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Single-unit responses and population codes differ in the
“read-out” information they provide about high-level
visual representations. Diverging local and global
read-outs can be difficult to reconcile with in vivo
methods. To bridge this gap, we studied the relationship
between single-unit and ensemble codes for identity,
gender, and viewpoint, using a deep convolutional
neural network (DCNN) trained for face recognition.
Analogous to the primate visual system, DCNNs develop
representations that generalize over image variation,
while retaining subject (e.g., gender) and image (e.g.,
viewpoint) information. At the unit level, we measured
the number of single units needed to predict attributes
(identity, gender, viewpoint) and the predictive value of
individual units for each attribute. Identification was
remarkably accurate using random samples of only 3%
of the network’s output units, and all units had
substantial identity-predicting power. Cross-unit
responses were minimally correlated, indicating that
single units code non-redundant identity cues. Gender
and viewpoint classification required large-scale pooling
of units—individual units had weak predictive power. At
the ensemble level, principal component analysis of face
representations showed that identity, gender, and
viewpoint separated into high-dimensional subspaces,
ordered by explained variance. Unit-based directions in
the representational space were compared with the
directions associated with the attributes. Identity,

gender, and viewpoint contributed to all individual unit
responses, undercutting a neural tuning analogy.
Instead, single-unit responses carry superimposed,
distributed codes for face identity, gender, and
viewpoint. This undermines confidence in the
interpretation of neural representations from unit
response profiles for both DCNNs and, by analogy,
high-level vision.

Introduction

The concept of a feature is at the core of
psychological and neural theories of visual perception.
The link between perceptual features and neurons has
been an axiom of visual neuroscience since Lettvin et al.
(1959) first described the receptive fields of ganglion
cells as “bug perceivers.” At low levels of visual
processing, features are well defined and interpretable
(e.g., vertical line, retinal location x). These feature
codes are sparse, because they rely on a small number
of specific neurons (Olshausen & Field, 1997). At
higher levels of visual processing, where retinotopy
gives way to categorical codes, the connection between
receptive fields and features is unclear. “Face-selective”
may describe a neuron’s receptive field, but it provides
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no information about the features used to encode a
face.

A fundamental difference between retinotopic
representations in early visual areas and the categorical
representations that emerge in inferotemporal (IT)
cortex is that the latter generalize across image
variation (e.g., viewpoint). Image-based strategies
analogous to those used in low-level vision were
applied in early face-recognition algorithms (Turk &
Pentland, 1991), which operated well on face images
with limited variation in viewing conditions. Since
2014, deep convolutional neural networks (DCNNs)
have overcome the limit of recognizing faces using
image-based similarity (Sun et al., 2014; Schroff et al.,
2015; Taigman et al., 2014). Similar to face codes
in high-level visual cortex, DCNNs generalize over
substantial image variation. Notably, neural codes for
objects in IT cortex can be simulated using weighted
combinations of DCNN output units, consistent with a
“population doctrine” of neural coding (Eichenbaum,
2018; Saxena & Cunningham, 2019; Yamins et al., 2014;
Yuste, 2015).

The parallels between primate vision and deep
learning networks are by design (Fukushima, 1988;
Krizhevsky et al., 2012). Here, we use a DCNN model
to gain insight into how single-unit and population
codes interface. DCNNs employ computational
strategies similar to those used in the primate visual
system and are trained extensively with real-world
images. Although these networks have made significant
progress on the problem of generalized face recognition,
the face representation they create is poorly understood
(Poggio et al., 2020). Approaches to dissecting this
representation have been aimed at (a) uncovering the
information retained in the descriptor (Hong et al.,
2016; Parde et al., 2017), (b) probing the robustness
of individual unit responses to image variation
(Parde et al., 2017), (c) visualizing the receptive fields
of individual units in the network code (Qin et al.,
2018), and (d) visualizing the similarity structure of a
population of ensemble face representations for images
and identities (Hill et al., 2019). We consider each in
turn.

First, it is now clear that face descriptors from
DCNNs trained to identify faces retain a surprising
amount of information about the original input
image (Parde et al., 2017). Specifically, the output
representation from DCNNs trained for face
identification can be used to predict the viewpoint (yaw
and pitch) and media type (still or video image) of
the input image with high accuracy (O’Toole et al.,
2018; Parde et al., 2017), as well as the illumination
conditions (ambient or spotlight; Hill et al., 2019).
Analogously, for object recognition, Hong et al. (2016)
found that inferotemporal cortex in macaque ventral
visual stream retains information about “categorically
orthogonal” properties of the visual stimulus (e.g.,

pose and size), in addition to information about object
category. Hong et al. (2016) also found that the top layer
of a DCNN trained for object recognition retained this
category-orthogonal information also. Therefore, deep
networks achieve robust face/object identification, not
by filtering out image-based information across layers
of the network but by effectively managing it (DiCarlo
& Cox, 2007; Hong et al., 2016). These findings are
consistent with neuro-computational theory positing
that ventral visual stream processing “untangles”
face identity information from image parameters
over successive layers of neural processing (DiCarlo
& Cox, 2007). This perspective applies also to face
identity processing. Consistent with the disentangling
theory, DCNNs trained for identification produce a
multipurpose representation of a face that can encode a
wide range of functionally useful information (O’Toole
& Castillo, 2021).

