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Abstract: Due to the rapid growth of the construction industry’s global environmental impact,
especially the environmental impact contribution of bridge structures, it is necessary to study the
detailed environmental impact of bridges at each stage of the full life cycle, which can provide
optimal data support for sustainable development analysis. In this work, the environmental impact
case of a three-tower cable-stayed bridge was analyzed through openLCA software, and more than
23,680 groups of data were analyzed using Markov chain and other research methods. It was
concluded that the cable-stayed bridge contributed the most to the global warming potential value,
which was mainly concentrated in the operation and maintenance phases. The conclusion shows that
controlling the exhaust pollution of passing vehicles and improving the durability of building materials
were the key to reducing carbon contribution and are also important directions for future research.

Keywords: greenhouse gas; environmental impact; cable-stayed bridge; life-cycle assessment;
sustainable construction

1. Introduction

With the rapid development of the world economy, infrastructure construction has made a giant
leap. The total greenhouse gas emissions associated with the multiple phases of an infrastructure’s life
cycle have accounted for 40% of global energy use [1]. According to the China Statistical Yearbook,
it shows that in 2000, China consumed 56.929 million tons of oil in transportation, accounting for
24.9% of China’s total oil consumption. The Development Research Centre of the State Council of
the People’s Republic of China forecasted that the country’s transport oil consumption would reach
256 million tons by 2020 [2]. Huge energy consumption leads to serious pollution of the natural
and living environment, and meanwhile, the amount of greenhouse gases increases. Scientists and
institutions around the world have proposed a series of measures and policies to alleviate the problems
caused by the greenhouse gas effect [3,4].

Larsson Ivanov et al. [5] have investigated air pollution and greenhouse gas emissions from the
production of certain building materials and products. They demonstrated that road transport is also a
major source of greenhouse gas emissions. The Swedish Transport Authority has planned that the
investment of infrastructure projects (such as bridges and tunnels) would increase by at least 5 billion
Euros from 2020 to 2029, and that carbon dioxide emissions must be cut by between 17% to 30%.

In 2006, the Elinkaareltaan Tarkoituksenmukainen Silta Project was launched in Finland, Sweden,
and Norway [6]. In 2009, Denmark joined in. The project aimed to optimize a bridge’s life cycle while
covering economic, environmental, and aesthetic issues throughout the bridge’s life cycle, and they
developed a life-cycle assessment (LCA) tool for bridges [7].
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Using the LCA, the project developed openLCA, Efootprint, Ebalance, and other software.
The key aim of the software system is to establish a strong database, including the Center for
Environmental Assessment of Product and Material Systems ( SPINE@CPM) database of Sweden [8],
Prozessorientierte Basisdaten (PROBAS) database of Germany [9], Environmental Management
Association for Industry database of Japan (JEMAI) [10], The National Renewable Energy Laboratory
of United States database (USNREL) [11], The Life Cycle Inventory of Universidad Real Instituto de
Tecnologia de Melbourne(RMITLCI) database of Australia, the Swiss Ecoinvent database, and the
European Reference Life Cycle Database (ELCD) have been established as complete databases [7].

The Ecoinvent database was created by several institutes using The Swiss Federal Institute of
Technology Zurich domain name and the non-profit association Agroscope [12]. The database includes
more than 2200 new data groups and 2500 updated data groups, which covers buildings, building
materials, transportation, and so on. In addition to providing the summary data set, the database
also includes the decomposed unit process data list, the data input and output of each production
step, and the built data module. It provides a sufficient scientific research basis for LCA research in
various fields.

In view of the increasing pollution of the environment by the construction industry,
García-Segura et al. [13] and Itoh et al. [14] conducted carbon dioxide and cost assessments on
box bridges. The study is a single example and lacks systematicity in the face of the construction of
new types of bridges. Hong Wei [15] used life-cycle analysis and quantified the environmental impact
of bridges. Heijungs et al. [16] presented research on framework modeling showing that there is
insufficient practical guidance and proposed the establishment of a scientific framework for sustainable
development life-cycle analysis in terms of products, materials, and technologies. Penadés-Plà et al. [17]
used openLCA software to study the environmental impact of a box girder of two structural sizes,
though the application reference value of actual engineering projects is insufficient. They studied
the environmental impact contribution of box girder highway bridges under different maintenance
schemes. In summary, the research results have laid the foundation for the research methods and ideas
of the environmental impact of infrastructure. What is lacking is that the research is not comprehensive,
systematic, and refined; the research and analysis are not comprehensive.

The comparison of case studies found that the combination of bridge structure design and aesthetics,
human landscape and other concepts, the diversity of materials, the optimization of construction
technology, rapid economic development, and the improvement of environmental requirements and
other factors affect the bridge LCA, and a new assessment needs to be established. It is necessary to
study the cause and effect process of “from the cradle to the end of life” at each stage of the entire life
cycle. The comprehensive, meticulous, and rigorous research results that are in line with the bridge
structure and bridge development form are more representative, important, and of higher quality data.

