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Abstract: Nanomaterials have been commonly employed to enhance the performance of polymeric
membrane materials that are used in several industrial applications. Carbon nanotubes (CNTs) have
gained notable attention over the years for use in membrane technology due to their anti-biofouling
properties, salt rejection capability, exceptional electrical conductivity, and mechanical properties.
This paper aims to discuss some of the recent applications of CNTs in membrane technology and
their effect on a larger scale. The paper reviews successful case studies of incorporation of CNTs in
membranes and their impact on water purification, desalination, gas separations, and energy storage,
in an effort to provide a better understanding of their capabilities. Regarding the future trends of this
technology, this review emphasizes improving the large-scale production processes and addressing
environmental and health-related hazards of CNTs during production and usage.

Keywords: carbon nanotubes; vertically aligned carbon nanotubes; nanocomposite membranes;
water purification; desalination; gas separations; energy storage; nanostructured carbon

1. Introduction

In recent years, innovation inspired by nature has become a huge part of our lives.
The skillful manipulation of different materials at the scale of 1–100 nanometers is proven
to be the solution to many long-lasting problems where membranes are employed, such
as water filtration and gas separations. Nanostructured carbon materials are gaining
popularity every day because of their unique atomic structure and outstanding physical
and mechanical properties (e.g., thermal conductivity, tensile strength, porous structure).
Nanostructured carbon includes various carbon nanofibers, carbon nanotubes (CNTs),
fullerene, and graphene. Among these, carbon nanotubes are composed of cylindrical
graphite sheets rolled up in a cylindrical structure. They are characterized by exceptional
mechanical properties and high surface area that renders them an ideal candidate material
to separate and filter out unwanted nanoparticles and contaminants [1,2].

Although the development of “artificial” membrane technology started around the
1960s, it did not gain popularity until a few decades ago when defined regulations and
demonstration of cost-effective separation capability helped it to become mainstream [3,4].
Membrane technology is nowadays heavily used in the field of water filtration [5–9], air
purification [10–12], and energy storage [13,14]. Over the years, researchers focused on
polymer, inorganic, and hybrid mixed-material-based membranes [15–17]. Polymeric
membranes are known for their tensile strength, high separation rates, and low production
cost, and they are mostly utilized in gas and liquid separations [15,18]. Nevertheless,
the lack of uniform pore distribution makes them inefficient in environments where the
volume of liquid/gas to be filtered cannot be easily controlled and the targeted removal of
contaminants may not be attained [19]. Consistent narrow pores achieved in membranes
with carbon nanotubes address this issue and render the filtration process more controllable
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in terms of removal of specifically sized particles [15,20,21]. However, the production cost
of CNTs and nanostructured carbon is relatively high, making them unattractive to big
investors and industrial end users [21]. Therefore, this study reviewed the research studies
that have been implemented to demonstrate the added technological value of CNT-based
membranes for the aforementioned applications, which can act as an indirect tool toward
the reduction of the production cost.

Recent studies have investigated carbon nanotubes for improving stability and de-
creasing the cost of production because of their interconnected pore structure, large surface
area, and higher mechanical stability. In addition, the thermal stability and controllable
pore diameter of carbon nanotubes facilitate their utilization in different separation meth-
ods [6,22].

Although in the beginning, the CNTs were developed as an additive to improve the
mechanical strength, permeability, and resistance of polymeric membranes; however, due
to their exceptional properties, researchers experimented with their potential in water
purification such as desalination, wastewater treatment, and pollutant filtration [3,16,23].
Their usage in areas such as gas separations and energy storage is somewhat a new ap-
proach. The strong association of CNTs with membrane technology is due to the unique
design of CNTs that can tailor the size of the membrane pores, thus allowing size-exclusion
separation, as well as the hydrophobic nature of carbon nanotubes that can facilitate the
fast transport of polar water molecules.

2. Types of CNT-Based Membranes

Currently, there are two types of nanotube membranes available in the market: (i) ver-
tically aligned carbon nanotube (VA-CNT) membranes and (ii) mixed-matrix carbon nan-
otube (MM-CNT) membranes [24].