Second, given that DCNN descriptors contain image
information, it is possible that the top-layer units
separate identity and image information across different
units of the face descriptor. Parde et al. (2017) tested
this by probing the response properties of the top-layer
units in a DCNN trained for face identification to either
front-facing or three-quarter-view images of faces.
Individual units did not respond consistently in either a
view-specific or view-independent manner.

The third approach is to visualize the response
preferences of units in the network (Qin et al., 2018)
with the goal of translating them into perceptible
images (Erhan et al., 2009; Ponce et al., 2019; Zeiler
et al., 2011). This approach is useful for interpreting
hidden units at lower layers of DCNNs, where unit
activations can be linked to spatial locations within an
input image. At higher levels of the network, however,
unit responses are not bound to image locations and
so image-based visualization may offer limited, and
possibly misleading, insight into the underlying nature
of the code (O’Toole & Castillo, 2021).

The fourth approach is to visualize the similarity
structure of ensembles of DCNN unit activations,
which correspond to the face descriptor codes for
individual images. This reveals a highly organized
face space (O’Toole et al., 2018; Valentine, 1991).
Visualization was applied to face images of multiple
identities that varied systematically in viewpoint and
illumination (Hill et al., 2019). The resulting face space
showed that images clustered by identity, identities
separated into regions of male and female faces,
illumination conditions (ambient vs. spotlight) nested
within identity clusters, and viewpoint (frontal to
profile) nested within illumination conditions. Deep
networks trained with in-the-wild images, therefore,
generate a highly structured representation of identity
and image variation.

These four approaches focus either on single units
or ensembles. Neither provides a complete account of
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how unit responses interact in a representational space
to code information about faces. Here we used a deep
learning network as a model of neural units in high-level
visual cortex to examine the juxtaposition of single-unit
and ensemble codes for face identity, gender, and
viewpoint. At the unit level, we probed the distribution
of face and image information in the network’s
face descriptors. We tested identification, gender
classification, and viewpoint estimation in variably
sized, randomly sampled subspaces of top-layer units
from a DCNN trained for face identification. We then
examined the minimum number of units needed for
each task and the predictive power of individual units.
At the ensemble level, we examined identity, gender, and
viewpoint codes as directions in the representational
space. We performed principal component analysis
(PCA) on the face-descriptor vectors and analyzed
the identity, gender, and viewpoint information coded
by each principal component (PC). Combining neural
units and ensembles, we examined the relationship
between directions in the representational space
defined by units and those defined by identity, gender,
and viewpoint. We show that identity and image
information commingle in individual unit responses but
separate in the ensemble space. This challenges classical
tuning analogies for neural units at high levels of visual
processing (Hasson et al., 2020).

Method

Network

All data reported in the main text of the article are
from a 101-layered face-identification DCNN based on
a ResNet-101 architecture (He et al., 2016; Ranjan et al.,
2017). This network performs with high accuracy across
changes in viewpoint, illumination, and expression (cf.
performance on IARPA Janus Benchmark-C [IJB-C];
Maze et al., 2018). Specifically, the network is based
on the ResNet-101 (Wen et al., 2016) architecture. It
was trained with the Universe dataset (Bansal et al.,
2017a; Ranjan et al., 2018), which comprises three
smaller datasets (UMDFaces: Bansal et al., 2017b;
UMDVideos: Bansal et al., 2017a; MS-Celeb-1M: Guo
et al., 2016) and includes 5,714,444 images of 58,020
identities. The network employs Crystal Loss (L2
Softmax) for training (Ranjan et al., 2018). Crystal Loss
scale factor α was set to 50. ResNet-101 employs skip
connections to retain the strength of the error signal
over its 101-layer architecture (He et al., 2016). Once
the training is complete, the final layer of the network is
removed and the penultimate layer (512 units) is used
as the identity descriptor. To test whether the results
generalize across variation in network architecture, we
performed a full replication of the reported results

using an alternative face-identification network with a
different architecture (Ranjan et al., 2018; Xie et al.,
2017) (see Supplementary Section S1).

Face images

The test set consisted of images from the IJB-C
dataset, which contains 3,531 subjects portrayed in
31,334 still images (10,040 non face images) and frames
from 11,779 videos. For the present experiments, we
used all still images in which our network could detect
at least one face and for which viewpoint information
was available. In total, we selected 22,248 (9,592 female;
12,656 male) face images of 3,531 (1,503 female; 2,028
male) identities. In images that contained multiple
detectable faces, the image was segmented, and each
face was considered independently.

