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The observation that cancer acquires significant changes in its metabolism dates

back nearly a century, to Otto Warburg noting that cancer cells preferentially

utilize glycolysis even when there are no hypoxic conditions in the growth media.

Altered energetics are thus considered a hallmark of cancer. However, it has

become clear that altered metabolism is not limited to cellular energetic pathways.

Alterations in amino acid synthesis and catabolism, lipid biogenesis, and other

pathways such as polyamine processing are commonly seen in cancer. Additionally,

alterations in metabolism do not only have profound effects for cancer cells but also

affect their surrounding microenvironment. With new cancer therapeutics targeting

the immune microenvironment, these effects may have implications on cancer

growth and response to therapy. These interactions are profound in lung cancer,

further demonstrating the manifold interactions between developing tumors and the

inflammatory microenvironment. Here, we discuss how dysregulation of metabolism in

cancer alters its microenvironment and how this newfound knowledge can be exploited

for anticancer treatment.

Keywords: lung cancer, tryptophan, asparagine, aspartate, glutamate, arginine, microenvironment

INTRODUCTION

As first reported by Warburg in 1923, cancer cells prefer glycolytic fermentation even in the
presence of oxygen (1, 2). This widely observed effect was originally thought to be an underlying
cause of cancer. However, this seems to be an epiphenomenon seen in many cancers from different
tissues of origin which harbor a variety of driver mutations (3). While a driver mutation such
as oncogenic KRAS directly alters metabolic pathways, cancers that successfully grow and evade
the immune system undergo selective pressures from hypoxia, limited precursor availability, and
secondary stimulation of pro- and anti-inflammatory responses by metabolic by-products (4–8).
Given that metabolic pathways are tightly linked, alterations in one pathway have consequences
in many others. The study of these changes, with the evolutionary processes that shape them and
the cell-autonomous and non-autonomous effects of altered metabolism of cancer growth, forms a
new field of oncometabolomics (9).

The Warburg effect is a common finding in cancer, and increased glucose utilization has been
exploited to aid in detection, for instance, using fludeoxyglucose as a tracer in positron emission
tomography (PET) scans (10). Research into the causes of altered energetics has led to tremendous
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insight about cancer biology, including forming the basis of an
emerging field of mitochondrial dysregulation in cancer (11, 12).
Energy coupling between tumor cells and their surrounding
stroma has also come under close study. Tissue hypoxia and
glycolysis lead to a buildup of lactic acid and thus an acidic,
hypoglycemic microenvironment (8). This microenvironment
has been shown to have a number of tumor-permissive and
immune-suppressive effects, including promoting angiogenesis,
invasion, and metastasis (13–15).

While the Warburg effect is a common observation in cancer
cells, and glycolytic inhibitors are currently being studied as
potential therapeutics, it is clear that there is significant metabolic
plasticity and heterogeneity both within cancers and between
cancer cells and their microenvironment. Many cancers continue
to generate energy using standard oxidative phosphorylation in
the mitochondria, even while utilizing the glycolytic Warburg
pathway (16). Additionally, with cancer growth, there are
dynamic changes in nutrient supply and oxygen concentration,
and these are reflected in both cancer cell metabolism and cells
composing the microenvironment. In what has been termed the
“reverse Warburg effect,” cancer cells which still utilize oxidative
phosphorylation can induce, through reactive oxygen species
(ROS) in the microenvironment, surrounding stromal cells to
upregulate glycolytic pathways. These pathways then cause by-
products such as lactic acid to build up in the microenvironment
and serve as fuel for the cancer’s oxidative phosphorylative
energy pathways.