(i) Pure-CNT membranes: VA-CNT membranes have been investigated since 1998 when
Che et al. designed a cylinder with a diameter of 20 nm by aligning carbon nanotubes
vertically using the chemical vapor deposition method (CVD) [13]. A VA-CNT membrane
consists of unique microstructured cylindrical pores, which force fluids to pass through
hollow CNT walls or CNT bundles; their consistent isoporous structure enables them to
be utilized in numerous filtration processes [25–27]. Buckypaper CNTs have been also
investigated by researchers because of their simple fabrication process. These membranes
are synthesized from CNT powders (pristine carbon nanotubes); however, their mechanical
performance is not compelling due to the random dispersion of CNTs in the membranes.
The use of proper polymer binder on CNT surface (functionalization) can significantly
enhance their performance due to the resulting uniform dispersion of carbon nanotubes in
the membrane matrix [28–30].

Although CVD is the most common way to synthesize VA-CNT (Figure 1), some
studies suggest using a plasma-enhanced CVD (PECVD) process to design a highly ordered
vertical structure by manipulating the high electrical polarizability caused by the external
electric field in the PECVD chamber. This method can produce nanotubes ranging from
a diameter of 100 to 1 nm, and the controllability of the pore size makes it an excellent
candidate for membrane distillation [25,31]. The frictionless wall of the highly porous
structures of VA-CNT membranes leads to a larger flow of liquid due to the slippage effect;
however, when pore density is less than (6 ± 3) × 1010 cm−2, the fluid transport decreases
dramatically [32].
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Figure 1. Synthesis process of VA-CNT.CVD is initially employed for the synthesis of VA-CNTs on 
a silicon (Si) wafer pre-coated with metal catalytic particles. Subsequently, gap infiltration takes 
place with polymers (e.g., epoxy or polystyrene) under vacuum. The substrate is then removed by 
etching, and finally, a tip opening is carried out by mechanical polishing, ion etching, or plasma 
etching [25]. 

(ii) Mixed-Matrix CNT (MM-CNT) membranes: MM-CNT membranes are heterogene-
ous structures that consist of several layers of inorganic fillers in a random order in a pol-
ymeric matrix (Figure 2) [33,34]. These membranes were first designed in 2006 by blend-
ing multi-wall CNTs (MWCNTs) with poly (sulfone) (PSF) to improve the functionality 
of ultrafiltration membranes by Choi et al. [35,36]. 

 
Figure 2. Major shortcomings of conventional purification systems (Reproduced with 
permission from Elsevier; adapted from Das et al, 2014 [23]). 

The tubular structure and frictionless capacity of these membranes reduce energy 
consumption and induce the formation of differently sized pores which are sensitive (se-
lective or not, depending on the application) to pollutants and salt [37–39]. A general com-
parison between the VA-CNT membranes and the MM-CNT membranes is shown in Ta-
ble 1. 

Figure 1. Synthesis process of VA-CNT.CVD is initially employed for the synthesis of VA-CNTs on a
silicon (Si) wafer pre-coated with metal catalytic particles. Subsequently, gap infiltration takes place
with polymers (e.g., epoxy or polystyrene) under vacuum. The substrate is then removed by etching,
and finally, a tip opening is carried out by mechanical polishing, ion etching, or plasma etching [25].

(ii) Mixed-Matrix CNT (MM-CNT) membranes: MM-CNT membranes are heterogeneous
structures that consist of several layers of inorganic fillers in a random order in a polymeric
matrix (Figure 2) [33,34]. These membranes were first designed in 2006 by blending
multi-wall CNTs (MWCNTs) with poly (sulfone) (PSF) to improve the functionality of
ultrafiltration membranes by Choi et al. [35,36].
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Figure 2. Major shortcomings of conventional purification systems (Reproduced with permission
from Elsevier; adapted from Das et al., 2014 [23]).

The tubular structure and frictionless capacity of these membranes reduce energy
consumption and induce the formation of differently sized pores which are sensitive
(selective or not, depending on the application) to pollutants and salt [37–39]. A general
comparison between the VA-CNT membranes and the MM-CNT membranes is shown in
Table 1.
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Table 1. Difference between VA-CNT and MM-CNT [38].

Pure CNT (VA-CNT) Mixed-Matrix CNT Membrane

Vertical CNT arrangement Mixed CNT arrangement
Compact CNT network CNT network loosely fit

The water flux rate is high Water flux rate is moderately high
Complicated fabrication Simple fabrication

3. Detailed Applications of CNT Membranes
3.1. CNT Membranes in Water Purification

Clean water might be easily available to many parts of the world, but it constitutes a
luxury to most parts of Africa, Asia, and some parts of Europe. According to the World
Health Organization, approximately 2 billion people consume contaminated water, and by
2025, half of the world’s population will live in water-stressed areas [40]. In recent years,
water pollution due to heavy metal ions, such as lead and zinc, has raised concerns in
industrial areas [41–43]. The traditional lack of clean water supplies, the emerging concerns
about micro/nano-pollutants, and climate change also jeopardize the availability of clean
water for households, agriculture, and industrial sectors [23].