The above was the basis of the analysis of the thoughts and needs of this article. This study
provides comprehensive research and analysis on the LCA of bridge structures and selected the
comprehensive influencing factors of the four phases, from the cradle to the end of a completed
three-tower cable-stayed bridge. In addition, the main causes and the mechanism of the environmental
emission contribution in each stage were analyzed. Finally, the research results of the environmental
emission contribution of cable-stayed bridges were obtained.

2. Methods

2.1. Research Framework and Method of LCA of a Cable-Stayed Bridge

This study used the openLCA 1.10.3 software [18], as well as the Ecoinvent database to study
the contribution to the environmental impact of cable-stayed bridges. The LCA analysis of the
cable-stayed bridge was divided into five phases: (1) cable-stayed bridge design, (2) cable-stayed
bridge structural materials processing and construction, (3) cable-stayed bridge construction and
installation, (4) cable-stayed bridge operation and maintenance, and (5) the decommissioning and
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dismantling of the cable-stayed bridge after the lifetime of the bridge. The reliability of the LCA results
analysis mainly depended on the selection of a reasonable database and the accuracy of the parameters
in each research stage. The study followed the ISO 14040:2006 framework [19] and the CML (Centrum
voor Milieuweten schappen Leiden) 2001 standardized approach (Leiden University) [20]. According
to the actual data of the whole process of cable-stayed bridges, the accuracy and effectiveness of the
research and analysis were guaranteed. The verification information included the cable-stayed bridge
design drawing, geological survey report, construction organization design, special plans, and the
Ecoinvent database.

As shown in Figure 1, the LCA analysis of cable-stayed bridges was not carried out at the design
phase. The bridge survey and design stage mainly consisted of the surveying and mapping of the
engineering site by the design unit, as well as the interior design and production of the drawings.
Large mechanical equipment and materials were not used at this stage, and only a small amount of
prospecting and measuring equipment and the design work of building and structural engineers were
required. As a whole, the environmental impact contribution of a cable-stayed bridge in this stage is
not large; therefore, we did not analyze its effect.

Int. J. Environ. Res. Public Health 2020, 17, x 3 of 23 

installation, (4) cable-stayed bridge operation and maintenance, and (5) the decommissioning and 
dismantling of the cable-stayed bridge after the lifetime of the bridge. The reliability of the LCA 
results analysis mainly depended on the selection of a reasonable database and the accuracy of the 
parameters in each research stage. The study followed the ISO 14040:2006 framework [19] and the 
CML (Centrum voor Milieuweten schappen Leiden) 2001 standardized approach (Leiden University) 
[20]. According to the actual data of the whole process of cable-stayed bridges, the accuracy and 
effectiveness of the research and analysis were guaranteed. The verification information included the 
cable-stayed bridge design drawing, geological survey report, construction organization design, 
special plans, and the Ecoinvent database. 

As shown in Figure 1, the LCA analysis of cable-stayed bridges was not carried out at the design 
phase. The bridge survey and design stage mainly consisted of the surveying and mapping of the 
engineering site by the design unit, as well as the interior design and production of the drawings. 
Large mechanical equipment and materials were not used at this stage, and only a small amount of 
prospecting and measuring equipment and the design work of building and structural engineers 
were required. As a whole, the environmental impact contribution of a cable-stayed bridge in this 
stage is not large; therefore, we did not analyze its effect. 

 
Figure 1. Life-cycle assessment (LCA) analysis flow chart of the three-tower cable-stayed bridge. 

2.2. Definition of the Environmental Impact Scope of a Cable-Stayed Bridge 

Throughout its life cycle, the contribution of cable-stayed bridges to the environment is the 
impact of the entire process from the cradle to the grave. It is necessary to input all the data of each 
stage of the entire life cycle as input analysis data into the software and use part of the data generated 
in the process as output analysis data; for example, use concrete production data in the construction 
phase as input data and use waste concrete and wastewater generated during the production process 
as output data analysis. 

International Standard (ISO, 2006b) provides an explanation [19]. The defining principle of the 
time dimension of the analysis mainly considers phases (1), (2), and (3), which should be 
implemented in accordance with the provision times of the design drawings. Stage (4) should be 
implemented in accordance with the design life for 100 years. Stage (5) should start calculating short-

Figure 1. Life-cycle assessment (LCA) analysis flow chart of the three-tower cable-stayed bridge.

2.2. Definition of the Environmental Impact Scope of a Cable-Stayed Bridge

Throughout its life cycle, the contribution of cable-stayed bridges to the environment is the impact
of the entire process from the cradle to the grave. It is necessary to input all the data of each stage of
the entire life cycle as input analysis data into the software and use part of the data generated in the
process as output analysis data; for example, use concrete production data in the construction phase as
input data and use waste concrete and wastewater generated during the production process as output
data analysis.

International Standard (ISO, 2006b) provides an explanation [19]. The defining principle of the
time dimension of the analysis mainly considers phases (1), (2), and (3), which should be implemented
in accordance with the provision times of the design drawings. Stage (4) should be implemented in
accordance with the design life for 100 years. Stage (5) should start calculating short-time emissions in
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accordance with the specification for 100 years from the beginning of the demolition to the completion
of the landfill.

