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Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown
that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory
cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional
activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including
rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for
Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying
that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss
recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses.
Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-
mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to
macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and
anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.

1. Introduction

Inflammation is a complex biological response to various
harmful stimuli and is accompanied by various symptoms
including redness, swelling, heat, and pain. A major cause
of inflammation stems from the infection of local tissue
with pathogens, such as bacteria, viruses, and fungi; inflam-
mation is the process that attracts various immune cells
to the injured tissues and removes the infecting pathogens.
These processes involve closely related chemical mediators,
such as nitric oxide (NO), reactive oxygen species (ROS),
prostaglandin E2 (PGE2), histamine, and cytokines including
TNF-α and various interleukins [1]. There are two types
of inflammatory responses acute inflammation and chronic
inflammation. Acute inflammation is a rapid and temporary
host response induced by leukocytes and plasma proteins

containing antibodies in the infected or injured tissues.
Chronic inflammation is persistent inflammation character-
ized by tissue injury and attack and has a longer recovery
time. The chronic response may increase damage to the
tissues and organs, resulting in the onset of diseases, such
as rheumatoid arthritis, tuberculosis, arteriosclerosis, and
pulmonary fibrosis.

Macrophages are generated by the differentiation of
monocytes and are located in several tissues. Depending
on their location, macrophages have different names, for
example, Kupffer cells in the liver, alveolar macrophages
in the lung, microglia in the central nerve system (CNS),
and osteoclasts in the bone. The cells are activated by
various stimuli through receptors, such as Toll-like receptors
and receptors that recognize the antigenic ligands from
microorganism, the cytokines secreted by immune cells, and
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other chemical mediators. Activated macrophages induce
the production of lysosomal enzymes, NO, ROS, cytokines,
growth factors, and other inflammatory mediators.

Src kinase (Src) is a protooncogene encoding a protein
tyrosine kinase. Originally, Bishop and Varmus discovered
Src in 1967. The Src gene (src) is similar to the v-src from the
Rous sarcoma virus. Src phosphorylates a tyrosine residue
on its target protein, and Src activity is regulated by the
autophosphorylation of its own tyrosine residues. Src is
classified as a nonreceptor tyrosine kinase belonging to the
Src family kinases, which include nine members exhibiting
similar functions and structures. Src family kinases play
critical roles in the progression of cancers; however, recent
studies have reported that Src is also involved in the
inflammation-related signaling pathway.

In this paper, we provide a general introduction to
the roles of Src as an oncoprotein, focusing on the in-
depth investigation of the role of Src in macrophage-
mediated inflammatory diseases. Furthermore, we provide
a perspective on the feasibility of using plant extracts and
other natural products as therapeutic drug candidates for the
treatment of inflammatory diseases.

2. Src

2.1. Src Family Kinases. The Src family members are clas-
sified as non-receptor tyrosine kinases consisting of 9
members (Table 1). Src, Fyn, Yes, and Frk exhibit ubiquitous
expression, whereas Blk, Fgr, Hck, Lck, and Lyn are expressed
only in restricted cells [2]. Several Src family members (Blk,
Fgr, Fyn, Hck, Lck, Lyn, and Yes) are important in the
signaling pathways in cells of hematopoietic lineages [3, 4].
For example, Lck and Fyn, which are expressed in T cells,
are the first signaling molecules activated downstream of
the T-cell receptor. In mature monocytes and macrophages,
inflammatory stimuli including lipopolysaccharide (LPS)
induce the expression of Hck, Lyn, and Fgr [4, 5].

2.2. Src Structure and Regulation of Src Activity. Src family
kinases exhibit a similar structure comprised of (i) an N-
terminal region containing myristoylation and palmitoyla-
tion sites that determine the cellular localization and confer
unique functions to the Src family members [4, 6, 7]; (ii) a
Src homology 3 (SH3) domain that binds directly to proline-
rich regions; (iii) a Src homology 2 (SH2) domain that
interacts with a phosphotyrosine residue on either itself or
other proteins; (iv) a linker domain connecting the SH2
and kinase domains, which interacts with the SH3 domain
[4, 7, 8]; (v) a kinase domain responsible for the enzymatic
activities, containing an activation loop (A-loop) that has
an autophosphorylation site at Tyr-416 and regulates the
association with substrates; (vi) a C-terminal tail containing
the negative-regulatory site (Tyr-527) that binds to the SH2
domain (Figure 1) [4, 7, 9].

Src activity is regulated by the structural changes caused
by the phosphorylation and dephosphorylation of its tyro-
sine residues (Figure 2). Through the interaction of the
SH2 or SH3 domain with the other domains, Src changes

its structure and exhibits different levels of activity. The
inactive structure of Src occurs when the phosphorylated
Tyr-527 residue in the C-terminal tail binds to the SH2
domain and simultaneously, the SH3 domain binds to the
polyproline motifs of the linker domain. In this conforma-
tion, the activation loop adopts a compact structure that
fills the catalytic site, thereby precluding the binding of
ATP and substrates, covering Tyr-416, and prohibiting the
activation of autophosphorylation. Conversely, when Tyr-
416 is autophosphorylated, Src adopts an active structure by
releasing the interaction of the SH2 or SH3 domain with the
other domains and displacing the p-Tyr-416 from the bind-
ing site of SH2, allowing the substrate or associating proteins
(Table 2) to be accessed. Therefore, the phosphorylation of
the tyrosine residues in the Src family kinases is the critical
process that regulates enzymatic activity [7, 10–12].