Figure 2 presents the current drawbacks encountered in various water purification sys-
tems that need to be overcome with more sophisticated methodologies. A study conducted
by Baek et al. proposed the use of VA-CNT membranes for water purification, claiming a
three times higher water flux than the traditional UF membranes and 70,000 times higher
water transportation than conventional no-slip flow systems [44]. During the investigation
of Baek et al., the VA-CNT membrane was synthesized using Fe as a catalyst through a
water-assisted thermal CVD onto a Si wafer, which had an effective area of 0.1 cm2. The
proposed design had a smaller pore diameter of 4.8 ± 0.9 nm compared to “traditional”
ultrafiltration (UF) membrane pores of 5.7 ± 2.5 nm (Table 2). The proposed design also
exhibited a more hydrophobic surface, as can be concluded from the contact angle values
in Table 2. Although the weaker tensile strength and Young’s modulus might render the
VA-CNT membrane mechanically inferior to UF membranes, the latter can operate only at
pressures under 2.8 MPa. Hence, the proposed design of CNT membranes can be used as a
substitute for UF membranes [44].

Table 2. Comparison between VA-CNT-based membrane and UF membrane (Reproduced with
permission from Elsevier; adapted from Baek et al., 2014 [44]).

VA-CNT Membrane UF Membrane

Material CNT + epoxy Polysulfone
Avg. pore diameter 4.8 ± 0.9 5.7 ± 2.5

Pore density (#/cm2) 6.8 × 1010 8.8 × 1010

Thickness (µm) ∼200 ∼0.1

One of the major testing criteria of this study was the anti-biofouling tendency of CNT-
membranes. The researchers used Pseudomonas aeruginosa PAO1 GFP as a bacterial strain
with a concentration of 1 × 107 CFU/mL (CFU: colony-forming unit), and the membrane
was conditioned using 10 mM NaCl, 10 mM sodium citrate, and 0.1% tryptic soy broth. The
VA-CNT membrane faced a less severe decrease in permeate flux and a smaller bacteria
concentration (4 × 105 CFU/mL as opposed to 8 × 107 CFU/mL in UF membranes),
which is most likely caused by the physical damage or oxidative stress from the CNT
membrane surface (Table 2) [44]. The same conclusion on the bacteria accumulation by
the two membrane types can be also derived from Figure 3, which shows smaller bacteria
concentration attached on the VA-CNT membrane.
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Figure 3. Confocal laser scanning microscopy (CLSM) images after biofouling occurrence: (a) VA-
CNT membrane vs. (b) UF membrane (green: live cells) (Reproduced with permission from Elsevier;
adapted from Baek et al., 2014 [44]).

Another study conducted by Kang et al. confirmed that the size of the diameter has an
effect on the antibacterial effect of the membranes; single-wall carbon nanotube (SWCNT)
membranes are more toxic to the bacteria than multi-wall carbon nanotube (MWCNT)
membranes [45]. Other studies also claim that the presence of reactive oxygen also affects
the cytotoxicity of the CNT membranes positively [46,47], that is, it reduces their toxicity.

A study conducted by Tiraferri et al. studied the antimicrobial properties of SWCNT
membranes, which can be used in water purification [48]. In this study, the researchers
covalently bonded the cytotoxic SWCNT to the surface of polyamide membranes to induce
anti-microbial activities. The thin-film composite (TFC) polyamide membrane was devel-
oped using interfacial polymerization of polyamide onto commercial polysulfone (PSF)
ultrafiltration membranes (PS20), and the CNT was treated with ozone (O3). Many studies
have shown that ozonolysis decreased particle size and induced defects in nanotube walls
that facilitate carboxylic functionalization and dispersion in water [49,50]. When the E. coli
K12 was introduced to the CNT membranes, the ozonized CNT membrane showcased a
significant reduction in bacteria’s survival rate (>95%), as can be seen in Figure 4 [48].