In order to select the LCA impact assessment factor model framework of this article, the following
three types of data were comprehensively studied: International Organization for Standardization
(ISO), the International Society for Environmental Toxicology and Chemistry (SETAC), and the
Danish Industrial Product Environmental Design Method (EDIP) to establish a framework (6 types),
LCA software analysis factors (11 types), and midpoint modeling analysis (18 types), as shown in
Figure 2 [17,19,21,22].
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The main influencing factors and causes shown in Figure 2 show that the focus of building
materials and whole-life research is on human health analysis and energy loss. Of the 18 types of
influence parameters shown, this study focussed on the analysis of five major factors affecting the
greenhouse effect, which according to Du et al. [23] and Kim et al. [24] are: global warming parameter
(GWP), acidification parameter (AP), eutrophication parameter (FEP), particulate matter formation
parameter (soot and dust PMFP), and solid waste parameter (WP).

2.3. Feature Modeling Method Selection and Weight Factor Analysis

In LCA modeling analysis, researchers mainly use two modeling methods: midpoint modeling
and endpoint modeling [22,25]. In the full life-cycle analysis of the LCA process, the advantages and
characteristics of the two methods should be comprehensively compared [26]. Each stage and each
indicator adopts midpoint modeling, and the impact of bridge construction on human health and
social assets adopts endpoint modeling. Penadés-Pla et al. [17] applied Kriging optimization and
bridge modeling to find the midpoint and endpoint ranges.

Midpoint modeling typically involves selecting an indicator (the so-called midpoint) somewhere
between the emissions and the endpoint in the environmental mechanism and modeling the impact of
that indicator. The characteristic of midpoint modeling is that it does not pay attention to the overall
environment mechanism, but the disadvantage is that there is uncertainty about the scope of the
research, the duration of the research forecast, and the research model.

Endpoint modeling focusses on the representation of the contribution of LCA to the protected
area. The representation model must include the entire environmental mechanism and attempt to
model the process quantitatively. In the modeling process, the impact of modeling failure is not usually
considered; thus, it is more uncertain and unknown. The potential benefit of this approach is that the
effects at the endpoint level can be compared [12].

Considering the advantages and disadvantages of the two methods, the joint modeling and
weighted analysis method of the midpoint and end-point were adopted in the modeling and analysis
of a cable-stayed bridge [23] and parameter weighting was introduced into the LCA modeling process.

As shown in Figures 3 and 4, in the four phases of the cable-stayed bridge modeling and analysis
process, the midpoint analysis modeling method was adopted, and the setting of weighted parameters
was introduced. For the overall environmental impact assessment, the endpoint modeling research
was adopted, the environment mechanism weighted parameters were introduced, and the feature
modeling was introduced in the process of database selection and analysis process.
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3. LCA Assessment Process and Data Analysis

This study selected the municipal bridge across the Hun He River in the Liaoning province of
China as the research object. The bridge is a three-tower concrete cable-stayed bridge with a single
cable plane. The bridge is 360 m long (63 + 112 + 112 + 63 + 10 m) with a 38 m surface width and a 2 m
cable anchorage zone. The central bridge tower is a beam–tower–pier consolidating system and the
bridge towers on both sides are a beam–tower consolidation system. A single-box double-chamber
structure is adopted in the main beam with a 2.4 m central height, a 1% cross slope, a 25 cm top-plate
thickness, a 24 cm bottom-plate thickness, a 2.5 m central web thickness, and a 1 m side web thickness.
At every 6 m interval on the main beam, a transverse separating beam is set up with a 70 cm thickness
and transverse beams are set up at the ends. The cable anchor is fixed at the bottom of the central
web of a box-type beam. The main towers have a 20 m height over the bridge surface. An I-shaped
cross-section (with a 5.0 m × 3.8 m dimension) was adopted for the upper tower columns and a
solid cross-section (with a 5.0 m × 2 m dimension) was adopted for the intermediate tower columns.
A box-type thin-wall structure was adopted for the pier body, a transverse separating plate was set up
inside the pier, and the base is an extensive one. For the stayed cable, high-tensile galvanized steel
wire, a chill-cast anchor, and a hot-extruded polyethylene (PE) guard sleeve were adopted. The main
beams used in the bridge construction were precast hollow reinforced concrete slabs with a 65 cm
thickness and a 125 cm width.

As shown in Figure 5, the cable-stayed bridge is divided into three towers, four spans, and two
cross-sections. The construction process was as follows: (1) First, adopting a cast-in-site caisson;
second, hoisting to the pile position, digging, and discharging the soil in the well; third, sinking the
pile to the designed bedrock position; and finally, pouring the slab concrete into the caisson. Continue
to complete the pouring of the concrete of the dock. (2) The main beams were constructed with steel
brackets with a “six + four” structure.
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The construction was divided into three sections: assembling the outer mold of the steel formwork,
assembling the inner mold of the box girder using a wooden mold, and inverting the outer mold
and bracket three times. The inner mold of the box girder (damaged during the dismantling) was
processed three times to finish the construction of the main girder. (3) The stay cable tension of the
previous process was completed, and at the same time, the concrete of the subsequent process was
poured, and constructed in order. (4) The last section of main beam concrete construction, bridge deck
pavement, railing installation work was completed, and finally, the bracket was removed.