Src activity can also be regulated by other tyrosine
kinases. The C-terminal Src kinase (Csk) and the Csk homol-
ogy kinase (Chk) are 2 main tyrosine kinases responsible for
the phosphorylation of the inhibitory Tyr-527 in Src [13, 14],
and Chk forms a complex with the autophosphorylated form
of Src by noncovalent binding. Consequently, Chk blocks the
kinase activity of Src [15]. Although little is known about the
regulation of Src activity by protein tyrosine phosphatases
(PTPs), a number of PTPs including the T-cell protein
tyrosine phosphatase (TCPTP), the SH2 domain-containing
protein tyrosine phosphatases 1 and 2 (SHP1 and SHP2),
PTP1B, PTPα, PTPε, PTPκ, and receptor-PTPα (R-PTPα)
are involved in the regulation of Src activity through the
dephosphorylation of the C-terminal tyrosine in Src [7, 16–
19]. Therefore, it is possible that Src activity is regulated not
only by itself through autophosphorylation but also by other
tyrosine kinases, such as PTPs.

2.3. Functions of Src in Inflammatory Cells. Several studies
have reported that Src is involved in a variety of immunologic
processes (Figure 3), such as immune cell development, pro-
liferation, adhesion, migration, chemotaxis, phagocytosis,
and survival [20]. In myeloid cell development, although the
role of Src is not clear, Src enhances cell cycle progression by
accelerating the secretion of growth factors. Several studies
have indicated that Src increases cell proliferation through
the activation of receptor tyrosine kinases (RTKs), such as
the platelet-derived growth factor receptor or macrophage
colony-stimulating factor receptor [21–23]. Among the cells
of the immune system, monocytes and macrophages are
unique in that they move via multiple steps, by adhesion
to the vascular endothelium, migration through the vascular
membrane, and recruitment at the infected site. Adhesion,
migration, and recruitment are mediated by reciprocal
interactions between many types of adhesion molecules on
immune cells, such as selectins, gangliosides, integrins, and
other adhesion molecules [24]. In addition to adhesion,
integrin-FAK-Src signaling pathways can promote various
changes in cell morphology, cell cycle progression, and gene
transcription [25–27]. Immune cells such as neutrophils
recognize chemotactic gradients via GPCRs, the receptors for
C5a or fMLP. Although the essential function of the GPCR is
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Table 1: Src family kinases and their functions in immune responses.

Molecule Distribution Specific functions in immune responses Reference

Src Ubiquitous - See Sections 2, 3, and 4

Fyn Ubiquitous
- CD5 glycoprotein-mediated T-cell inhibition by inhibitory phosphorylation of Fyn

[76]
- Rac and stress kinase activation in TCR signaling by Fyn

Yes Ubiquitous - LTB4-mediated degranulation of human neutrophils by Yes activation [77]

Frk Ubiquitous - Unclear

Blk G, Mo, Ma, B - Preferentially expression in B-cell lineage. Control of proliferation during B-cell development [78]

Fgr G, Mo, Ma
- Inhibition of Hck and Fgr kinase activity [79]

- Inhibition of beta 2 integrin receptor and Syk kinase signaling by Fgr [80]

Hck G, Mo, Ma - Inhibition of Hck and Fgr kinase activity [79]

Lck T, B - Modulation of signaling and cellular fate of B-1 cells [81]

- Promoting B-cell development [82]

Lyn P, G, Mo, Ma, B - Redox sensor mediating initial neutrophil recruitment to wounds [83]

- Inhibition of platelet aggregation with PECAM-1 [84]
∗

Data from http://www.proteinkinase.de. G: granulocyte, Mo: monocyte, Ma: macrophage, B: B cell, T: T cell, and P: platelet.

Table 2: Src-interacting molecules corresponding to SH2 or SH3.

Domain Interacting molecules Reference

SHP-1 protein tyrosine phosphatase [85]

Protein tyrosine phosphatase-1B [86]

Nonreceptor type 1 [87]

SH2 (149–239) Dual-adaptor for phosphotyrosine and 3-phosphoinositides-1 [88]

Heterogeneous nuclear ribonucleoprotein K-1 [89]

CRK-associated substrate [90]

Disabled-1 [91]

Cyclin-dependent kinase-5 [92]

KCNB1 [93]

p21-activated kinase-2 [94]

SH3 (87–144) CRK-associated substrate [90]

Vinculin [95]

Fragile histidine triad protein [96]

GRB2 [87]
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Figure 1: The structure of Src.
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Figure 2: Schemata of conformational changes of Src.

to activate G proteins and effector enzymes involving phos-
pholipase A2 or adenyl cyclase, crosstalk with other proteins,
including Src, has also been reported [28]. For example,
fMLP-induced degranulation is decreased significantly in
neutrophils treated with the Src inhibitor PP1 and in Src-
deficient cell lines [29]. Src may participate in MAP kinase
signaling through the βγ subunits of the GPCR. Gutkind
reported crosstalk between the GPCR and Src in PI3-kinase
γ signaling that is activated by the βγ subunits of GPCR
[21, 30]. Src, through its involvement with phagocytosis, cell
cytotoxicity, and the secretion of inflammatory mediators, is
also responsible for host defense mechanisms. Macrophages
are major players in both phagocytosis and antibody-
dependent cell-mediated cytotoxicity (ADCC) [21, 31–33].
After phagocytes migrate to and infiltrate the infection
sites, they engulf bacteria, fungi, or viruses. Phagocytosis
occurs through the binding of Fc receptors to immunoglob-
ulins. Specifically, Fcγ receptor cross-linking is induced by
the phosphorylation of the immunoreceptor tyrosine-based
activation motifs (ITAMs) located in the cytoplasmic tail
of tyrosine kinase receptors. Src, Fyn, Fgr, Lck, and Lyn
are expressed in phagocytes, where they form complexes
with inactivated FcγRs. Src-deficient cells are less effective
than wild-type cells at mediating phagocytosis [21, 34–37].
Hematopoietins, such as G-CSF, erythropoietin, or IL-3,
diminish apoptosis in blood cell progenitors and are critical
for survival [21, 38]. The expression of v-Src plays a critical
role in IL-3-mediated survival and proliferation [21, 39]. As
with T-cell receptor (TCR) proteins, integrins, Fc receptors
(FcR), and G-CSF receptors lead to dimerization and rapid
changes in tyrosine autophosphorylation as well as to the