Cancer cell energetics thus serve as a broader paradigm
for oncometabolomics in a number of ways. Dysregulation is
often a consequence of oncogenic mutation, but also may be
a consequence of the evolutionary processes by which cancer
cells overcome nutrient limitation and immune surveillance.
Metabolic dysregulation within the cancer cells leads to profound
changes both within cells and the microenvironment. While
dysregulation of a metabolic pathway may not have a solitary
cause, the same changes are observed frequently and thus serve
as an enticing target for therapy. However, linkage between
pathways, redundancy, heterogeneity, and plasticity may mean
that metabolic inhibitionmay form only a piece in a larger puzzle.
A similar example can be seen in folate and nucleobase synthesis
pathways, which both support oligonucleotide synthesis and
function as antioxidants to mitigate the effect of ROS. These
changes may arise through oncogenic mutations such as those
which activate the mammalian target of rapamycin (mTOR)
pathway but also may represent the surviving cancer cells that
can best support their unchecked cell division requirements
and oxidative burden. These pathways are tied closely both
to energetics and amino acid metabolism, and depletion of
precursor molecules such as serine from the microenvironment
has direct effects on T-cell function. Finally, this pathway
is a classic example of how cancer metabolism can be
targeted as antimetabolites targeting this pathway such as
aminopterin, methotrexate, and fluorouracil were among the first
chemotherapeutic agents to come into wide usage. However,
these agents are commonly used as one part of a combination
chemotherapy regimen, for instance, the combination of

fluorouracil with irinotecan as current first-line therapy in
metastatic colorectal cancer.

Examples of these highly interregulated pathways, with effects
in the tumor cell and the microenvironment, are emerging
throughout oncometabolomics. In lung cancer, there is a
close relationship between developing cancers and the immune
microenvironment, with both pro- and anti-tumor interactions
changing dynamically through carcinogenesis (17–20). Here,
we will detail examples primarily affecting pathways outside
of cellular energetics, focusing on amino acid catabolism,
and anabolism.

TRYPTOPHAN CATABOLISM AND THE
IMMUNE MICROENVIRONMENT

Depletion of the essential amino acid tryptophan and
accumulation of its catabolites including kynurenine (Kyn)
lead to a microenvironment that is suppressive of an immune
response and thus leading to promotion of tumor growth
[Figure 1; (21, 22)]. In T cells, depletion of tryptophan and
accumulation of Kyn directly induce differentiation into
immunosuppressive regulatory T (Treg) cells and promote cell-
cycle arrest and autophagy. This has led to intensive investigation
of this pathway, including the development of inhibitors for the
rate-limiting enzyme in tryptophan metabolism, indoleamine
2,3-dioxygenase (IDO) 1 and 2 and tryptophan 2,3-dioxygenase
(TDO). Epacadostat is a small molecule inhibitor of IDO1 and
IDO2, while indoximod is a tryptophan analog that affects
multiple enzymes in the catabolic process.

Given the importance of T-cell infiltration and functionality
in immune checkpoint blockade inhibitor (ICBI) therapy,
initial trials have focused on these agents in combination with
ICBI. While initial trials of epacadostat plus the programmed
cell death protein 1 (PD-1) inhibitor pembrolizumab in
metastatic melanoma were promising, a phase III, double-
blinded, randomized trial (ECHO-301/KEYNOTE-252) of
epacadostat/pembrolizumab vs. pembrolizumab did not note an
additional benefit of epacadostat (23).

One possible explanation for this finding is that tryptophan
metabolism may utilize multiple pathways. Epacadostat
treatment led to only a 50% reduction in Kyn levels (24).
Recent experimental evidence has demonstrated that TDO is
equally effective in increasing Kyn levels in lung cancer (25).
Moreover, the levels of IDO and TDO expression between
tumor cells and mature dendritic cells in the microenvironment
are quite disparate, with dendritic cells often expressing much
higher levels than tumor cells. Additionally, other tryptophan
catabolites in the Kyn pathway, such as 3-hydroxyanthranilate
(3-HAA), have also shown to be immune suppressive, with
direct effects on inhibiting T-lymphocyte activation and
promoting Treg cell differentiation (Figure 1) and in non-
antigen-stimulated T-cell proliferation (26, 27). Furthermore,
IDO1 expression is highly heterogeneous between different
cancer types (28). As such, there is still a plausible potential role
for pleiotropic tryptophan pathway inhibitors or a combination
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FIGURE 1 | The tryptophan catabolic pathway. Changes in this pathway, including tryptophan depletion and accumulation of catabolites kynurenine,

