cell carcinomas, but these arise in adults [67]. CDK4
germline mutations are much less frequent and give rise to a similar clinical phenotype
(multiple nevi with melanoma risk).

The terminology xeroderma pigmentosum encompasses a significant number of germline
mutations impairing cellular DNA-repair functions to various degrees. In the most severe
forms, children, who are exposed to sunlight, develop predominantly multiple basal cell
and spindle cell skin carcinomas but also melanomas related both to chronic (lentigo maligna
melanoma) and non-chronic sun exposure (SSM-type melanoma).

The germline mutations of BAP1 predispose to multiple cancers, including cutaneous
and uveal melanomas. Most of these occur in adults. Carriers frequently develop benign
BAP1-inactivated melanocytic nevi during childhood, which often helps identify the
disease. Immunohistochemical studies can easily assess a loss of nuclear BAP1 expression.
Exceptional transformations of such lesions can occur, including during childhood. The
presence of a dense, possibly pigmented, clonal sheet-like area within a BAP1-inactivated
nevus is evocative of this diagnosis (Figure 7).
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Figure 7. Melanoma ex BAP1 inactivated nevus; relapse, initial lesion at age 11(hematoxylin, phloxin, safranin stain).
(A): Low-magnification silhouette: compound melanocytic proliferation with dense dermal nodular areas including
pigmented clones. (B): Intermediate view of a cellular area with admixed small and large cells. (C): Close-up view of a deep
dermal nodule with mixed small nevocytoid and large epithelioid melanocytes. A few of them show a pigmented cytoplasm;
mitotic figure (arrow). (D): BAP1 immunohistochemistry (clone C4; 1/50): loss of nuclear staining with positive controls of
endothelial cells. (E): Ki67 immunohistochemistry: variable dermal staining with clonal areas showing a 10% positivity.



Dermatopathology 2021, 8 311

Exceptional cases of melanomas and atypical melanocytic tumors have been described
in children in the setting of a Li-Fraumeni syndrome (TP53 mutation) [68,69].

7. Unclassified Melanomas

Despite the expansion of the histological and molecular classification of melanocytic
tumors, some pediatric lesions do not fit in any of the categories due to their intradermal
origin or as the consequence of undescribed clinical or genetic features. Such cases must be
thoroughly explored on molecular grounds and clinically monitored. Research data are
currently lacking in this field.

8. Melanoma Risk in Children with Impaired Immunity

It is now well known that immunosuppression, whatever the cause, is a risk factor
for melanoma. Several studies have assessed the risk of developing melanoma in patients
receiving immunomodulating drugs following organ or bone marrow transplantation. A
case was recently reported where malignant leptomeningeal melanoma developed in an
adolescent with CMNi, asymptomatic NCM and inflammatory bowel disease, following
treatment with TNFα inhibitors [70]. Most such melanomas arise in adults, but skin and
neurological surveillance is advised early on in this setting [71,72].

9. Conclusions

Numerous recent genetic discoveries and the WHO classification of skin tumors have
restructured our vision of melanocytic tumors. Given the low frequency of pediatric
melanoma, it may take some time for genetically well-characterized cohorts to be followed
up and published. Nonetheless, this should encourage all teams involved in such rare
cases to collaborate and work further to assess the presence of specific genetic markers that
will ensure later more precise diagnosis, treatment, and follow-up.
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