Figure 4B confirms that microbial concentration in SWCNT membranes was signifi-
cantly lower (~44%) than the control membrane. Comparing Figure 4A,B, it can be said
that most of the bacteria in the control membrane appeared to be healthier than the bacteria
in the SWCNT-functionalized membrane, which further proves the cytotoxicity of SWCNT-
functionalized membranes that is most likely caused by the homogeneous distribution of
SWCNTs. Another major concern related to functionalization is if it leads to a decrease in
the permeability coefficient; however, the study confirmed that there was no significant
change in the purification rate compared to the control group [48].
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properties of the membrane. The proposed design was able to reduce bacterial density by 
91.5% within a short span of time, and the toxicity level was minimal [52]. 

  

Figure 4. SEM micrographs displaying E. coli at the surface (A) control membrane and (C) an
SWCNT-functionalized membrane at the end of the cytotoxicity test (some cells with lost integrity
are highlighted in orange). (D) Magnified view of the surface of SWCNT-TFC membrane with E.
coli cells [45]. (B) Colony-forming units (area units are in µm2) enumerated from E. coli bacteria
resuspended from functionalized SWCNT-TFC membranes (red) normalized with those of control
membranes (shaded). The tests involved incubation of bacterial suspension in contact with the
membrane surface for 1 h in 0.9% NaCl at room temperature (23 ◦C). Bars with standard deviation
represent the average of three separately cast and reacted membranes (Reproduced with permission
from ACS Publications; adapted from Tiraferri et al., 2011 [48]).

Another study conducted by Rajavel et al. focused on the effectiveness of single-wall,
multi-wall, and antioxidant tannic acid (TA) functionalized CNTs for use in membranes to
reduce bacterial viability [46]. The study found that all the CNT types exhibited remarkable
cytotoxic activity against all the tested bacterial pathogens maintained in the minimal
medium, as observed in Figure 5 (agar medium was used as a control). This work also
confirmed that membranes become toxic in the presence of UV light, and there is a signifi-
cant drop in cytotoxicity in the dark. The study also found a strong correlation between
the presence of oxygen species and the increase in anti-biofouling activities [46]. A study
conducted by Wang et al. concluded that functionalized CNTs (f-CNTs) mixed with hybrid
polyethersulfone (PES) achieved an antibacterial rate close to 100% through damaging the
cell of bacteria (E. coli) using two reduced oxygen atoms from the hybrid membrane and
forming hydrogen peroxide [51]. Another study proposed the use of polyethylene glycol
(PEG) with CNTs to reduce cytotoxicity without lowering the antibacterial properties of the
membrane. The proposed design was able to reduce bacterial density by 91.5% within a
short span of time, and the toxicity level was minimal [52].
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Figure 5. Growth curve measurements of (a) E. coli, (b) S. sonnei, (c) K. pneumoniae, and
(d) P. aeruginosa in minimal broth showing antibacterial effects of SWCNTs/MWCNTs (90 µg/mL)
and their amelioration on the antioxidant (TA)-coated CNTs (90 µg/mL) as compared with the control
sample. The cell density of various bacterial species used in the treatments ranged between 1 and
1.6 × 107 CFU/mL (Reproduced with permission from ACS Publications; adapted from Rajavel et al.,
2014 [46]).

Another application of CNTs in water purification lies in the utilization of the physico-
chemical properties of CNT membranes to remove toxic heavy metals, refractory contami-
nants, and radioactive particles from water, thus reducing environmental pollution caused
by these particles. The existing membrane technologies are unable to reject dissolved or-
ganic pollutants that have lower molecular weights (<100 Da) [53]. Several research studies
have shown that CNTs are the feasible, cost-effective, and efficient choice for electroactive
membrane technology [54–56].

Most research conducted on heavy metal removal concentrates on iron, zinc, man-
ganese, and arsenic removal. However, there are not many technologies available to
address the growing concern with antimony (Sb) removal. A recent study conducted by
Liu et al. utilized the TiO2-CNT membrane to remove Sb(III) and transform it into less toxic
Sb(V). The study found that the electric field created by the CNT membranes accelerates
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the SB(III) conversion process, and the proposed system operated at an efficiency greater
than 90%. The proposed design also addresses the exhaustion of membrane after multiple
usages; however, this design can be easily regenerated and maintain efficiency using NaOH
solution [57]. In this study, multi-walled CNTs were modified using TiO2 through a simple
electrosorption-hydrothermal process. They tested the proposed design in a practical
setting where the researchers spiked tap water with Sb(III) and applied voltage of 2 V, and
the recorded removal efficiency was lower than the rate found during laboratory exper-
iments. However, this process was more energy-efficient (0.01 kwh/m3), and consistent
regeneration rendered the technology noteworthy [57].