3.1. Processing and Construction Stage

The main materials of the cable-stayed bridge construction included concrete (comprising cement,
water, gravel, river sand, and admixture), asphalt, steel bar, plate, rubber bearings, steel strand, steel
products (steel plates, steel template, six-four military support), anchorage, corrugated pipe, wooden
templates, wood, and other subsidiary materials.

3.1.1. Concrete

The main ingredients of concrete are cement, water, gravel, river sand, and admixture. Cement
is also the biggest contributor to environmental impacts. China’s cement production mainly adopts
the new suspended preheater kiln production process, and the cement output produced by the new
suspension preheating kiln production process accounts for 95% of China’s total annual cement
output [27]. Each kind of building material has a physical and chemical environmental influence.
According to the requirements of the construction drawings and the same-concrete data of the
Ecoinvent database, ordinary Portland cement was selected. The database includes cement during
the entire process, from the start to the finished product, including the source of upstream products
(such as gypsum). The production of 1 kg of cement generates a waste heat emission of 0.135 MJ
(standard deviation of 1.4918) [14]. There are four types of cable-stayed bridge concrete: C50, C40, C30,
and asphalt concrete. The asphalt content is 6.5% and the density is 2.35 t/m3 [28]. The commercial
concrete used in the cable-stayed bridge was supplied by local manufacturers. According to the
database, the loss in the production process was determined to be 24.5 kg of waste per 1 m3 concrete.
The sewage discharge value was 0.035 m3/m3. In the calculation of the environmental impact analysis,
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the concrete was divided into the production and construction phases, and the coefficient of the
contribution of the emissions to the environmental impact is shown in Table 1.

Table 1. Environmental impact contribution coefficient of materials during the processing and
construction [29–31].

Material Name Unit GWP AP FEP PMFP WP

P. I. 52. 5
kg/t

1042.00 0.28 1.61 2.24 0.00
P. O. 42. 5 920.00 0.25 1.43 2.02 0.00
P. S. 32. 5 678.00 0.20 1.09 1.57 0.00
River sand kg/m3 2.56 0.00 0.00 0.00 0.00
Gravel kg/m3 3.30 0.00 0.00 0.00 0.00
Flake kg/m3 3.37 0.00 0.00 0.00 0.00
C50

kg/m3
705.00 0.02 0.02 0.05 0.00

C40 608.00 0.01 0.01 0.05 0.00
C30 565.00 0.01 0.01 0.04 0.00
Ordinary asphalt kg/t 174.00 0.00 0.00 0.17 0.11
Modified asphalt 296.00 0.00 0.00 0.17 0.11
Grade I and II steel bars kg/t 4524.00 46.10 28.60 158.40 258.00
Steel wire 3551.00 46.10 28.60 158.40 258.00
Large steel

kg/t
4339.00 56.60 34.80 150.10 323.00

Medium steel 3589.00 46.60 28.90 124.60 268.00
Small steel 3560.00 46.10 28.60 123.40 252.00
Diesel kg/kg 4.62 0.00 0.00 0.00 0.00
Gasoline kg/kg 4.36 0.00 0.00 0.00 0.00
Waterproof coating kg/kg 0.41 0.16 0.02 0.00 0.02
Power consumption kg/kwh 0.98 0.00 0.00 0.00 0.00
Consumption kg/person/day 2.88 0.00 0.13 0.00 0.50

GWP: Global warming parameter; AP: Acidification parameter; FEP: Eutrophication parameter; PMFP: Particulate
matter formation parameter; WP: Solid waste parameter.

3.1.2. Main Material

Rebar, steel, and pipe were the main materials. Steel smelting in China is divided into two
types [32,33]: converter steel and electric steel. A total of 90% of the steel output is made using
converter steel and about 10% is made using electric steel [14]. The environmental impact contribution
of a 1 kg steel bar discharge, which was determined using the database, is specified in Table 1.

3.1.3. Material Transportation at the Manufacturing Stage

All the raw materials were ready to enter the site in the early phases of construction. According to
the design plan, the transportation distance of concrete raw materials was 120 km, and the mixing water
was tap water. The transportation distance of the commercial concrete was 30 km; the transportation
distance of the steel bar, steel products, and steel strand was 160 km; the wood’s transportation distance
was 80 km; and other materials were provided from the non-ferrous metal market, which was 100 km
away. The materials were transported using three types of trucks: 17.5 m (49 t), 6.8 m (18 t), and 4.2 m
(4 t). A gantry crane, a 25 t crane, and six erection workers completed the loading and unloading.
The machines and tools are shown in Table 2.
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Table 2. The statistical table of used machinery and equipment at each stage [32,34].