3-hydroxyanthranilate, and anthranilic acid have immunomodulatory effects, with specific effects on CD8T cells and regulatory T (Treg) cells. IDO1 and IDO2,

indoleamine 2,3-dioxygenase 1 and 2; TDO, tryptophan 2,3-dioxygenase; KYNU, kynureninase; AH, anthranilate hydrolase; HAAO, 3-hydroxyanthranilate

3,4-dioxygenase; QPRT, quinolinate phosphoribosyl transferase.

of inhibitors that act on multiple enzymes. To this end, a new
concept has recently emerged wherein it is not IDO that is
the active target, but rather the catabolism of Kyn through
the administration of pharmacologically optimized PEGylated
kynureninase (PEG-KYNase) (Figure 1). Specifically, treatment
of tumor-bearing immune-competent mice with PEG-KYNase
elicited statistically significant increases in tumor infiltration and
expansion of CD8+ lymphocytes to elicit an anticancer effect
(29). Importantly, PEG-KYNase when used in combination
with checkpoint inhibitors or with a Gp96-Ig cancer vaccine
yielded superior anticancer efficacy as compared to treatments
alone (29). These findings highlight the potential of targeting
other components of the Kyn pathway for the reversal of an
immunosuppressive tumor microenvironment.

Aside from its role in modulating the tumor
immunophenotype, recent work demonstrates a functional
role of aberrant tryptophan metabolism in mediating resistance
to chemotherapy (30). Specifically, cisplatin-resistant lung
cancer cells were reported to exhibit increased consumption of
extracellular tryptophan in comparison to parental lung cancer
cells, and increased extracellular uptake of tryptophan was met
with increased IDO1 activity through Kyn-mediated activation
of the Aryl hydrocarbon Receptor (AHR) (30). Inhibition of
IDO1 through pharmacological inhibition reduced the viability
of cisplatin-resistant lung cancer cells via induction of increased
generation of ROS (30). Notably, IDO-mediated AHR activation
has been shown to induce interleukin (IL)-6-mediated activation
of signal transducer and activator of transcription 3 (STAT3)
signaling. Inhibition of IL-6 or STAT3 using siRNA and/or
pharmacological inhibition reduced IDO gene and protein

expression as well as Kyn formation, suggesting that IDO activity
is sustained through an autocrine AHR–IL-6–STAT3 signaling
loop (31). Consequently, these findings implicate cancer cell
autonomous functions of aberrant tryptophan metabolism.

ASPARAGINE, ASPARTATE, AND
GLUTAMINE IN CANCER

In 1953, Kidd (32) described the antineoplastic effect of guinea
pig serum, which, over the next 10 years, was found to be
due to high levels of L-asparaginase. This enzyme catalyzes
the degradation of the amino acid asparagine into aspartate
and ammonia. Lymphoma and leukemia cell lines have a
strong dependence for asparagine, and bacterially produced L-
asparaginase was found to be highly active against multiple types
of leukemia and lymphoma. It has been in wide clinical usage
since the 1960s (33).

The primary action of asparaginase is to reduce extracellular
asparagine. It is most effective against cancers with low
endogenous ability to synthesize asparagine de novo, as
measured by the expression of asparagine synthetase (ASNS)
and therefore requires importation of extracellular asparagine
[Figure 2; (34)]. Asparagine synthesis is energy intensive and
shunts vital resources, primarily the precursor glutamine (whose
crucial roles are detailed below), toward asparagine synthesis.
However, in the absence of glutamine, extracellular asparagine
becomes essential as intracellular asparagine is shunted toward
glutamine synthesis to prevent apoptosis (35, 36). Thus, the
roles of intracellular vs. extracellular glutamine, asparagine,
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FIGURE 2 | Asparagine, aspartate, glutamine, and glutamate shuttling to

support mitochondrial and synthetic functions. Asn, asparagine; Asp,

aspartate; Glu, glutamate; Gln, glutamine; Gly, glycine; His, histidine; Ser,

serine; Thr, threonine; ETC, electron transport chain; TCA, citric acid cycle;

SLC, solute carrier family.

and the asparagine metabolite aspartate have come under
close study.