Another recent study explored the use of CNTs in removing chromium—Cr(VI)—
particles from wastewater and converting them into Cr(III), under the application of
electric field, thus reducing the toxicity level [58]. The proposed design by Liu et al. utilizes
nanoscale polyaniline (PANI)-functionalized CNTs that are able to increase the efficiency up
to 70% at a voltage of 2.5 V, which is significantly higher than current existing technologies.
The improvement is most likely due to the exceptional electrical conductivity, increased
available active sites, and smaller pore size of CNTs [58].

The amine and imine moieties of PANI help to reduce Cr(VI) to Cr(III), which is a less
toxic particle. This reduction in the presence of PANI was found to be effective in an acidic
environment (PH 1–3), but to further remove Cr(III) efficiently from wastewater with PANI,
a basic environment is required. Because of this shortcoming, the researchers were not able
to attain the desired outcome of Cr(III) removal [58]. However, other studies argued that
it is cost-effective to enhance the Cr(VI) conversion process to Cr (III) and subsequently
utilize PANI-based composites, such as in polystyrene (PS), to remove Cr(III) since it is less
harmful than Cr(VI) [59,60]. Since positively charged bulky PANI, if used on its own, repels
electrostatically positive Cr(III), PANI-PS composites were found to efficiently sequester
positive Cr(III) due to the negative surface created in the PANI by confinement effects in
the nanopores of PS [60].

All of the aforementioned studies solidify the potential of CNT-based membranes in
water purification and showcase their ability to address the issue associated with current
membrane technology by reducing bacterial growth, increasing water flux, and removing
heavy metal ions from water in a cost-effective and efficient manner.

3.2. CNT Membranes in Desalination Technology

Over the years, the urge to desalinate and remove micro/nano-pollutants in cost-
effective ways has been one of the major challenges that membrane scientists faced. Tradi-
tional microfiltration (MF) and ultrafiltration (UF) membranes (e.g., polyethersulfone (PES),
polysulfone (PSF), and polyvinylidene fluoride (PVDF)) cannot filter out nano-pollutants
because of larger pore size, resulting in only a 20–50% natural organic matter rejection rate.
Membranes such as polyamide (PA) and cellulose acetate (CA), which are used for desalina-
tion, are vulnerable to degradation in the presence of chlorine and need energy-consuming
pre-treatment for them to function [61,62].

A study conducted by Trivedi et al. investigated the potential of VA-CNT membranes
in desalination technology and found that they increased the salt rejection rate to a great
extent [63]. In this study, vertically aligned carbon nanotubes with a density of 5 × 109,
1 × 1010, 5 × 1010, and 1 × 1011 cm−2 were employed, which were grown on a Si wafer
that was subsequently coated with 50% (w/w) poly (dimethylsiloxane) (PDMS) and then
sliced and developed into a VA-CNT membrane (Figure 6).
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The study compared the maximum fluxes induced by these membranes and found
that the membrane with the highest density has the maximum flux of 1203 LMH (liters per
square meter per hour). From these data, it can be concluded that increasing density helps
to attain a higher flow rate and enhanced anti-biofouling properties without damaging the
salt rejection properties [63]. The antifouling properties of CNT-based PDMS were also
verified by Cavas et al. [64]. According to Trivedi et al. [63], the two main reasons behind
salt rejections are (i) the inner diameter of CNTs and (ii) the surface charge of the membrane.
The PDMS is negatively charged; hence, the Na+ ions get trapped by the surface, reducing
the salt concentration. This method showcased an incredible result of approximately 96%
salt rejection by all of the membranes studied (Figure 7). This finding is also enhanced
by the fact that the process of the CNT-based membrane fabrication in this study can be
scaled up in a relatively straightforward manner as the spin coating and methods related
to silicon processing have been established in the industry to a great extent for various
applications [65].
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Density is given in number of nanotubes/cm2.
Another study conducted by Thomas et al. also found similar results and determined