Vehicle, Machinery Type Fuel Consumption (kg/km) Transport Distance (km) Types of Shipping Materials

Heavy truck (49 t dead weight,
length 13–17.5m) 0.67–0.84 120, 160

Cement-crushed stone-river
sand; steel bar, steel strand,
and other steel products

Medium-sized truck (18 t dead
weight, length 5.8–6.8 m) 0.15–0.21 120, 80 Additives, wood

Light truck (4 t dead weight,
length 2.6–4.2m) 0.10–0.14

Concrete mixer truck (12 m3) 0.13–0.16 30 C50, C40, C30

Gantry crane (50 t) 22–30 kW 0.5 Lifting steel bar, steel strand,
and other steel products

Crane (25 t) 0.13–0.18 2 Lifting Rebar, steel strand,
and other steel products

Remarks: 0 # Diesel = 0.835 kg/L, +10 # Diesel = 0.85 kg/L, −10 # Diesel = 0.84 kg/L. The truck used 0 # Diesel.

The energy consumption value of the environmental impact contribution during the construction
stage is given as:

ECm =
∑

Mqi × λi, (1)

where ECm is the value of environmental impact contribution of raw materials (kg), Mqi is the mass of
material i (kg), and λi is the environmental emission coefficient of physicochemical material i (kg/kg).

The modeling calculation of the environmental impact of the transportation equipment is given as:

Tm =
∑[(

Gqi + Gsi
)
×

( Dqi

100

)
×

(
Mqi/Mei

)
× λn

]
(2)

where Tm is environmental impact contribution of the transport equipment (kg), Gqi is the fuel
consumption of the truck load (L/100 km), Dqi is the freight car transport distance (km), Gsi is the
non-load fuel consumption of freight cars (L/100 km), Mqi is the total mas of the material, Mei is the
load capacity per vehicle (kg), and λn is the physicochemical environmental emission coefficient of of
oil n (kg/kg).

The construction of the environmental impact model of loading and unloading machinery and
personnel is given as:

Mm =
∑

(Tqi ×Kmi × λn) +
∑(

Pmi × λp
)
, (3)

where Mm is the environmental impact contribution of the loading and unloading machinery and
personnel (kg), Tqi is the consumption per mechanical equipment (L/shift), Kmi is the total number of
shifts (working days), Pmi is the number of stevedore shifts (working days), and λp is the numerical
coefficient of environmental impact contribution of personnel per working day (kg/working day).

The total environmental impact contribution at the construction stage is given as:

Cm = ECm + Tm + Mm. (4)

3.2. Construction and Installation Phases

The construction and installation phases were the main phases of the cable-stayed bridge’s
environmental impact contribution to the research. The construction of various products required the
joint work of a large quantity of mechanical equipment and construction personnel. The environmental
impact mainly included the following parts.

3.2.1. Environmental Impact Contribution of Materials Processing

Due to the need for reinforcement, steel, steel wire, and other raw materials were sent to the
site. The technicians performed the processing, lashing, and installation of the steel bars according
to the construction design drawings. See Table 3 for the machinery and equipment used in the
construction process.
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Table 3. Summary table of the operation data of medium and small machines and equipment during
construction and installation.

Device Name Specification Model Quantity
(Table)

Power
(KW)

Use Time
(Month) Oil (L/hour)

Excavator PC400-1 1 228 6 35~45
Roller YZ20Ton 1 249 2 25~35
Loader ZL50 2 162 6 14~15

Dump Truck CQ33 (L/100km) 2 380 2 50~60
Sprinkler 11.7m3 (L/100km) 1 22.5 10 15

Engineering rig XR360 Rotary
drilling rig 2 298 1 20~30

Engineering rig Impact drill JK-6 1 200 1 10~15
Concrete pump truck SY5125THB-9018III 1 176 1 0.5~0.6

Concrete transport truck 12m3 (L/100km) 6 240 6 8~10
Car crane QT25 2 213 3 4~6

Mortar mixer HZS180 2 120 2 120 kw
High frequency vibrator ZG50 30 2 6 2 kw

Diesel generator sets 500KW 1 500 2 131
Rebar cutting machine GT5-12 1 94 2 94 kw
Steel bending machine GW 40 2 40 2 40 kw
Rebar cutting machine GQ50 2 50 2 50 kw
Profile cutting machine J3G-AL-400 1 400 1 400 kw

Remarks: The normal operation of the concrete pump truck is 40 cubic meters per hour.

3.2.2. Environmental Impact Contribution of the Machinery and Equipment in the Processing and
Construction Stage

The calculation of the environmental impact model of mechanical equipment is given as:

Cm =
∑(

Emj × T j × λ j
)
, (5)

where Cm is the environmental impact contribution value of mechanical equipment (kg), Emj is amount
of fuel or power consumption of equipment j (L/hour, kW/hour), T j is the total working hours of
equipment j, and λ j is the fuel or electricity physicochemical environmental emission coefficient of
equipment j (kg/l, kg/kW).

3.2.3. Value of the Environmental Impact Contribution of Managers and Skilled Workers

The environmental impact modeling calculations for managers and skilled workers is done using:

Pm = Wm × λp × Tp, (6)

where Pm is the value of the environmental impact contribution of skilled workers (kg), Wm is the total
number of workers (people), λp is the environmental impact coefficient of workers (kg/day/worker),
and Tp is the total time worked (days).