The main role of intracellular asparagine is to serve as an
amino acid exchange factor, with export of asparagine used
to import other extracellular amino acids, particularly glycine,
histidine, threonine, and serine [Figure 2; (37)]. Depletion of
asparagine, for instance in a low ASNS-expressing cell, impairs
import of amino acids and protein synthesis. Intracellular
asparagine inhibits mTOR signaling, directly reducing protein
initiation complex phosphorylation. This same mechanism also
can upregulate nucleotide synthesis (36, 38).

A recently published study shows a role of asparagine
in attenuating ATF4-mediated apoptosis during nutrient
stress in response to KRAS signaling in non-small-cell lung
cancer (NSCLC) (39). Specifically, glutamine-restriction
induced KRAS-mediated upregulation of ATF4 through
a KRAS–Akt–Nrf2–ATF4 axis. Induction of ATF4 led to
increased expression of ASNS to sustain cellular proliferation
and mitigate ATF4-mediated apoptosis as a consequence
of nutrient deprivation. Targeting of asparagine through
L-asparaginase manifests in near-complete stasis of tumors
that were lacking ASNS, implicating both the necessity
and targetable vulnerability of KRAS-driven ASNS activity
during nutrient deprivation. To this end, the combination
of MK-2206, an AKT inhibitor, in combination with L-
asparaginase resulted in statistically significantly reduced
tumor burden of H460 xenografts in comparison to control or
single agent (39).

Aspartate is a non-essential amino acid in most cancer
cells, and cells are able to replenish intracellular stores
through de novo synthesis. Aspartate availability limits cancer
cell growth through the control of nucleotide and protein
synthesis. Interestingly, a major function of mitochondrial
electron transport chain (ETC) function in cancer cells

is to provide electron acceptors for robust activation of
aspartate synthetic pathways (40, 41). Through this, aspartate
becomes limiting for growth in hypoxia. Unlike asparagine,
aspartate does not cross the plasma membrane readily, and
in the setting of ETC inhibition, cells become dependent on
upregulation of aspartate import from the microenvironment
through upregulation of the transported Solute Carrier Family
1A3 (SLC1A3).

This functional relationship between intracellular and
extracellular amino acid concentration has been most clearly
described in glutamine metabolism, which is tightly linked
to aspartate and asparagine (Figure 2). Several studies have
provided experimental evidence that cancer cells are “glutamine
addicted,” providing a source for carbon and nitrogen to
replenish tricarboxylic acid (TCA) cycle intermediates and
promote the biosynthesis of macromolecules, nucleotides, and
diverse lipid species (42, 43). Extracellular uptake of glutamine is
mediated by members of four amino acid transporter families.
Among the four amino acid transporters, solute carrier family 1
member 5 (SLC1A5) has been shown to have the greatest affinity
for glutamine (44). Although the biochemical fate of glutamine
is diverse, in the context of cancer, it is often deaminated to
glutamate through kidney-type glutaminase 1 (KGA) and GAC,
a splice variant encoded by GLS1 (42, 45–47). Glutamate, in
turn, serves as a multifunctional metabolite, acting as a carbon
donor for the TCA cycle intermediate α-ketoglutarate mediated
by glutamate dehydrogenase, a substrate for glutathione
biosynthesis and dioxygenases, as well as participating in an
exchange with extracellular cystine via the cystine/glutamate
antiporter, SLC7A11, to regulate intracellular redox balance
(42, 48).