synthesis of a variety of signaling proteins. Korade-Mirnics
and Corey reported that apoptosis is blocked mainly by
a signaling pathway consisting of Src-Cbl-PI3-kinase-PI3-
kinase-dependent kinase (PDK)-Akt-Bad; this pathway is
enhanced by various growth factor responses [21]. In Src-
dependent signaling, Akt activation is downregulated by the
carboxyl-terminal region of the G-CSF receptor. Src may also
induce apoptosis. Therefore, Src either induces or inhibits
apoptosis, depending on the type of stimuli [21, 40]. In
the inflammatory response, Src influences a broad range of
immune cell activities through the interaction with various
receptors and ligands in inflammation.

3. The Role of Src in the Inflammatory
Signaling Pathway

3.1. TLR-Mediated Signaling Pathway. Cells recognize both
invading pathogens and injured tissue via members of the
pattern recognition receptor family (PRRs). In mammalian
systems, PRRs consist of 3 major families of molecules,
Toll-like receptors (TLRs), the nucleotide oligomerization
domain (NOD) family, and the caspase recruitment domain
(CARD) family. The first role of NODs and CARDs appears
to be as intracellular molecules that recognize intracel-
lular bacteria and viruses and tissue damage; however,
research regarding the effect of diminished signaling by these
molecules is in its infancy. In contrast, TLRs are expressed
both intracellularly and on the cell surface, and recently,
significant studies regarding the molecular mechanisms of
TLRs have been published [41, 42].
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Figure 3: The role of Src in immune cells. A combination of antigens, cytokines, adhesion molecules, lipid factors, and their different
receptors relevant to immune cell development and inflammatory responses. Regardless of the stimulus and the receptor type, Src plays a
critical role in recruiting a number of cell signaling molecules. Initiated and activated by the receptor, Src increases and varies the signal.
Depending on the signal received, multiple pathways that influence cell migration, adhesion, phagocytosis, cell cycle, and cell survival are
activated.

The TLR family is comprised of at least 10 members
(Table 3). The molecules specifically recognize a range of
bacterial, viral, fungal, and endogenous ligands and there-
fore, promote responses against a wide range of physical
and environmental injuries [43]. TLRs are transmembrane
molecules, and their molecular mechanism is mediated
by the association of their internal domains with various
complexes of the following 5 different adaptor molecules:
myeloid differentiation primary response gene 88 (MyD88),
MyD88 adaptor-like/TIR domain-containing adaptor pro-
tein (MAL), Toll-IL-1-resistance domain-containing adap-
tor inducing interferon β (TRIF), TRIF-related adaptor
molecule (TRAM), and sterile-α and armadillo motif-
containing protein (SARM) [44]. To date, TLR4 signaling
appears to be the most complex and uses all 5 adaptors
[45]. MAL and MyD88 pair to enhance the activation of
IRAK1, which in turn activates Traf6 and IRAK4 leading to
the activation of nuclear factor (NF)-κB. The activation of

the TRAM/TRIF pathway is associated with the phosphory-
lation/activation of IRF3, resulting in the induction of type
1 interferon and an antiviral pathway. In contrast, SARM
plays the role of a negative regulator of TLR signaling. SARM
forms a complex with TRIF directly and negatively regulates
the function of TRIF by blocking TRIF-mediated IRF7 and
NF-κB activities, resulting in the inhibition of inflammatory
gene activation. Therefore, the activation of these adaptor
molecules initiates a signaling cascade that leads to changes
in gene expression in stimulated cells [41, 42, 46].

Src is involved in the signaling pathway of all TLR
molecules (Figure 4). TLR2, which is involved in various
inflammatory responses, forms a homodimer or builds a
complex with TLR1 or TLR6. Normally, TLR2 signaling is
stimulated by lipoproteins from Gram-positive bacteria, and
Src is widely utilized in TLR2 signaling cascades. In human
synovial fibroblasts, TLR2 induced by lipoteichoic acid
(LTA), a TLR2 ligand, phosphorylates PCKδ, followed by the
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Table 3: The classification of TLR family.

Receptor Ligand Adapter molecules Location Cell type

TLR1 + TLR2 Bacterial lipoproteins MyD88/Mal Plasma membrane
Monocytes/macrophages
A subset of dendritic cells
B lymphocytes

TLR2 + ?
GPI anchors (parasites),
bacterial porins, and
HMGB1

MyD88/Mal Plasma membrane
Monocytes/macrophages
A subset of dendritic cells
B lymphocytes

TLR3 dsRNA, poly I:C TRIF Intracellular membrane
Dendritic cells
B lymphocytes

TLR4
LPS, HSPs, HMGB1, some
viral proteins

MyD88/Mal/TRAM/TRIF Plasma membrane

Monocytes/macrophages
Myeloid dendritic cells
Mast cells
B lymphocytes
Intestinal epithelium

TLR5 Bacterial flagellin MyD88 Plasma membrane
Monocyte/macrophages
A subset of dendritic cells
Intestinal epithelium

TLR2 + TLR6

Bacterial lipoproteins from
mycoplasma,
lipoteichoic acid, and
yeast cell wall mannans

MyD88/Mal Plasma membrane
Monocytes/macrophages
Mast cells
B lymphocytes

TLR7
Imidazoquinoline
ssRNA (viral)

MyD88 Intracellular membrane

Monocytes/macrophages
Plasmacytoid dendritic
cells
B lymphocytes

TLR8
Imidazoquinoline
ssRNA (viral)