Procedure

DCNN-generated representations of face images
were obtained by processing the images through the
DCNN to produce a 512-dimensional vector of unit
activations at the penultimate layer of the network.
This was considered the full-dimensional DCNN
representation. The distribution of identity, gender,
and viewpoint was examined across units in randomly
sampled subspaces of varying dimensionalities (512,
256, 128, 64, 32, 16, 8, 4, and 2 units). For each
dimensionality, 50 random samples were selected.
In the following, we describe how identification and
classification were tested for each face-image attribute
in each of the sampled subspaces.

Identification

The DCNN was tested on its ability to determine if
a pair of images showed the same identity or different
identities. Same- and different-identity image pairs
were created as follows. We worked with the available
face images in two sets. This was done to avoid an
exponential number of simulations as we randomly
sampled varying numbers of units and computed
identification accuracy for 50 random samples of each.
Therefore, images were sampled from the test dataset
and assigned randomly to Set A or Set B. Each set (A
and B) contained 5,562 images of over 3,000 identities.
No images were repeated, and there was substantial
overlap of the identities across each set (2,729 identities
appeared in both sets). Image pairs were then formed
by comparing every image in Set A to every image in
Set B, for a total of 30,935,844 image comparisons.
Next, face-image descriptors were generated for all
images in Sets A and B by processing the images
through the DCNN. Similarity scores were computed
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for each image pair by measuring the cosine similarity
of the DCNN-generated face-image descriptors.
The similarity scores for same- and different-identity
image pairs were used to compute a receiver operating
characteristic (ROC) curve, and the area under the
ROC (AUC) was used as a measure of accuracy.

Classification

Gender
Linear discriminant analysis (LDA) was used to

classify face gender for each image in the dataset
from the DCNN-generated representation. For each
subspace simulation, an LDA was trained using the
DCNN-generated representations of all images of
3,231 identities and was tested on a set of 300 held-out
identities. This process was repeated, holding out a
different set of 300 identities until all images were
classified. Gender labels for each identity were verified
by human raters. The final output values from the
classifier were categorical gender predictions that were
compared directly to the human-verified gender labels.

Viewpoint
Viewpoint was predicted using linear regression.

Regression models were computed using the Moore–
Penrose pseudo-inverse. We chose a linear model,
rather than fitting a U-shaped function, because the
DCNN we used (Ranjan et al., 2018) processed each
face image twice, once in the original form and once
after performing a symmetrical left–right flip (i.e., over
the y-axis). The two face descriptors were then averaged
together to form the face representation we analyze.1
Therefore, viewpoint is functionally defined in terms of
absolute value, from 0 to 113 degrees.

For each subspace simulation, a regression model
was trained using the DCNN-generated representations
of all images of 3,231 identities and tested on the
remaining 300 identities. This process was repeated,
each time reserving a different set of 300 identities,
until viewpoint predictions had been assigned to each
image representation. Ground truth for viewpoint
was produced by the Hyperface system (Chen et al.,
2016) and was defined as the absolute value of the
deviation from a frontal pose, measured in degrees yaw
(i.e., 0 = frontal, 90 = profile). Output predictions
were continuous values corresponding to the predicted
viewpoint in degrees yaw.

Permutations
Permutation tests were used to evaluate the statistical

significance of the viewpoint and gender predictions.
A null distribution was generated from the original
data by randomly permuting values within each unit.

Predictions made from the resulting permutations
(n = 1,000) were compared to the true values from each
classification test. All permutation tests were significant
at p < 0.001, with no overlap between test value and
null distribution.

Results

Unit-level analysis

Face identity
Identification accuracy proved robust in

low-dimensional subspaces. Figure 1A shows
face-identification accuracy as a function of the
number of randomly selected units sampled from the
face representation. Accuracy is near perfect in the
full-dimensional space. A substantial number of units
can be deleted with almost no effect on the identification

Figure 1. (A) Identification accuracy is plotted as a function of
subspace dimensionality, measured as area under the ROC
curve (AUC). Performance is nearly perfect (AUC ≈1.0) with the
full 512-dimensional descriptor and shows negligible declines
until subspace dimensionality reaches 16 units. Performance
with as few as two units remains above chance. (B) Correlation
histogram for unit responses across images indicates that units
capture non redundant information for identification.
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Figure 2. Effect sizes for units (A) and principal components (B) for identity, gender, and viewpoint. For both units and principal
components, top panels illustrate the dominance of identity over gender and viewpoint. Lower panels show an approximately
uniform distribution of effect sizes for units (A) and differentiated effect sizes for principal components (B) in all three attributes.

accuracy of the 3,000+ individuals in the test set. The
first substantial drop in performance is seen at 16 units
(≈3% of the full dimensionality). Accuracy remains
high with as few as four units (AUC = 0.80) and is
well above chance with two units (AUC = 0.72). This
demonstrates that DCNN performance is robust with
very small numbers of units and does not depend on
the particular units sampled.