that a carbon nanotube with a diameter of 1.1 nm is best suitable for desalination technol-
ogy [66]. To achieve the most “realistic” simulation environment, the researchers used a
one-way barrier (semi-permeable membrane) that blocks the passage of certain ions from
the saltwater reservoir to the freshwater reservoir. This study used pressure ranging from
5 MPa to 400 MPa to investigate its effect on the CNT membranes. It was observed that
as the pressure decreased, the salt rejection rate increased. The CNT membrane with a
diameter of 1.09 nm rejected nearly all Cl− and 90% of Na+, the membrane with a diameter
of 1.36 nm rejected about 90% of Cl− and 60% of Na+, and the membrane with a diameter of
1.63 nm rejected 50–80% of Cl− and 20–40% of Na+. The Na+ rejection rate is lower due to
its smaller ion size (radius = 98 pm), whereas the Cl− is a relatively bigger ion with a radius
of 181 pm. However, the study claimed that the charge separation across the membrane
would equalize the permeability of each ion type, yielding the same rejection rate for both
ions [64]. It can be also concluded that the decrease in the diameter of the employed CNTs
leads to an increase in the salt rejection rate.

Another study conducted by Li et al. explored the potential of utilizing a VA-CNT
membrane as a support layer for reverse osmosis (RO) membranes [67]. To densify the
VA-CNT, the interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl
chloride (TMC) synthesized a polyamide (PA) layer on the surface of VA-CNT. The outer
wall of the porous VA-CNT membrane was filled with 3 wt% MPD and 0.15 wt% of
TMC. When the surface’s thickness increased by coating with larger amounts of PA, the
water flux rate experienced a sharp decrease from 875.8 ± 150.3 LMH to 58.9 ± 6.2 LMH
(Figure 8); however, the salt rejection rate increased from 94.9% to 98.8% [48]. Another
study conducted by Corry et al. reported similar results. It stated that functionalized
CNTs reduce water flux; however, the salt rejection is significantly improved because of
the electrostatic repulsion. The NH3

+ and COO− functional groups make the pores highly
charged and attract the sodium (Na) and chlorine (Cl) ions, improving the salt rejection
rate by up to 95% [68].
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Figure 8. Performance of the PA/outer-wall membrane. (a) Water flux and NaCl rejection as a function
of the number of PA formation cycles on outer-wall VA-CNT support membrane, (b) Thickness of
PA layer on outer-wall VACNTs support membrane as a function of number of PA formation cycles
(Reproduced with permission from Elsevier; adapted from Li et al., 2019 [67]).The most widely used
RO membrane has a rejection rate of 98.4% and has a water permeability of 0.4–3.2 LMH·bar−1,
whereas the proposed VA-CNT-based membrane showcases a permeability of 4.7 ± 0.7 LMH·bar−1,
which is most likely caused by the weak interfacial force of water molecule and hydrophobic CNT
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walls [69]. The smoother outer wall of the VA-CNT-based membrane showcases a high flux rate due
to reduced friction [66]. Most of the previous studies tried to improve the characteristics of the PA
layer to enhance the properties of the RO membranes; however, this approach of adding CNTs as a
support layer showcases an exceptional alternative for improving the RO membrane’s performance.

3.3. CNT Membranes for Energy Storage

In recent years, there has been an uproar about switching to greener energy sources,
and hence, the attempt to increase the efficiency of hydrogen-powered fuel cells has been a
major topic of discussion. Among all the potential conductors, Nafion, a sulfonated fluo-
ropolymer, has gained the attention of researchers because of its ability as a mechanically
and thermally stable proton-conducting membrane in fuel cells [70].

A recent study conducted by Tortello et al. proposed the use of VA-CNT to promote the
stability of Nafion membranes, when compared to those prepared with randomly oriented
CNTs [70]. The incorporation of CNT is easy to obtain in the polymeric matrix without
causing any disturbance to the existing properties while achieving improved mechanical
and thermal stability. After many trials, the researchers concluded that VA-CNT columns
of 500 µm in diameter, spaced by 500 µm of pure Nafion, with ∼100 µm height, is the
optimal configuration for proton transportation. The incorporation of CNTs also increases
the hydrophobicity of a surface [70,71]. Protonic and electronic transport properties were
investigated in ambient and wet conditions (Table 3). When membranes are hydrated,
electronic conductivity decreases while the protonic one is considerably enhanced. Protonic
conductivity in ambient (dry) conditions is equal to that previously reported for randomly
oriented Nafion/CNT membranes, whereas in wet conditions, it exhibited a significantly
improved performance. Proton conductivity increased in the wet conditions due to the
mass formation of proton-conducting pathways (water channels) along carbon nanotubes.