MyD88 Intracellular membrane
Monocytes/macrophages
A subset of dendritic cells
Mast cells

TLR9
CpG-containing DNA
(viral and bacterial)

MyD88 Intracellular membrane

Monocytes/macrophages
A subset of dendritic cells
Mast cells
B cell

TLR10 Unknown MyD88 Plasma membrane
B lymphocytes
Dendritic cells
Eosinophils

TLR11
(only mouse and rat)

Toxoplasma profilin MyD88 Plasma membrane
Monocytes/macrophages
A subset of dendritic cells
Mast cells

TLR12
(only mouse and rat)

Unknown MyD88 Plasma membrane Neurons

TLR13
(only mouse and rat)

Unknown MyD88, TAK-1 Plasma membrane

induction of phosphorylation of Src. Consequently, activated
Src increases the nuclear translocation of c-jun and p65,
which requires AP-1 and NF-κB and results in the induction
of IL-6 [47]. It is known that LTA increases the secretion of
metalloproteinase-9 (MMP-9), stimulated by a TLR2 signal
in astrocytes. Hsieh et al. reported that the stimulation
of TLR2 by LTA activates the Src-dependent activation of
PDGFR, and this stimulation ultimately increases the cell
motility caused by the induction of MMP-9 production
through the activation of NF-κB via PI3 K/Akt and MAPKs
[48]. In airway cells, the TLR2-dependent Ca2+ influx
mechanism is induced by the phosphorylation of tyr-616
and -761 in the cytoplasmic tail of TLR2, and these results

were confirmed in Staphylococcus aureus-treated cells early
in infection. Following the publication of this report, it was
determined that PI3 K is activated by phosphorylation of
TLR2 through Src, and consequently, Ca2+ influx is increased
by activated PLCγ [49]. Several studies have shown that the
TLR2 phosphorylation stimulated by Helicobacter pylori and
the activation of MUC-2 and IL-8 expression induced by
Pseudomonas aeruginosa ligands result in the activation of
COX-2 in a process that includes Src family kinases [50, 51].
Recently, by inhibiting its functions using c-Src siRNA, a
specific role for c-Src, and not the other Src family kinases,
was described in the TLR2-dependent signaling pathway.
Recently, Chun and Prince suggested that c-Src may be a
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TLR2-dependent kinase, demonstrated by the interaction
between TLR2 and c-Src through coimmunoprecipitation
studies in bacterial stimulated airway cells [52].

TLR3 binds to virus-related ligands, such as dsRNA
and poly I:C, and it is a MyD88-independent TLR family
member. TLR3 is an endosomal receptor, which is dependent
on both TRIF and TRAM. Interestingly, Src is known to be
independent of TRIF, and a number of studies have reported
that Src interacts with the cytoplasmic tail of TLR3. Src
induces antiviral events through the regulation of IRF3 and
STAT-1 activities via the phosphorylation of PI3K/Akt early
in infection. Surprisingly, the adaptor proteins TRIF and
MyD88 are not required for this process. The effects of the
new pathway are mediated by c-Src, which binds to TLR3 in
dsRNA-stimulated cells. The first initiation step is mediated
by dsRNA-induced phosphorylation and the activation of
Src, whereas the second step results from the localization
of activated Src in lipid rafts; consequently, the cytoplasmic
pool of active Src is reduced. As expected, two functions for
Src, its effect on cell adhesion and cell proliferation, are also
inhibited by dsRNA treatment [53].

Unlike other TLR family members, TLR4 has a large
number of adaptor molecules. Like other TLRs, TLR4 also
requires several ligands for its functions. Lipopolysaccharide

(LPS), a component of Gram-negative bacteria, is one of
the main ligands of TLR4. Similar to TLR2, TLR4 is critical
for defense mechanisms and the inflammatory responses to
bacteria. It is unclear whether Src directly binds to TLR4;
however, CD14, which is known to form a complex with
TLR4, associates with Src, implying that Src interacts with
TLR4. The activation of Src in LPS-treated macrophages
is dependent on TLR4 and MyD88, and their attenuation
reduces LPS-promoted phagocytosis. Phosphorylated Src is
related not only to the PI3K/Akt-NF-κB pathway but also
to AP-1 and CREB translocation by MAPKs. Src induces
a number of TLR4-dependent signals early in the inflam-
matory response. In addition, Src regulates LPS-induced
actin cytoskeleton rearrangement and consequently adjusts
morphological changes and phagocytosis in macrophages
[54].

When macrophages are exposed to flagella, the expres-
sion of TLR5 is induced by IL-8 produced through the Src,
Ras, and ERK1/2 pathways. IL-8 levels produced in response
to flagella are decreased by Src-specific inhibitors and by a
dominant negative Src mutant [51].

TLR7 and TLR8 are the TLR family members stimulated
primarily by viral infection. Src blocks IP-10 production by
controlling ATF3 via MyD88 and TRAF in TLR7/8 signaling,
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multimeric protein consisting of at least three cytosolic subunits: p47phox, p67phox, and p40phox. The p47phox subunit plays a significant
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NADPH quinine oxidoreductase (NQO1), glutathione S-transferase (GST), and superoxide dismutase (SOD). These enzymes are expressed
following NRF2 binding to the antioxidant response element (ARE).

a signaling pattern that is similar to TLR3 and TLR4. Src
downregulates IP-10 expression following PP2 treatment; in
contrast, in Src-deficient cells, PP2 induces the production of
IL-6 [55].

TLR9 is activated by the CpG oligodeoxynucleotide
(ODN) ligand and demonstrates a signaling pattern similar
to TLR7 and 8. TLR9 induces TRAF3-dependent Src activa-
tion, and this response controls IRF-3 and IRF-5 [55].