The interplay between glutamine metabolism and oncogenic
signaling pathways has been previously described. For instance,
oncogenic KRAS has been shown to reprogram metabolism
by increasing the utilization of glutamine (49). Stable isotope
tracer studies in KRAS mutant cancer cells have demonstrated
that glutamine supports tumorigenesis by supplying carbon
and nitrogen required for biomass synthesis (50). Moreover,
recent studies have demonstrated that oncogenic KRAS signaling
alters glutamine metabolism to support redox balance through
increasing the reliance on transaminases (51). Similarly, GLS1
has been reported to be regulated by oncogenic c-MYC (52).
Notably, MYC-driven GLS1 expression was not through direct
transcription of the GSL1 gene by c-MYC, instead MYC-
mediated suppression of GLS1 expression was mediated through
targeting of the 3′ UTR of GLS1 by micro-RNAs miR-23a and
miR-23b (52).

Although differential glutamine metabolism is a downstream
consequence of oncogenic signaling pathways, such as KRAS or
c-MYC, glutamine itself can also have direct effector functions.
For example, glutamine has been linked to regulating the
mechanistic target of rapamycin complex (mTORC1) activity
through the efflux of essential amino acids, such as leucine,
into cells via SLC7A5/SLC3A2 bidirectional transporters (53).
Notably, authors found that leucine disrupts the Sestrin2-
GATOR2 interaction, resulting in mTORC1 translocating to the
lysosome where Rheb-GTPase subsequently enhances mTORC1
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activity (54, 55). Moreover, glutamine-stimulated mTORC1
activity has been shown to impair autophagy initiation through
the negative regulation of ULK1 or through elimination of ROS
by glutathione and nicotinamide adenine dinucleotide phosphate
(NADPH) (56–58). Consequently, there is considerable interest
toward anticancer targeting of glutamine metabolism, namely,
through inhibition of glutaminase activity.

To date, there are three commonly explored inhibitors
of glutaminase: (5-(3-bromo-4-(dimethylamino)phenyl)-2,2-
dimethyl-2,3,5,6-tetrahydrobenzo[a]phenanthridin-4(1H)-one)
(glutaminase inhibitor 968), Bis-2-(5-phenylacetamido-1,3,4-
thiadiazol-2-yl)ethyl sulfide (BPTES), and telaglenastat (CB-839).
Glutaminase inhibitor 968 is an allosteric inhibitor of KGA and
GAC (59), whereas CB-839 and BPTES are non-competitive
selective inhibitors (46, 60). Several lines of evidence have
demonstrated utility of glutaminase inhibitors as anticancer
agents in a variety of cancer types including breast cancer
(46, 61), lung cancer (62), pancreatic cancer (63), melanoma
(64), and hematological malignancies (65). Moreover, several
studies have demonstrated that inhibition of glutaminase
increases the radiosensitivity and chemosensitivity of cancer
(46, 66–68).

While glutamine is an important metabolite readily scavenged
by cancer cells, it also plays an additional role in the tumor
microenvironment by serving as an important biomolecule
for immune cells, particularly T cells. In active T cells,
increased glutaminolysis supports T cell function by providing
carbon and nitrogen for proliferation-associated biosynthetic
pathways (69). For example, it was reported that glutamine-
derived α-ketoglutarate regulates CD4+ T cell differentiation
by increasing the expression of the gene encoding the T helper
1 (Th1) cell-associated transcription factor Tbet to promote
differentiation into Th1T cells. Upon glutamine restriction,
CD4+ T cells, when activated in the presence of cytokines
that promote Th1 differentiation, instead differentiated into
FOXP3+ Treg cells (69). Others have reported similar findings
that glutamine restriction drives CD4T cells toward FOXP3+
Treg cells by reducing de novo nucleotide synthesis and
increasing reliance on generation of endogenous glutamine via
glutamine synthetase (GS). Blocking of GS reduced FOXP3+
Treg cell proliferation and maintenance under glutamine
restriction (70).