According to the construction organization design, there were 36 project management and
technical staff, 180 technical workers on average, 24 logistics service staff, and the construction period
was 14 months.

3.2.4. Contribution Value of the Electric Power Energy to the environment during the
Construction Period

The calculation of the power energy environmental impact modeling during the construction
period is given as:

Em =
∑

[Ti × λi × (1 + Lm)] + Gm × λn × Tm × (1 + Ln), (7)

where Em is the environmental impact contribution value of the electricity and oil consumption during
construction (kg), Ti is the power consumption (kWh/day) of personnel (managers, skilled workers, etc.),
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λi is the physical-chemical environmental emission coefficient of the power consumption (kg/degree),
Lm is the power loss value (degree/day), Gm is the amount of oil consumed by the generator in a
power outage and during field operations (kg/hour), λn is the physicochemical environmental emission
coefficient of oil class n, Tm is the total working time (hours) of the equipment, and Ln is the oil loss
during the generator operations (kg/hour).

3.2.5. Values of the Contribution of Project Managers and Technical Workers to the Garbage and
Sewage Environment

The calculation formula of the environmental impact model of waste and pollutants generated by
managers and skilled workers is given as:

Mp= Pa × Tm × Tn × λp + Sm × Pa × λx × Tn, (8)

where Mp is the contribution value of the garbage and sewage environmental impact from staff during
the life of the project (kg), Pa is the total number of project personnel (people), Tm is the quantity of
household garbage (kg/day), Tn is the working time of the staff on duty (days), λp is the environmental
emission coefficient of the household garbage (kg/kg), Sm is the discharge quantity of personnel
(kg/day), and λx is the environmental emission coefficient of the pollutant discharge (kg/kg).

The total environmental impact contribution during the construction stage is given as:

Bm = Cm + Pm + Em + Mp. (9)

The construction of the three-tower cable-stayed bridge was completed according to the flowchart
shown in Figure 6, which saved materials, increased the working time of the mechanical equipment
and the number of skilled workers, and improved the environmental impact contribution.
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the construction.

3.3. Operation and Maintenance Stage

After the completion and acceptance of the cable-stayed bridge, it entered the operation and
maintenance stage. The cable-stayed bridge is an integral part of the municipal road. After the
cable-stayed bridge was completed and put into use, the local municipal road maintenance department
was responsible for the daily maintenance and repairs of various types of damage. An analysis of
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the statistical data published by the maintenance department shows that the main content of the
maintenance work is divided into daily maintenance for more than five years, monthly maintenance
and inspection, annual maintenance, revision, and replacement [34]. After the beginning of the
operation phase, a large number of motorized and non-motor vehicles pass every day; therefore, it was
necessary to analyze the environmental pollution values of exhaust emissions [35].

3.3.1. The Amount of Environmental Impact Contribution for Maintenance of the Cable-Stayed Bridge

Table 4 summarises the period and content of the maintenance of the cable-stayed bridge. The data
analysis was calculated according to the content of the table. The value of the contribution of the
maintenance and maintenance environment caused by the impact of the natural environment in
the table is uncertain. The analysis of attendance and the calculation of maintenance workers are
also added.

Table 4. Summary table of the cable-stayed bridge maintenance, along with its maintenance cycle and
causes [36–38].

Bridge Disease Causes Conservation Measures Maintenance and Repair Cycle

Concrete carbonation, disease

Shock, vibration, overload,
uneven settlement, chemical
erosion, abrasion, blowing,
freezing and thawing

Brush protective layer,
repair cracks,
recast pavement

The main beam is replaced every
50 years, the bridge deck pavement
and the waterproof layer are
replaced every 10 years, the main
beam body is maintained every
5 years, and the common repair is
every 2 years

Rebar disease Chloride corrosion, concrete
carbonation

Eliminate leakage points,
crack closure, repair of
protective layer, zinc
coating protection

Consider carbonized corrosion,
repair once every 70 years, the
pre-stressed steel strands of the stay
cables are replaced every 20 years

Component performance
degradation and maintenance Overload, aging Local repair, component

replacement

Piers and bearing caps are painted
every 5 years, rubber bearings are
replaced every 25 years,
and expansion joints are replaced
every 10 years

Probability of failure External damage, exceeding
design life Repair, replacement

Deck drainage pipes are replaced
every 50 years (the repair is every
2 years), anti-collision guardrails are
replaced every 15 years (the repair is
every 5 years), lighting devices are
replaced every 50 years (the repair is
every 5 years)

Unpredictable external
environmental impact

Car accident, overload,
collision, bad weather Repair, replacement Repair and replace at any time

The environmental impact contribution of the cable-stayed bridge maintenance:

Cm =
∑[

Bm ×

(
Tm

Tp

)
× λp

]
+

∑[
Pm ×

(Tm

Tn

)
× λn

]
+ Cv, (10)

where Cm is the value of the environmental impact contribution to maintenance and repair (kg), Bm is
the bridge deck pavement replacement area (m2), Tm is the service life of the bridge design (years),
Tp is each replacement time of the bridge deck pavement (years), λp is the environmental emission
coefficient of the bridge deck pavement (kg/kg), Pm is the coated area of the pier column (m2), Tn is the
pier painting change time per time (years), λp is the environmental emission coefficient of the pier
coating (kg/kg), and Cv is the environmental impact contribution value of the mechanical equipment
during the maintenance stage (kg).