In the signaling pathways of the TLR family members, Src
generally regulates the early steps of the signaling cascade. Src
localizes to the membrane and rapidly interacts with receptor
proteins, including TLRs. Src is critical for TLR-mediated
inflammatory responses.

3.2. ROS Production through NADPH Oxidase and HO-
1 Defense Mechanism. Reactive oxygen species (ROS) are
considered not only the main mediator of pathological
tissue injury but also the cellular second messengers for
a variety of cellular receptor signal transduction pathways.
ROS, involving superoxide anion and hydrogen peroxide,

contribute to proliferation, apoptosis, differentiation, and
migration. A number of intracellular mediators, including
cyclooxygenases, cytochrome P450, lipoxygenases, mito-
chondrial respiration, xanthine oxidase, and NADPH oxi-
dases, regulate the enzymatic production of ROS [56–61].
In addition, Src family kinases control NADPH oxidase
activation and ROS production (Figure 5). NADPH oxidase
is an enzymatic component involved in the production of
ROS under various pathologic conditions. Activated NADPH
oxidase is a multimeric protein consisting of at least three
cytosolic subunits: p47phox, p67phox, and p40phox. The
p47phox subunit plays a significant role in the acute activa-
tion of NADPH oxidase; the phosphorylation of p47phox is
thought to inhibit intracellular interactions and to promote
the binding of p47phox to p22phox, thereby inducing the
activation of NADPH oxidase [62–65].

Oxidative stress activates various redox-sensitive signal-
ing pathways, including several MAPK cascades. MAPKs
play roles in the production of proinflammatory cytokines,
chemokines, and matrix metalloproteinases [62, 66–68].
The expression of phase II and antioxidant enzymes is a
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defense mechanism that protects tissue from injury by ROS
production. The phase II enzymes include heme oxygenase-
1 (HO-1), NADPH quinine oxidoreductase (NQO1), glu-
tathione S-transferase (GST), and superoxide dismutase
(SOD). These enzymes are expressed following the NF-E2-
related factor 2 (NRF2) binding to an antioxidant response
element (ARE). In particular, HO-1 is a rate-limiting enzyme
for the oxidative degradation of heme to biliverdin, free
iron, and carbon monoxide (CO). The protein is induced
by a variety of stimuli involved under conditions of cellular
stress, including cytokines, reactive oxygen species (ROS),
heat shock, hypoxia, and hyperoxia [62, 69].

Occasionally, TLR2 and TLR4 signaling cascades induce
the expression of HO-1 via one of the MAPK signaling
pathways, such as p38, ERK, JNK, PI3K/Akt, and JAK-STAT.
Src is a major regulator of both ROS production and cellular
homeostasis, including HO-1 expression.

4. The Role of Src in Tissue-Specific
Macrophages and Inflammatory Diseases

4.1. Alveolar Macrophages in Pulmonary Alveoli of the Lung.
Alveolar macrophages (AMs) have been indicated in the
recruitment of polymorphonuclear leukocytes (PMN) to the
lungs during sepsis, and AMs, accompanied by inflammatory
mediators, are the only resident cells required to satisfy
this function. Indeed, AMs have been proposed as the
critical effector cells responsible for PMN recruitment and
vascular protein leakage in both acute lung injury (ALI) and
acute respiratory distress syndrome (ARDS). The pharmaco-
logic/small interfering RNA inhibition of Src decreases AM-
induced endothelial NADPH oxidase activation and PMN
migration [64, 70–74]. The levels of proinflammatory medi-
ators, such as tumor necrosis factor (TNF)-α, interleukin
(IL)-1β, and macrophage inflammatory protein (MIP)-2, in
bronchoalveolar lavage fluids and the expression of TNF-α
and IL-1β mRNA in lung tissue are increased by exposure
to ultrafine TiO(2). Ultrafine TiO2 exposure results in the
activation of important inflammatory signaling molecules,
such as c-Src and p38 MAP kinase, linked to the NF-κB
pathway in alveolar macrophages of pulmonary tissues [75].

Both AMs and the lungs from Pneumocystis murina-
infected Src triple knockout (TKO) mice express significantly
higher levels of M2a macrophage markers, including RELM-
α, Arg1, and M2a macrophage-mediated chemokines (such
as CCL17 and CCL22) than wild-type mice. Wild-type and
Src TKO mice do not differ in the production of IL-4 and
IL-13, the primary cytokines that induce M2a macrophage
polarization. Pneumocystis murina infection in Src TKO
mice results in the elevated release of the novel IL-1 family
cytokine and IL-33 in the lungs. The immunohistochemical
analysis of IL-33 in the lung tissue demonstrates that it is
localized mainly in the nucleus of alveolar epithelial cells
[112].

Using the specific Src inhibitor PP1, a number of
investigators have reported roles for Src in key pulmonary
responses, NF-κB activation, and integrin signaling for acute
lung injury in mice treated with LPS. LPS treatment results in

c-Src phosphorylation in the lung tissue, and phospho-c-Src
is localized principally to gathered neutrophils and alveolar
macrophages. PP1 inhibits the LPS-induced enhancement of
total proteins in the bronchoalveolar lavage fluid and the pro-
duction or activity of TNF-α and matrix metalloproteinase-
9 as well as neutrophil recruitment. PP1 also interrupts
LPS-induced NF-κB activation and IκB-α degradation. The
inhibition of NF-κB activation by PP1 results in a decrease
in LPS-induced integrin signaling, not only by increasing
the phosphorylation of integrin β3 and the focal adhesion
kinase (FAK) family members, such as FAK and Pyk2, in lung
tissue but also by decreasing the fibrinogen-binding activity
of alveolar macrophages. Furthermore, treatment with anti-
αv, anti-β3, or Arg-Gly-Asp-Ser (RGDS) inhibits the LPS-
induced NF-κB activation. Taken together, Src plays critical
roles in the LPS-induced activation of NF-κB and integrin
(αvβ3) signaling during acute lung injury, which implies
that Src inhibition may provide a potential treatment to
ameliorate inflammatory cascades in lung injury [113].