Table 3. Proton and electron conductivities obtained under different conditions for Nafion/CNT
nanocomposites vs. vertically aligned-CNT/Nafion membranes (Reproduced with permission from
Elsevier; adapted from Tortello et al., 2012 [70]).

Electron
Conductivity by

EIS (mS/cm)

Electron
Conductivity by

EIS (Wet
Condition)

Proton
Conductivity by

EIS (mS/cm)

Proton
Conductivity by

EIS (Wet
Condition)

Nafion/CNTS
nanocomposite,

CNTs 5 wt%
0.364 0.197 2 5.1

VACNTs/Nafion,
CNT 7 wt% 0.568 0.315 2 8.9

Another study investigated by Pilgrim et al. also showcased that VA-CNT membranes
filled with epoxy are optimal for electron and proton transport and are characterized by
chemical robustness, which can be utilized in artificial photosynthesis applications [72].
The proposed VA-CNT was grown on a crystalline silicon substrate in a 2.5 cm diameter
single opening via CVD and had a height of 100–150 µm, an outer diameter of 15–20 nm,
and an inner diameter of 5–10 nm. Epoxy was chosen as filler of the array, considering
its rigidity, low cost, and antioxidant nature. This design led to twenty (20) times higher
conductivity than the previous Si-Nafion-based membrane used for the specific application;
this improvement is most likely caused by the reduced non-conductive space. The mem-
brane exhibited a conductivity of 495 mS cm−1, and it transported a current equivalent of
5.84 × 10−6 A [72].
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3.4. CNT Membranes for Gas Separations

Many water and gas purification techniques, such as membrane distillation and
CO2 sequestration, rely on membranes. Consequently, the development of advanced
membrane technologies with controlled pore architectures is essential for the attainment of
an effective and cost-efficient purification. Membrane-based gas-separation technology has
rapidly become a competitive alternative owing to its advantages of efficiency, low-energy
consumption, and ease of operation compared with traditional gas-separation methods
such as solvent absorption, cryogenic distillation, and adsorption [73–75]. Polymeric
membranes are well known to suffer from a tradeoff between selectivity and permeability
and, in some cases, exhibit low chemical resistance or are prone to fouling. Membranes
based on carbon nanotubes offer a possible route to overcome these shortcomings [76–78].
This type of membrane has been utilized for the study of carbon dioxide capture from
natural gas and flue gas, as this constitutes a critical issue due to the global warming in
recent years.

A recent study on mixed-matrix (MM) membranes for CO2 separation was conducted
by Zhang et al. and utilized multi-wall carbon nanotubes coated with N-isopropylacrylamide
hydrogel (NIPAM-CNT) that were subsequently incorporated into a poly (ether-blockamide)
matrix (Pebax MH 1657) [79]. The NIPAM-CNT composite additives demonstrated a uni-
form dispersion in the polymeric matrix. The obtained MM membranes enhanced CO2
permeability and selectivity in CO2-CH4 and CO2-N2 gaseous mixtures, as compared
with other MM membranes utilized for this application in the past, such as pure CNT-
polyimide membranes. Remarkably, MMM containing 5 wt% NIPAM-CNT increased
CO2 permeability and selectivity by 35% and 11%, respectively, compared with the pure
polymeric membrane [79]. The results of this study show that the composite additive with
fast-transport nanochannels (CNT) and super water hydroscopicity (NIPAM hydrogel) is
indeed an effective strategy to improve CO2-separation performance of MM membranes.

Khan et al. fabricated MM or MMM with MWCNTs as fillers and polymer of intrinsic
microporosity (PIM) as matrix [80]. PIMs are microporous materials that are characterized
by a very large volume of inter-connected pores. Since their development in 2004, PIMs
have attracted a lot of attention as gas-separation membranes, sensors, or highly efficient
adsorbents for organic vapors [81]. Both pristine MWCNTs and MWCNTs functionalized
with poly (ethylene glycol) were utilized. Scanning electron microscopy revealed that the
functionalized MWCNTs were well dispersed throughout the PIM-1 matrix compared to
the one fabricated from pristine MWCNTs. With good interfacial adhesion between the
polymer matrix and the functionalized MWCNT fillers, the MM membranes exhibited
higher permeabilities by 80.68% for O2 and 53.5% for CO2, as compared to the pure polymer
membrane, and for a filler content between 0.5 and 2 wt%. The MM membranes were also
characterized by increased O2/N2 and CO2/N2 selectivities, more specifically by 28.7%
and 18.8%, respectively. Above the content of 2 wt%, agglomeration of functionalized
MWCNTs in the polymer matrix was observed, which hindered the fast transport of gases.
Single-wall carbon nanotubes have been also investigated as filler in MM membranes for
gas separations [81].