Collectively, these studies suggest that targeting glutamine
metabolism in tumors may attenuate glutamine depletion
in the local tumor microenvironment and enable a more
potent antitumor immune response. To this end, previous
studies in a CT26 colon cancer syngeneic mouse model
demonstrated that the combination CB-839 plus anti-PD-
1/anti-PD-L1 yielded superior anticancer efficacy compared to
either treatment alone (71). More recently, Calithera initiated
a phase 2 study to evaluate the safety, tolerability, and
efficacy of CB-839 in combination with the PD-1/programmed
cell death protein ligand 1 (PDL-1) immune checkpoint
inhibitor nivolumab in patients with solid tumors. Reported
results demonstrated acceptable toxicity with mild to moderate
adverse events; overall response rates of 19% and an overall
disease control rate of 44% were reported in patients with

melanoma. (Calithera; Society for Immunotherapy of Cancer
Meeting) A trial of CB-839 in combination with the third-
generation epidermal growth factor receptor (EGFR) inhibitor
osimertinib in EGFR-mutated NSCLC is also currently enrolling
(ClinicalTrials.gov NCT03831932).

ARGININE METABOLISM

Arginine has multiple metabolic fates depending on cell type,
developmental stage, and state of health or disease. Normally, a
semi-essential amino acid in humans and most other mammals,
endogenous arginine synthesis proceeds primarily through
the “intestinal–renal axis”: citrulline precursor derived from
glutamine, glutamate, or proline in the intestine is converted
to arginine in the proximal tubule cells of the kidney (72).
Elevated arginine requirements of carcinoma cells in vitro were
first reported over 70 years ago (73). Many cancers, in particular,
lymphomas, melanoma, mesothelioma, and hepatocellular, renal
cell, and prostate carcinomas that are otherwise chemoresistant
and with poor clinical outcome, exhibit decreased expression
of arginine metabolizing enzymes including argininosuccinate
synthetase (ASS1) and/or ornithine transcarbamylase (OTC)
and are thus auxotrophic for arginine (74). Deprivation of
circulating arginine via enzymes such as arginase, arginine
deiminase (ADI), and arginine decarboxylase (ADC) exploits a
significant metabolic vulnerability of cancer cells in these tumor
types, and such enzyme-mediated arginine depletion is currently
under clinical investigation along multiple fronts to advance this
potential class of anticancer therapeutics (75–77). While positive
results have been reported in this regard, the role of arginine in
tumors in general is multidimensional. In addition, resistance to
arginine depletion therapy has been observed to be overcome
by ASS1 reexpression in previously sensitive cells via c-Myc
activation of the ASS1 promoter (78).

In contrast to arginine auxotrophs, many epithelial
tumor types overexpress ASS1, particularly those that are
characterized by moderate to high de novo sensitivity to
platinum chemotherapy (79). These include primary epithelial
ovarian cancers, as well as stomach, lung, and colorectal
cancers. Of particular interest is an emerging insight into the
role of arginine in modulating inflammatory networks and
immune cell reactivity within the tumor microenvironment.
Proinflammatory cytokines tumor necrosis factor (TNF)-α and
IL-1β regulate ASS1 in cancer cell lines, and TNF-α has been
observed to co-localize with ASS1 in epithelial ovarian cancer
(80, 81). In addition, ASS1 intersects with a number of metabolic
and inflammatory pathways, and cytokines such as TNF-α
modulate key enzymes downstream of ASS1, including nitric
oxide synthases (NOS) and ornithine decarboxylase (ODC)
(82). Downstream metabolites of arginine such as ornithine
and citrulline are evidenced to affect T-cell activation, and
thus, dysregulated arginine metabolism in cancer appears to
modulate innate and adaptive immunity to promote tumor
survival and growth. A better understanding of this intersection
between cancer cell metabolic reprogramming, oncometabolites,
and immune response across different cancer types is essential
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to overcoming immune escape and increasing the efficacy of
immunotherapeutic intervention (83).

CONCLUSIONS

Metabolic alterations in cancer are not only a consequence
of oncogenic mutation or of evolution through nutrient
limitations. Rather, there is a complex interplay of metabolic
precursors and by-products between a cancer cell and its
surrounding environment. Recent advances highlight that these
metabolic shifts modulate not only tumor growth but the
host immune and microenvironmental response. Given the
profound effect of these pathways in lung cancer, these

pathways hold tremendous potential for biomarker development
and intervention.
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