4.2. Kupffer Cells in Liver. The liver functions in both
host defense and tissue protection through hepatic cell-
cell cross-talk that regulates coagulation and is essential
for the inflammatory responses. When these events are
not controlled correctly, secondary hepatic dysfunction may
occur. Kupffer cells (KCs) are the largest population of
resident macrophages in the liver. Activated KCs may cause
damage to hepatocytes by the secretion of inflammatory
cytokines, such as tumor necrosis factor-α (TNF-α), or by
neutrophil infiltration [114–119].

Located directly in the bloodstream in the narrow liver
sinusoids, KCs may under some circumstances, release vast
amounts of pro-inflammatory mediators into the circu-
lation. When the inflammatory actions of KCs are not
turned off by anti-inflammatory equivalents, this may lead
to systemic inflammation, such as sepsis, and damage to
several additional organs, such as the kidney [114, 120, 121].
KCs have been implicated as major producers of circulating
anti-inflammatory cytokines, including interleukin-6 (IL-6)
and IL-10, against peritonitis and trauma. In addition, it has
been reported that the production and signaling of IL-10
protects against liver injury in mice. Recently, it was reported
that early increases in IL-6 and IL-10 occur in the plasma
during liver surgery, whereas the levels of pro-inflammatory
cytokines, such as TNF-α remain low. In bacterial infections,
however, KCs release large amounts of TNF-α [119, 122–
127].

Recently, the involvement of Src in TNF-α production
has been reported in the murine macrophage cell line
RAW264.7 and in J774 cells. In several studies, Src inhibitors
have been shown to have no effect on IL-6 production and
only limited effects on IL-10 levels, implying that the slight
Src-dependent inhibition of IL-10 may be a secondary event
[114, 128].

p38 plays an important role in IL-6 production in
KCs in response to hypoxia. In contrast, the production
of macrophage chemotactic protein-1 (MCP-1) is indepen-
dent of p38. Other studies suggest that ERK1/2 is more
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important for controlling IL-6 production in KCs than
p38. The disparity between the studies is likely a result
of the different animal models and different stimuli used
but may also reflect differential regulatory pathways in
KCs following various types of injury. In male mice under
hypoxic conditions, Src is activated in KCs, suggesting
that Src activity is induced by hypoxia [129]. The treat-
ment of animals with the Src inhibitor PP1 blocks the
increase in Src phosphorylation as well as the subsequent
elevation in IL-6 production by KCs following hypoxia.
Therefore, it is likely that the Src tyrosine kinase plays
a role in regulating the responses of KCs to hypoxia.
[114, 130]. In summary, the activation of Src following
hypoxia may result in liver disease mediated by KCs,
and Src may be an inhibitory target for liver inflamma-
tion.

4.3. Microglia in Neural Tissue. Microglia are the resident
macrophages in the brain and are generally the first cells
to respond to brain injury or infection; the cells pro-
duce a graded response, including changes in morphol-
ogy, increased motility, the production of inflammatory
cytokines, proteases, and reactive oxygen mediators, and
phagocytosis. However, the chronic or uncontrolled stimula-
tion of microglia promotes inflammatory responses that may
lead to several neurological disorders, such as Alzheimer’s
disease, Jacob disease, AIDS dementia, and multiple sclerosis.
In vitro, microglia are activated by a variety of agents; none
is more potent than LPS. The activation of an unidentified
tyrosine kinase is an early event upstream of LPS in most
cell types, and Src family kinases have been implicated in
LPS signaling; however, this proposal remains controversial.
Although the general tyrosine kinase inhibitor herbimycin A
completely inhibits LPS-induced MARCKS, MRP, and iNOS
in BV-2 cells, little evidence for the involvement of Src-
like kinases has been obtained using specific Src inhibitors,
such as PP1 and PP2. The unexpected increases in MARCKS
and MRP have been observed at lower doses using the Src
inhibitor PP1 [131–135].

In other neurodegenerative pathways, CD40 may be a
positive regulator of Src; this was investigated in microglia
challenged with CD40L. The CD40L-mediated TNF-α pro-
duction in microglia is dependent on p44/42 MAPK, and Src
activation might bridge the stimulation of microglial CD40
and the consequent activation of p44/42 MAPK. Therefore,
microglia cotreated with CD40L and the Src family kinase
inhibitor PP1 demonstrate a marked reduction in both
p44/42 MAPK activation and TNF-α secretion by these
cells. The activation of Src is required for the transduction
of p44/42 MAPK-dependent TNF-α production following
CD40 ligation. This is especially interesting when considered
in conjunction with the stimulation of microglial CD45, in
which the cotreatment with CD40L and anti-CD45 mAb
results in the dramatic inhibition of Src and downstream
p44/42 MAPK activities as well as TNF-α secretion [136,
137]. Therefore, Src might be a suitable therapeutic target
for the treatment of neurodegenerative diseases involving the
activation of pathological microglia.