The remarkable stability of identification accuracy,
even when randomly selecting very few top-layer units,
is consistent with two types of codes. First, individual
units might provide diverse identity cues. Combined,
these cues could accumulate into a powerful code for
identification. In this case, many individual units would
show a measurable capacity for separating identities.
Moreover, the identity information in individual units
would be minimally correlated. Alternatively, the
units might capture redundant, but effective, identity
information. By this account, the response patterns of
units would be highly correlated.

We found that individual units yield diverse, non
redundant, solutions for identity. Figure 1B shows the
distribution of response correlations for all possible
pairs of top-level units across all images in the test
set. The distribution is centered at zero, with 95% of
correlations falling below an absolute value of 0.17.
Therefore, units in the DCNN are minimally correlated
and capture non redundant identity information.

Next, we quantified the identification capacity
of individual units in the DCNN. Units with high
identification capacity support maximal identity
separation while minimizing the distance between
same-identity images. Specifically, a unit has identity-
separation power when its responses vary more
between different-identity images than within sets of
same-identity images. We applied the F statistic from
analysis of variance (ANOVA) to each unit’s responses
to all images in the test set. The resulting F ratios provide
an index of between- to within-identity variance.
For each ANOVA, identity was the independent
variable (with 3,531 levels, equal to one level for
each identity in the test set), image was the random
(observation) variable, and unit response was the
dependent variable. All units separated identities, with p
values less than 0.000098, which is α= 0.05, Bonferroni
corrected for 512 comparisons. This corrected alpha
level is applied also in the gender and viewpoint
simulations.

Next, we calculated the proportion of variance in a
unit’s response explained by identity variation (r2 effect
size). Figure 2 A (purple) shows the distribution of effect
sizes across units (mean r2 = 0.691, minimum= 0.6573,
maximum= 0.7611). On average, 69.1% of the variance
in individual unit responses is due to identity variation.
This indicates that all units have a substantial capacity
to separate identities.
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Figure 3. Gender and viewpoint prediction with variable
numbers of randomly sampled units. Gender classification
declines gradually (A) and viewpoint prediction declines rapidly
(B) as sample size decreases. Mean performance across
samples (n = 50) is shown with a diamond, colored by sample
size. Because these performance measures are qualitatively
different, they should not be compared in absolute terms (for
comparison between gender, viewpoint, and identity, see effect
sizes; Figure 2).

Gender
Gender-classification accuracy was measured in

the same abbreviated subspaces sampled for the
face-identification experiments. For each sample, LDA
was applied to predict the gender (male or female)
of each image in the test set from the unit responses.
Using all units, gender classification was 91.1% correct.
Classification accuracy declined steadily as the number
of units sampled decreased (Figure 3A).

Next, the gender-separating capacity of each unit
was measured. An ANOVA was performed for each
unit, using gender as the independent variable. Overall,
71.5% of the units could separate images according
to gender (p < 0.000098). However, gender accounted
for only a small amount of the variance in unit
responses. Figure 2A (pink) shows effect size across
units (mean r2 = .0045, minimum ≈ 0, maximum =
0.041). Notwithstanding the small effect sizes, the
proportion of units with gender-separation power
(71.5%) is meaningful. Only 5% (α level) of units would

be significant for gender separation by chance. Overall,
fewer units have predictive power for gender than for
identity, and the predictive value of these units for
gender is weaker.

Viewpoint
Linear regression models were trained to predict

viewpoint using the abbreviated subspaces used for
identification and gender classification. Error was
measured as the difference between predicted and true
yaw (in degrees). Figure 3B shows prediction error
as a function of the number of randomly sampled
units. Using all units, viewpoint was predicted within
7.35 degrees. Accuracy was at chance when subspace
dimensionality fell to 32 units.

The viewpoint-separation capacity of each unit
was assessed with ANOVA, using viewpoint as the
independent variable. The absolute values of the true
yaw measurements were binned into the following five
categories: frontal (0◦, 18◦), near frontal (18◦, 36◦),
half-profile (36◦, 54◦), near profile (54◦, 72◦), and profile
(72◦, 150◦). To account for unequal group sizes, pooled
sums-of-squares were used as the error term. Figure 2A
(orange) shows the ANOVA effect size for each unit
(mean r2 = 0.0020, minimum ≈ 0, maximum = 0.018).
In total, 54.7% of units separated images according
to viewpoint (p < 0.000098), though effect sizes were
small.

Single-unit summary
Multiple neural-like codes coexist within the same

set of DCNN top-layer units. These are differentiated
by the number of units needed to perform a task and
by the predictive power of individual units for the
task. First, all units provide strong cues to identity
that are largely uncorrelated. Therefore, small numbers
of randomly chosen units can achieve robust face
identification. Second, gender is coded weakly in
approximately 72% of the units. Accurate gender
classification requires a larger number of units, because
the set must include gender-predictive units, and these
units must be combined. Third, even fewer units (about
50%) code viewpoint—each very weakly. Therefore, a
large number of units are needed for accurate viewpoint
estimation. All single-unit results were replicated using
the output units from an alternative face-identification
DCNN (see Supplemental Figures S1–S3).