3.3.2. Environmental Impact Contribution of Vehicles during the Operation of the Cable-Stayed Bridge

Transportation accounts for 26% of the global energy consumption and 23% of greenhouse gas
emissions are energy-related. Street traffic accounts for 74% of the world’s transport sector traffic [36].
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The cable-stayed bridge is part of a municipal road, which is used by a large number of vehicles
every day and is a major contributor to global greenhouse gases. Colvile et al. [31] have shown that
diesel, gasoline vehicle exhaust, liquid gasoline, and gasoline evaporation account for at least 50% of
volatile organic compounds (VOC) in the environment. The chemical substance balance (CMB) and the
proportion in the emissions inventory [39], which is determined using the chemical substance balance
(CMB), are much greater than the proportion of paint and solvent contributions [40].

To obtain detailed data about the relevant traffic on the cable-stayed bridges, data can be searched
for in the traffic database [41]. The total length of roads in Fushun in 2019 was 6911.4 kilometers,
with an annual highway freight turnover of 1277.295 million tons and highway passenger turnover of
1052.48 million kilometers, with 262,000 civilian cars and 19,035 trucks [33]. According to statistical
research results, carbon emissions from passenger cars in China are estimated to be 305.4 g/km,
and carbon emissions from trucks are estimated to be 271.8 g/km [39].

The calculation of the environmental impact model during operation is given as:

Tm =
∑100

1
[Cm ×Km × λc ×Vm ×Km × λt]

(
1± λy

)
, (11)

where Tm is the environmental impact contribution during operation (kg); Cm and Vm are the annual
toll of passenger cars and trucks (set), respectively; Km is the passenger car journey distance on the
cable-stayed bridge (km); λc and λt are the environmental emission coefficients of passenger cars and
trucks (kg/kg), respectively; λy is the annual increase or decrease of passenger cars and freight cars (%);
and 100 is design life (years).

3.3.3. External Environmental Impact Contribution Value of the Cable-Stayed Bridge

During the operational period, the environmental impact contribution of the cable-stayed bridge
under the influence of special weather, such as snow, rain, and dust, was analyzed by referring to the
monitoring data of the local environmental protection department. Monitoring data from 2010 to 2019
show that: GWP = 1.3~2.2 mg/m3, AP = 12~39 mg/m3, FEP = 22~39 mg/m3, PMFP = 29~46 mg/m3,
and WP = 50~78 mg/m3 [35].

The environmental impact contribution of the cable-stayed bridge should be determined according
to the monitoring data. Considering the declining trend of the values of the five indices year by year,
it was found from the statistical data over 10 years that the values kept changing by about 30%, and that
the changes of the values decreased in the later period under a favorable environment. The influence
of the changed values was not considered in this study.

3.3.4. The Value of the Contribution of Concrete Carbonation to the Environmental Impact of the
Cable-Stayed Bridge

Concrete carbonation was mainly affected by its performance and external environmental
factors. The temperature, carbon dioxide (CO2) concentration, and relative humidity greatly influence
carbonation, which also determines the carbonation depth and compressive strength of concrete [41].
Chen et al. [36] and some other studies have established a multi-field coupling numerical model
and action quantization index for the carbonation analysis of Martínez-Muñoz et al. [42], and have
quantitatively analyzed the influence of temperature, relative humidity, CO2 concentration, and other
factors on the concrete carbonation depth by introducing an environmental correction coefficient.

The model relation of the quantity of CO2 absorbed by per unit volume of concrete is determined using:

m0= (1− α) × 8.22B (12)

where m0 is amount of CO2 absorbed by ordinary Portland cement concrete (mol/m3), B is the amount
of cement material per unit volume of concrete (kg/m3), and α is the content of mixed materials in
ordinary Portland cement (%).
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The calculation of the numerical model of the total carbonation of concrete is done using:

Km = Nc50m50 + Nc40m40 + Nc30m30, (13)

where Km is total carbonation amount of concrete (kg); Nc50, Nc40, and Nc30 are the volumes of C50,
C40, C30 concrete (m3), respectively; and m50, m40, and m30 are the carbonation moduli of C50, C40,
and C30 concrete (kg/m3), respectively.

The environmental impact contribution value during the operation and maintenance of a
cable-stayed bridge (external environmental impact quantity in kg) is given as:

Mm = Cm + Tm + Sm + Km. (14)

3.4. Abandonment and Demolition Stage

The designed service life of highway bridges in China is 100 years. The service life of bridges
is shortened under the condition of long-term exposure to the Cl− or CO2 harsh environments.
After several bouts of maintenance, the designed service life of bridges is determined to enable the
designed service life to be reached, before being abandoned and dismantled [38].