4.4. Osteoclasts in Bone. Osteoclasts are multinucleated,
terminally differentiated cells that degrade the mineralized
matrix during normal and pathological bone turnover.
Osteoclastic bone resorption includes the proliferation of
the hemopoietic osteoclast progenitors to bone, their dif-
ferentiation and fusion to form multinucleated cells, and
the migration of osteoclasts to the resorptive bone. Many
researchers have suggested that the activation of Src is
associated with the movement from stable focal adhesions
with actin fibers to a more dynamic podosome complex,
possibly by regulating cell motility [138]. Although several
studies have proposed a role for Src activity in the spreading
and migration of cells, it remains unclear whether the
catalytic activation of Src is required for general osteoclast
functions. It has been reported previously that the osteoclast-
specific expression of kinase-dead Src mutants rescues the
Src−/− osteopetrotic phenotype [139], suggesting that c-
Src may play a role as an adaptor molecule and that c-Src
activity may not be important in bone resorption. On the
other hand, recent reports have demonstrated that the down-
or upregulation of c-Src activity regulates osteoclastic bone
resorption not only in vitro but also in vivo, leaving the issue
of the contribution of c-Src activity unresolved [140–146].

c-Src is required for retaining the cyclooxygenase (COX)
activity in osteoclasts. Furthermore, COX activity is required
for the bone-resorbing activity of mature osteoclasts. The
most notable defect in SYF cells is the decrease in cell
proliferation and motility, which are both ATP-dependent
events. The c-Src in mitochondria modulates COX activity,
and c-Src/COX signaling is important for the bone-resorbing
activity of osteoclasts. A reduction in the COX activity
mediated by c-Src may be a characteristic of the osteopetrotic
phenotype of c-Src−/−mice [140].

Recent studies have indicated that osteoclasts are
involved in the pathogenesis of bone and joint destruction
and are a potentially potent therapeutic target for the
treatment of rheumatoid arthritis (RA). Therapies that
diminish osteoclast formation or function may improve the
progression of bone degradation. A cure for RA is unlikely
until its etiology is explained; however, the suppression of
osteoclast activity by modulating various signaling pathways,
including c-Src, will likely be pursued as a novel therapeutic
approach for preventing the joint breakdown associated with
RA [140].

5. Therapeutic Approaches Using Src Inhibitors

Understanding the functional and biological significance
of Src in tumorigenesis has led to the development of
novel Src inhibitors for therapeutic purposes. In recent
years, increasing numbers of chemical compounds have
been designed and synthesized as novel inhibitors of Src.
Understanding the structure of Src has allowed the develop-
ment of selective and strong inhibitors that are structurally
optimized to bind target areas, such as the ATP-binding
motif or other allosteric sites. Bosutinib (SKI-606), dasatinib
(BMS-354825), saracatinib (AZD0530), KX2-391, and NVP-
BHG712 are examples of recently developed Src inhibitors,



Mediators of Inflammation 11

exhibiting IC50 values ranging from 0.001 to 0.3 μM. In
addition to the direct assessment of enzymatic activity, the
biological activities of these inhibitors have been tested
primarily in cancer disease settings; for example, studies
have addressed the ability of Src inhibitors to reduce the
progression of breast, colon, and thyroid cancers [147].
Because trials have not assessed the immunopharmacological
efficacy of these inhibitors under inflammatory conditions
either in vitro or in vivo, systematic approaches could lead
to the discovery of promising immunosuppressive or anti-
inflammatory drugs that target Src during inflammatory
responses [148–152].

5.1. Plant Extracts. Although few experimental trials of
selective Src inhibitors have been reported, evidence suggests
that plant extracts act by suppressing the Src-related path-
ways (Table 4). For example, Sorbus commixta water extract
attenuates TLR4/MyD88-mediated NF-κB translocation by
inhibiting Src and Syk in murine macrophages [101]. It has
also been reported that treatment with an ethanol extract
of Phaseolus angularis beans results in a dose-dependent
reduction in the production of NO and PGE2 in LPS-,
poly(I:C-), and pam3CSK-activated RAW264.7 cells through
a transcriptional mechanism [100]. Polygonum hydropiper
L.extract has been shown to regulate the activation of NF-κB,
AP-1, and CREB by effectively inhibiting upstream inflam-
matory signals, including Syk, Src, and IRAK1 [98]. Notably,
treatment with an ethanol extract of Sanguisorba officinalis
decreased the production of inflammatory mediators in LPS-
activated RAW264.7 cells and peritoneal macrophages by
suppressing the activity of IKK/IκB/NF-κB, Akt, ERK1/2, and
JNK. Moreover, this treatment inhibited the phosphorylation
and kinase activity of Src [102]. The plant extracts that
inhibit Src are summarized in Table 4.

5.2. Natural Products. In recent studies, several compounds
from natural products have been reported to inhibit Src
activity and inflammatory responses (Table 5). Kahweol and
arctigenin decreased the protein levels of nuclear factor
of activated T-cell cytoplasmic-1 (NFATc1), a major reg-
ulator of osteoclast differentiation, and downregulated the
osteoclast markers transcriptionally modulated by NFATc1,
such as Src and cathepsin K [110, 111]. The inhibitory
effects of glabridin, a flavonoid purified from licorice root,
in murine osteoclast progenitor RAW264.7 cells are also
mediated by the RANKL-induced expression of signaling
molecules (TRAF6, GAB2, ERK2, JNK1, and MKK7) and
osteoclast survival-related signaling pathways involved in c-
Src, PI3 K, and Akt2 [108].

Cytochalasin B, which blocks actin polymerization,
decreases both the LPS-induced phosphorylation and kinase
activity of Src without changing the total protein levels,
implying that Src is a potential pharmacological target of
actin cytoskeleton rearrangement. Furthermore, the direct
association of Src with actin was confirmed by immuno-
precipitation analysis performed using a GFP-actin wild-
type and HA-tagged Src [104]. Therefore, actin cytoskeleton
rearrangements may be a key event in the regulation of

inflammatory responses that control the activity of Src
and its downstream signaling proteins [104]. Moreover,
morelloflavone, a biflavonoid, has been shown to block
the migration of vascular smooth muscle cells through the
inhibition of multiple migration-related kinases, such as
focal adhesion kinase, c-Src, ERK, and RhoA [109].