Ensemble analysis: Identity, gender, and
viewpoint

How do ensemble face representations encode
identity, gender, and viewpoint in the high-dimensional
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Figure 4. (A) Sliding windows of PCs used to predict identity (purple), gender (teal), and yaw (yellow) across the PC subspaces.
Identification accuracy is highest when using early PCs. Gender and viewpoint classification are best when using subspaces with the
highest effect sizes for gender and viewpoint separation, respectively. (B) Similarity between PCs and directions diagnostic for identity
(purple), gender (teal), and yaw (yellow). Identity direction is the average similarity between identity templates and PCs. Gender
direction is the linear discriminant line from the LDA for gender classification. Viewpoint direction is the weight vector from the linear
regression for viewpoint prediction.

space created by the DCNN? Interpreting unit-based
face-image codes as directions in this space requires a
change in vantage point. A face-space representation
Valentine (1991; O’Toole et al., 2018) was generated by
applying PCA to the full ensemble of unit responses.
The axes of the space (PCs) are ordered according to
the proportion of variance explained by the ensemble
face-image descriptors. We re expressed each face-image
descriptor as a vector of PC coordinates. This captures
a face-image representation in terms of its relationship
to principal directions in the ensemble space.

For each PC, we measured identity, gender, and
viewpoint separation using the ensemble-based image
code. Effect sizes were computed for the PC-based
codes using ANOVA, as was done for the unit-based
codes. These appear in Figure 2B. Identity (purple)
dominates gender (teal) and viewpoint (yellow)
information, consistent with the unit code (Figure 2A).
In contrast to the unit-based codes, effect sizes for
individual PCs differentiate strongly by attribute. Effect
sizes for identity are highest in PCs that explain the
most variance in the space. Gender information peaks
in two ranges of PCs (≈2–10 and ≈164–202). For
viewpoint, effect sizes peak approximately between PCs
220 and 230. Therefore, face-image attributes separate
into subspaces ordered roughly according to explained
variance. Next, we show that these subspaces differ in
their functional capacity to classify identity, gender, and
viewpoint and that subspaces are organized to align
with directions in the representational space diagnostic
of face attributes.

Separation of attributes in the ensemble space could
be organizational and/or functional, and measuring the

classification capacity of attribute-related subspaces
would be further evidence that ensemble codes
functionally separate attributes. To test the functional
separability of face-image attributes in different
subspaces, we used sliding windows of 30 PCs at a
time (1–30, 2–31, 3–32, etc.) to predict each attribute.
Figure 4A shows that the accuracy of predictions
for the three attributes differs with the PC range. As
expected from an identity-trained system, identification
accuracy is best in the subspaces that explain the most
variance. Gender-classification accuracy is highest
when using ranges of PCs that encompass the highest
effect sizes for gender separation. Similarly, viewpoint
prediction is most accurate with ranges of PCs that
encompass the highest effect sizes for viewpoint
separation.

To examine the organization of attributes in the
ensemble code, we measured the alignment of face
attributes with directions in the space. Specifically,
we compared PC directions to directions diagnostic
of identity, gender, and viewpoint. Identity direction
was calculated by averaging the face descriptors for
all images of an identity. Gender direction was the
linear discriminant line from the LDA used for gender
classification. Viewpoint direction was the vector of
regression coefficients for viewpoint prediction.

Figure 4B (purple) shows the average of the absolute
value of cosine similarities between each PC and all
identity codes. Figure 4B (teal) shows the similarity
between each PC and the gender direction, and
Figure 4B (yellow) shows the similarity between each
PC and the viewpoint direction. These plots reveal that
identity information is distributed primarily across
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the first ≈150 PCs, gender information is distributed
primarily across PCs ranked between 150 and 200, and
viewpoint information is distributed primarily across
PCs ranked greater than 200.

Consistent with the effect sizes computed for each
PC, as well as the attribute predictions, this result
shows that identity, gender, and viewpoint separate
roughly into subspaces ordered according to explained
variance in the DCNN-generated ensemble space. These
subspaces separate attributes both organizationally
and functionally and reflect a prioritization of identity
over gender and of gender over viewpoint. This
prioritization likely results from the optimization goals
of the network and the combination of the statistical
structure of the face image and full data set processed
by the network. As the optimized variable, identity
dominates the organization of the ensemble space. For
viewpoint and gender, parceling out the contribution
of the face image and the population of face images
processed by the network would be challenging and
would require additional data. We return to the
question of optimization in the Discussion.

As with the single-unit results, all ensemble code
results were replicated using an alternative network
architecture (see Supplemental Figures S2 & S4).
Additional details regarding the PCA of the full face
space (including a scree plot) are included in the
supplemental materials (see Supplemental Information
Section S2).

Juxtaposed unit and ensemble codes

PCs capture directions that can be interpreted in
terms of identity, gender, and viewpoint. How do these
directions relate to the basis vectors that define the
DCNN units? The answer to this question will tell us
whether individual units “respond preferentially” to
specific face-image attributes.