Zhang et al. showed that permeabilities of oxygen, carbon dioxide, and hydrogen
through SWCNT-MM membranes showed a nonlinear trend with increasing filler loadings,
which was due to the competition between impeded gas diffusion by the carbon walls
and increased gas transport through the inner structure of carbon nanotubes [82]. Signif-
icant improvement in the selectivity of different gases was observed in the membranes
containing SWCNTs that were purified from metal catalytic particles and functionalized
with carboxyl groups (COOH) through acid treatment. A polyimide membrane with 2 wt%
COOH-SWCNTs exhibited both high permeabilities and selectivities, compared to the pure
polyimide membrane, locating the performance above the 1991 Robeson’s upper bound
for CO2/CH4, O2/N2, and H2/CH4 [83]. The remarkably improved performance was
attributed to the high purity of the modified carbon nanotubes, the CNTs’ open end caps
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that were facilitated by the acid treatment and allowed for gas molecules to pass through,
and the CNT functionalized surface that improved the solubility selectivity.

4. Challenges and Future of CNT-Based Membranes

Until now, one of the major challenges in this field remains the commercialization of
CNT-based membranes and the potential environmental impact. Over the years, researchers
have been trying to find potential applications of CNTs; however, there has not been much
research on the environmental impact of CNTs produced on a large scale. The toxic nature
of carbon nanotubes has been reported in some cases; a low 0.38 µg cm−2 dose of single-wall
CNTs can impair phagocytosis, while 3.06 µg cm−2 of multi-wall CNT can cause serious
injury [84]. The CNTs are also easily contaminated by disordered carbon and aromatic
hydrocarbons, which can be hazardous in big-scale production processes [85]. Pristine
CNTs can be carcinogenic, capable of inducing lung tumors as has been reported [86].
In addition, the production of uniform and homogeneous structures of CNTs is difficult
to achieve on a large scale, and this can pose a threat to commercialization [87]. As a
consequence, the replacement of existing desalination technology by VA-CNT will be only
possible if consistent production of CNTs is feasible, mainly with a small diameter [88,89].
These challenges can be mostly overcome if a biocompatible CNT is designed. As produced
CNTs are insoluble in water, biocompatibility can be achieved by modifying the surface of
CNTs with different water-soluble functional groups, such as carboxyl and hydroxyl [90,91].
Biocompatibility can open the way for the realization of medical applications of CNT-
based polymeric membranes, such as artificial photosynthesis, implants, and bone tissue
regeneration [72,92,93].

Most of the production process of VA-CNT membranes involves the CVD process,
which is economically viable; however, it limits the use of substrates and templates for
VA-CNT fabrication. A recent study proposed the use of fluidized bed CVD as a solution
and claimed that this process increases the production rate and purity of the CNTs while
improving the efficiency of the process [94,95]. The latter is currently used to fabricate
powdered or arrays of CNTs to enable the production of VA-CNT [96].

Kim et al. investigated another way for the large-scale production process; CNT-
based membranes are less flexible than traditional polymeric membranes because of their
frame and plate module configuration [67]. This study suggested filling the space between
nanotubes with flexible materials, such as styrene monomer blended with polystyrene–
polybutadiene copolymer. This process will make the VA-CNTs more flexible, and they can
compete with existing polymeric membranes [96–98].

5. Conclusions

Recent research has proven that CNT-based membrane technologies have a promising
future due to the exceptional properties imparted by nanostructured carbon. However,
complex designs and the feasibility of consistent large-scale production processes remain
the biggest obstacles. Recent studies have focused on addressing these issues and achieving
the ultimate desired outcomes. If the findings are correctly utilized, then processes based
on CNT-based membranes will become more efficient, cost-effective, and environmentally
friendly. Many aspects of the capabilities of CNTs remained unexplored; therefore, there is
a need for researchers across the globe to further investigate methods and applications of
the emerging CNT-based membranes. It is certain that in the near future, CNT-composite
membranes will find their role in water desalination/purification technology and gas
separations, allowing for greater flexibility and a broader perspective in addressing critical
water issues. New commercial applications will be also enabled, such as in the energy field
and biomedicine.
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