Several newly synthesized derivatives of kojic acid, a com-
pound with known antiinflammatory, anti-proliferative, and
antioxidative properties, modulated glioma cell proliferation
and TLR4-mediated activation in macrophage-managed
tumor microenvironments [106]. The anti-inflammatory
activities of kojic acid derivatives were evaluated by deter-
mining the production of nitric oxide (NO) and cytokines
in macrophages (RAW264.7 cells) stimulated with LPS.
Among the various derivatives tested, RHS-0110 exhibited
the strongest inhibitory activity on the Src phosphorylation
levels. Lower or noncytotoxic doses of kojic acid deriva-
tives also downregulated LPS-induced NO production and
interleukin- (IL-)6 expression in RAW264.7 cells [106]. We
suggest that natural products that inhibit Src activity and
inflammatory responses exhibit strong immunosuppressive
and anti-inflammatory properties; therefore, they are poten-
tial candidates for anti-inflammatory therapeutic drugs.

5.3. Redox-Sensitive Cysteine Residues. Oxidative stress has
been implicated in the progression of many inflammatory
diseases, including pulmonary disease, gastritis, neurodegen-
erative disorders, atherosclerosis, and bowel disease [153–
157]. Many reports have suggested that cysteine is an impor-
tant target of redox-mediated signaling and inflammatory
therapy [158].

In addition to the phosphorylation-based regulation of
Src, recent studies have indicated a possible role for cysteine
modification in the regulation of the kinase. Of the ten
cysteine residues scattered throughout the Src protein, three
(Cys-185, Cys-238, and Cys-245) are located in the SH2
domain, two (Cys-277 and Cys-400) are in the N-terminal
portion of the catalytic domain, four (Cys-483, Cys-487, Cys-
496, and Cys-498) are conjugated to a cluster at the bottom of
the catalytic domain, and one (Cys-520) is in the C-terminal
end of the protein. Of these cysteines, two in the SH2 domain
(Cys-238 and Cys-245) and three in kinase domain (Cys-
400, Cys-487, and Cys-498) are highly conserved among
the Src family kinases [159]. Specially, four cysteines in the
C terminus of the c-Src catalytic domain, including Cys-
483, Cys-487, Cys-496, and Cys-498, comprise the cysteine-
clustered motif (CC motif) [159, 160].

The substitution of these cysteine residues renders Src
refractory to inactivation by SH-alkylating agents and mer-
curic ions, such as HgCl2, which have high affinity for
the thiols in cysteines [160]. Interestingly, hypoxia-induced
oxidative stress causes the differential redox regulation of Src.
It is known that Cys-245 and Cys-487 are involved in the
oxidation/activation of Src during hypoxia; however, studies
using mutants in either Cys-245 or Cys-487 demonstrated
that the oxidation of Cys-487 is critical for increasing the
kinase activity of Src, indicating the formation of inter-
molecular Src S-S adducts [161, 162]. Kemble and Sun also
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Table 4: Plant extracts inhibiting Src activation in macrophages.

Plant Target Src pathway Reference

Archidendron clypearia Src/NF-κB-targeted inhibition of LPS-induced macrophage activation and dextran sodium
sulfate-induced colitis

[97]

Polygonum hydropiper Suppression of Src/Syk/NF-κB and IRAK/AP-1/CREB pathways and dextran sodium
sulfate-induced colitis

[98]

Cinnamomum cassia Suppression of Src/Syk-mediated NF-κB activation and antigastritis [99]

Phaseolus angularis beans NO and PGE2 production mediated by the suppression of NF-κB and AP-1 activation
signaling cascade and antigastritis

[100]

Sorbus commixta Suppression of the inflammatory signaling cascade composed of Src, Syk, and NF-κB. [101]

Sanguisorba officinalis NO and PGE2 production mediated by the suppression of NF-κB and AP-1 activation
signaling cascade

[102]

Table 5: Naturally occurring compounds inhibiting Src pathway activation in macrophages.

Compound Action target of Src Reference

Saurolactam Inhibition of osteoclast differentiation and stimulation of apoptosis in mature osteoclasts. [103]

Cytochalasin B Suppression of actin cytoskeleton rearrangement [104]

Butyrate Reduction of lipopolysaccharide-mediated macrophage migration [105]

RHS-0110
(Kojic acid derivative)

Suppression of LPS-induced NO production and interleukin- (IL-) 6 expression [106]

Maslinic acid Suppression of RANKL-induced osteoclastogenesis [107]

Glabridin Suppression of RANKL-induced osteoclastogenesis [108]

Morelloflavone Inhibition of migration-related kinases, amelioration of atherosclerosis in mice [109]

Arctigenin Suppression of (RANKL-) mediated osteoclast differentiation [110]

Kahweol Prevention of osteoclastogenesis [111]

suggested a mechanism for the direct oxidative inactivation
of Src specifically. Occasionally, this inactivation of Src results
in the oxidation of a specific cysteine residue (Cys-277),
which in turn forms a Src homodimer via a disulfide bridge
at Cys-277, located in the Gly loop in the catalytic domain of
Src [163]. Studies to prove the anti-inflammatory functions
of these novel Src inhibitors that target cysteine residues are
actively ongoing.

6. Summary

Numerous studies have revealed that Src plays pivotal roles
in macrophage-mediated inflammatory responses. Impor-
tantly, a variety of inflammatory diseases is closely related
to macrophage activation. The critical roles of Src in
macrophage activation prompted us to consider that the
inhibition of Src activity may be a useful therapeutic strategy
for macrophage-mediated diseases. Recently, several studies
have investigated the possibility that Src inhibitors are useful
for this purpose. Considering that the Src CC motif is a
potent target for anti-inflammatory activities, future studies
may develop CC motif-targeted compounds for Src-targeted
immunomodulatory drugs. We expect that novel and safe Src
inhibitors exhibiting strong immunosuppressive and anti-
inflammatory properties will contribute to the development
of innovative therapies for the treatment of macrophage-
mediated diseases.
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