We calculated the cosine similarity between
the PC directions and the unit directions (Unit 1:
[1, 0, 0...0512], Unit 2: [0, 1, 0...0512], etc.). If a unit
responds preferentially to viewpoint, gender, or identity,
it will align closely with PCs related to a specific
attribute. Alternatively, if semantically interpretable
information (identity, gender, viewpoint) is confounded
in a unit’s response, it will yield a uniform distribution
of similarities across the PCs related to each attribute.

The results indicate that unit responses confound
identity, gender, and viewpoint. Figure 5 (top) shows
a uniform distribution of similarities across PCs
for a single unit. We found this for all of the 512
units (see Supplemental Information Section S3, or
Extended Data on the Open Science Framework:
https://osf.io/xewuk/). Figure 5 (bottom) shows a
density plot of these similarities, separated by attribute.
Identity, gender, and viewpoint information, which

are separated in the high-dimensional space, are
confounded in single-unit responses. Consistent
with previous results, this finding replicated with an
alternative face-identification DCNN (see Supplemental
Figure S5). This undermines a classic tuning analogy
for units. In isolation, individual units cannot be
interpreted in terms of a specific attribute.

Discussion

Historically, neural codes have been characterized
as either sparse or distributed. Sparse codes signal a
stimulus via the activity of a small number of highly
predictive units. Distributed codes signal a stimulus via
the combined activity of many weakly predictive units.
The DCNN’s identity code encompasses fundamental
mechanisms of both sparse (highly predictive single
units) and distributed (powerful combinations of units)
codes. This unusual combination of characteristics
accounts for the DCNN’s remarkable resilience to
deleting units in the face representation (for the
resilience of other parts of a DCNN, see Casper et al.,
2019). Superimposed on the identity representation are
standard distributed codes for gender and viewpoint
and likely other subject and image variables. For these
codes, ensembles, not individual units, make accurate
attribute predictions.

The results reveal three distinct attribute codes
(identity, gender, viewpoint) in one set of units. These
codes vary in the extent to which they distribute
information across units. Because multiple attribute
codes share the same units, the label “sparse” or
“distributed” must specify a particular attribute. In
deep (higher) layers of DCNNs, where units respond
to abstract combinations of low-level visual features,
these shared codes may be common. If these codes
exist in the primate visual system, they would likely be
at higher levels of the visual processing hierarchy. In
low-level visual areas (e.g., V1), neural receptive fields
refer to locations in the retinotopic image and are more
likely to act as single-attribute “feature detectors.”We
will return to this point shortly in the context of what
a neurophysiologist would find in probing units in the
DCNN.

Much of what appears complex in individual units
is clear in the ensemble space. PCs separate attributes
in the DCNN representation according to explained
variance. This reflects network prioritization (identity
> gender > viewpoint). PCs comprise a “special,”
interpretable rotation of the unit axes, because the
face attributes are not represented equally in the face
descriptors. The juxtaposition of unit and ensemble
characteristics indicates that information coded by a
deep network is in the representational space, not in any
given projection of the space onto a particular set of
axes (cf. Hasson et al., 2020); Szegedy et al. 2013.

https://osf.io/xewuk/
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Figure 5. (Top) For a single example unit, absolute value of similarities between unit direction and each PC shows confounding of unit
response with identity, gender, and viewpoint. (Bottom) Density plot of similarities between the example unit and PCs associated
with identity (purple), gender (blue), and viewpoint (yellow). The distributions overlap almost completely, indicating that each type of
information contributes to the unit’s activation. This finding was consistent across all unit basis vectors.

How, then, are we to understand the units? The
DCNN is optimized to separate identity, not to
maximize the interpretability of the information that
achieves identity separation. From a computational
perspective, any orthogonal basis is as good as
any other. Given the high dimensionality of the
system and the stochastic nature of training, the
likelihood of a DCNN converging on a semantically
interpretable basis set is exceedingly low. Units serve
the sole purpose of providing a set of basis axes that
support maximal separation of identities in the space.
There should be no expectation that the response
of individual units be “tuned” to semantic features
(Hasson et al., 2020). In isolation, units provide little
or no information about the visual code that operates
in the high-dimensional space. Instead, units must
be interpreted in an appropriate population-based
computational framework (Eichenbaum, 2018; Hasson
et al., 2020; O’Toole et al., 2018; O’Toole & Castillo,
2021; ; Saxena & Cunningham, 2019; Yamins et al.,
2014; Yuste, 2015).

How does this affect the way we interpret neural
data? The literature is replete with reports of
preferentially tuned neurons in face-selective cortex.

Electrophysiological recordings differentiate face
patches based on the tuning of neurons (e.g., PL:
eyes, eye region, face outlines [Issa & DiCarlo, 2012];
ML: iris size, inter eye distance, face shape, and face
views [Freiwald & Tsao, 2010]; AM: view-invariant
identity [Freiwald & Tsao, 2010]; ML-MF: face shape
parameters extracted from a computationally based
active appearance model [Chang & Tsao, 2017]; and
AM: appearance [reflectance/albedo] parameters from
the same active appearance model [Chang & Tsao,
2017]). The problem with interpreting single-neuron
responses is evident when we consider what a
neurophysiologist would conclude by recording from
top-layer units in the network we analyzed.

First, most of these units would appear to be
“identity-tuned,” preferring some identities (high
activation) over others (low activation). However,
our data show that each unit exhibits substantial
identity-separation capacity (cf. effect sizes). Effect
sizes take into account the full range of responses,
instead of making only a “high” versus “low” response
comparison. The neural-tuning analogy obscures
the possibility that individual units can contribute
to identity coding with a relatively low-magnitude
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response. This response, in the context of the responses
of other units, is information in a distributed code. A
neurophysiologist would find “identity-tuned units”
here (in what is, essentially, a distributed code), only
because identity modulates the individual unit responses
so saliently. These are not identity-tuned units; they
are identity-separator units. Moreover, what separates
identity in these units is not likely to be semantically
interpretable. This is due to the uncertain relationship
between meaningful directions in the representational
space and the arbitrary directions of the unit axes.

Second, no units would appear to be tuned to
gender or viewpoint, because these attributes modulate
the response of a unit only weakly in comparison to
identity. Thus, it might appear to a neurophysiologist
that viewpoint has been filtered out of the code.
Instead, both the gender and viewpoint codes would
be hidden from the neurophysiologist, despite the fact
that the ensemble of units contains enough information
for accurate classification of these attributes. From a
neural tuning perspective, the undetected modulation
of unit responses by viewpoint would imply that the
units signal identity in a viewpoint-invariant way. This
is correct, but it is a misleading characterization of the
capacity of the units to code viewpoint.

Neurophysiological investigations of visual codes rely
on neural-tuning data from single units in conjunction
with population decoding methods. However, if
multiple, commingled, distributed codes, such as
those generated by the DCNN, exist in primate visual
cortex, over emphasis on neural-tuning functions in
high-level areas may be counter productive (Hasson
et al., 2020; O’Toole & Castillo, 2021). Rather than
characterizing neural units by the features or stimuli
to which they respond (Bashivan et al., 2019), we
should instead consider units as organizational axes
in a representational space (Szegedy et al., 2013). The
importance of a unit lies in its utility for separating
items within a class, not in the interpretability of
attributes that drive the unit to a high level of activation.

Incorporating these ideas into theories of neural
encoding requires a shift in perspective from principles
that have guided the analysis of neural data for decades.
These principles have perhaps biased the interpretation
of findings to preclude a number of plausible code
types. We suggest the reconsideration of several
assumptions that underlie these interpretations. First,
neurons firing at any rate (not just at a high rate) can
be fundamental to a representation—consistent with
basic information theory. Second, any given neuron can
code multiple stimulus attributes, via the potential for
overlay of multiple variably distributed codes. Third,
individual units in a distributed code can potentially
all have high predictive power from quasi-independent
(different) sources of information, as was the case
for identity here. Good predictability of a stimulus
attribute from small numbers of units does not preclude

the existence of many more units with similar predictive
capacity that may draw on diverse, non redundant
sources of information. By analogy, it is possible to
categorize an animal as a dog from seeing either its tail
or its snout. Predictive power of a given unit, which is
sometimes equated with selectivity, gets us only partway
to understanding how a neural code works.

More generally, it is important to ask whether DCNN
models operate in ways analogous to the primate visual
system and human behavior. We consider this question
from several perspectives. First, as noted, image-based
information is retained in macaque IT cortex (Hong
et al., 2016) and in top-layer DCNN representations (cf.
present work; Hill et al., 2019; Hong et al., 2016; Parde
et al., 2017). This unexpected property of the DCNN
code—found also in high-level neural representations
of objects—counters the assumption that the primate
visual system must eliminate image-based information
to recognize faces/objects across image variation.
Instead, deep networks can accommodate diverse
information about faces (identity, gender, viewpoint)
in a unified code (DiCarlo & Cox 2007; O’Toole et al.,
2018; O’Toole & Castillo, 2021).

A second point of comparison is provided by
“brain-score” metrics that evaluate brain-machine
similarity using a composite of neural and behavioral
benchmarks from primate/human data (Schrimpf et al.,
2018). The network architecture tested here is based on
the ResNet-101 architecture, which scored in the top 3
of the 25 networks tested for brain similarity (Schrimpf
et al., 2018). Notably, however, our results also
replicated in a completely different DCNN architecture
(see Supplemental Section S1). Other studies of face
representations in DCNNs have likewise replicated
across quite different architectures (e.g., Hill et al.,
2019; Parde et al., 2017). Neurocomputational theory
based on direct fit models posits that “computational
capacity,” rather than “network architecture,” is the
primary mechanism underlying the ability of DCNNs
to generalize across viewpoint (Hasson et al., 2020).
The replicability of face representation results across
high-capacity DCNNs is predicted by direct fit theory.

Third, the present results are largely consistent with
neurophysiological findings in face patches but point
to a different interpretation of these data. Single-unit
recordings in primate cortex show that invariance
to viewpoint increases from face patches earlier in
visual processing to those later in the processing
stream. Freiwald & Tsao (2010) posited a progressive
computation of an identity code via neural pooling,
whereby the output of neurons in early face patches,
which respond in a view-dependent way, is pooled
in later face patches to create a fully view-invariant
representation of identity. Consistent with Freiwald and
Tsao (2010), DCNN units at the top of the processing
hierarchy are far more strongly modulated by identity
than by viewpoint. However, the DCNN units also code
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viewpoint but in a distributed way. In ascribing coding
capacity only to high neural firing rates, a distributed
coding of viewpoint across units would not be detected.
Consequently, these neurophysiological results are
consistent with DCNN representations.

Fourth, neurophysiological evidence supporting the
claim of a progressive computation of view-invariant
identity across processing layers is also consistent with
data from deep networks. Abudarham and Yovel (2020),
for example, traced the similarity of representations for
images of faces across DCNN layers. Earlier layers in
the network showed view specificity, whereas higher
layers showed view invariance. However, consistent
with the presence of image-based information in the
face representation at the top of the network, similarity
scores across head view decreased monotonically
with increasing view disparity, indicating that view
information was retained in the ensemble code.
Concomitantly, Dhar et al. (2020) measured the
expressivity of attributes (identity, age, sex, and yaw)
across layers of a DCNN trained for face identification.
Expressivity was defined as the degree to which a feature
vector, in any network layer, specified an attribute. They
found an increase in the expressivity of identity from
the final pooling layer to the last fully connected layer.
Thus, the finding that invariance to viewpoint increases
from face patches earlier in visual processing to those
later in the processing stream (Freiwald & Tsao, 2010) is
consistent with the emergence of invariance across the
layers of the DCNN—though again the interpretation
of the underlying code differs.

Fifth, reconciling deep network codes with
neurophysiological work showing that face images
viewed by a macaque can be reconstructed from a
linear combination of the activity from 205 face cells in
face patches ML/MF and AM (Chang & Tsao 2017) is
less certain. Comparing the present results to those of
Chang and Tsao (2017) is difficult, because their goal
was to reconstruct the image, rather than to identify
the face from variable images. These are different tasks,
and so additional data on both the computational and
neural side may be needed to relate these findings.

Finally, from a human psychology perspective, a
common criticism of the ecological validity of deep
networks used for face recognition is that they require
large numbers of identities (thousands) and images
(millions) to converge. A closer look at the layered
training used in deep networks, however, puts this
large-scale training in perspective. Deep networks are
trained with the goal of producing a system that can
map any arbitrary face image onto a face-identity
representation that can be used for identification. Once
this large-scale training is complete, the identity nodes
used in training are simply removed from the network.
An additional training step is needed to learn a specific
set of special (i.e., familiar) faces. One common method
is to implement a simple (one-layer) linear network

to map DCNN-generated face-image representations
onto a new set of identity nodes (for a review of
these methods, see O’Toole & Castillo, 2021). Thus,
large-scale training is best considered general perceptual
learning of faces, whereas this second step is best
considered familiar face learning (O’Toole et al., 2018;
O’Toole & Castillo, 2021). This latter maps well with
psychological data showing that the average person is
familiar with approximately 5,000 faces (Jenkins et al.,
2018).

Open questions remain about how to optimize
models of the visual processing of faces. In the present
study, and in others (Colón et al., 2021; Dhar et al.,
2020; Hill et al., 2019; Parde et al., 2017, 2019),
face representations were built from deep learning
algorithms trained explicitly to separate identities.
In other work (Yildirim et al., 2020), networks have
been trained to simultaneously decode an array of
face parameters from images (i.e., shape and texture
coefficients from a three-dimensional computer
graphics model of faces, along with illumination
direction and pose angle). In the identity-optimized
DCNNs we tested, identity was strongly expressed in all
units, whereas gender and viewpoint were distributed
across multiple units. By optimizing for identity
separation—the most finely resolved information in a
face—the deep network’s face representation naturally
encompassed subject information (gender) and image
parameters (pose and illumination) with no explicit
need to optimize for these other attributes. A network
trained to distinguish another type of image/subject
attribute (e.g., gender) would likely encode that attribute
in much the same way our network encodes identity.
However, that network would be unlikely to capture
the subtle visual cues that can differentiate individual
people.

The application of high-performing deep networks
to complex problems of visual recognition now provides
a test bed for exploring types of codes that are not
easily explored with single-unit or even multi-unit
neural recording methods. These networks allow us
simultaneous access to the units and representational
spaces that support human levels of face recognition
performance (Phillips et al., 2018). There may be much
to learn from these networks about the possibilities of
effective, neural-like computation.

Keywords: neural encoding, machine learning,
perception
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