There are two commonly used demolition schemes: manual demolition with mechanical
equipment and blasting demolition. The safety factor of demolition via blasting the cable-stayed
bridge, which is located in the urban area, is low. Through a comprehensive evaluation, the plan
of mechanical and manual demolition was adopted. The comprehensive plan of segmental cutting,
segmental hoisting, site crushing, and freight car transportation to the pre-burial site and steel mill
was determined from the aspects of technology, safety, economy, etc.

Referring to the demolition experience of similar bridges, the mechanical equipment requires 6 long-arm
crushers, 4 loaders, 10 heavy-duty transport vehicles, 4 steel transport vehicles, and 30 management and
technical workers. Demolition is scheduled to take three months. The generated environmental impact
contribution coefficient was calculated by referring to Table 2. The crushed concrete waste is to be transported
and buried in a landfill, which is 160 km away. The steel scrap is to be transported to a steel mill, 180 km
away, for smelting. According to the study results of Kim et al. [43], and in combination with the bridge
removal scheme, it was determined that the recovery rate of concrete is 95%, the recovery rate of steel is
72%, and the recovery rate of steel and steel strand is 85%.

4. Results and Discussion

4.1. Summary and Analysis of the Environmental Impact Contributions at Each Stage

The LCA analysis process of a cable-stayed bridge was completed, the data were summarized,
and the impact of each stage on the environmental impact contribution was analyzed. Table 5 shows
the statistics of the main engineering materials and auxiliary engineering materials project of the
three-tower cable-stayed bridge.

Table 5. List of environmental impact criteria for a cable-stayed bridge at each stage.

Environmental
Parameters Unit

Processing and
Construction

Phases

Construction and
Installation

Phases

Operation and
Maintenance

Phases

Decommissioning
and Dismanting

Phases

GWP kg 40,425,577.87 1,906,820.13 121,031,298.3 16,574,524.2
AP kg 303,615.4 14.4 317,034.68 275.44
FEP kg 193,738.31 40,772.73 192,615.69 8574.12

PMFP kg 917,232.2 6.6169 979,739.53 187.68
WP kg 8,191,263.94 156,810.04 1,740,820.94 32,862.67
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Since the cross-sectional structure of the cable-stayed bridge was divided into two sections, for the
analysis and calculations, 1 m2 was selected as the LCA research unit, and the mix ratio of C50, C40,
and C30 concrete was selected according to the ratio provided by the Ecoinvent database.

The statistical data of the main engineering materials and auxiliary engineering materials of the
three-tower cable-stayed bridge are shown

As shown in Figure 7, the environmental impact contribution value of the cable-stayed bridge in
each stage, and the environmental impact contribution value of the steel products and steel bar in the
processing and construction phases, accounted for 36.64% and 36.35% of the total amount, respectively.
The main reason for this result is that China’s steelmaking process is mainly concentrated in the
converter steelmaking process. Steel has a great impact on the environment during the production
process, according to the study results of Zhu et al. [44]. Therefore, it is necessary to improve the
steelmaking process and technical level and pay more attention to the development and application of
low-carbon environmental protection technologies.
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In the construction and installation phases, the environmental impact contribution was mainly
due to skilled workers and the energy consumed by project participants (electricity, drinking water,
accommodation materials), along with the wastewater dumped by the project participants for
cooking and washing, which accounted for 52.31%. The cable-stayed bridge was a municipal
project, which needed a large number of management technicians. All of these people who lived
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on the construction site for a long time were responsible for the large number of contributions to
environmental impact.

The main reason for the increase in the value was that the environmental impact contribution of
the materials was reduced but the environmental impact contribution of personnel and mechanical
equipment was increased. The environmental impact contribution of the mechanical equipment
reached 27.55% of the total amount.

In the operation and maintenance stage, the environmental impact contribution caused by vehicle
traffic was dominant, accounting for 64.28% of the total, which is a number that needs to be taken
seriously by the automotive and transportation sectors. The environmental impact contribution of
vehicles can no longer be underestimated; although the designers and researchers are looking for ways
to reduce the environmental impact contribution at other phases, there is still little they can do about it.

The value of the environmental impact contribution in the abandonment and demolition stage
was mainly caused by concrete waste, steel, and steel waste removed by vehicle transportation,
which accounted for 83.53% of the total amount.

The cable-stayed bridge will have a significant impact on the environment after 100 years of
operation. This can be seen in the numerical results in Figure 6, which show that vehicle traffic was the
main cause of environmental pollution and it also affected the environmental impact contribution of
the entire cable-stayed bridge.

4.2. Summary and Analysis of the Environmental Impact Contributions of Five Indicators of the
Cable-Stayed Bridge

As shown in Table 6, the total environmental impact contribution of GWP, AP, FEP, PMEP,
and WP in the four phases of the three-tower cable-stayed bridge was 19,3013,584.7 t. As shown in
Figure 8, the processing and construction phases accounted for 25.90%, the construction and installation
phases accounted for 1.09%, the operation and maintenance phases accounted for 64.37%, and the
abandonment and demolition phases accounted for 8.63%. The main reason for the huge impact on the
environment during the operation and maintenance phases was that the replacement and maintenance
of cable-stayed bridge structural components during its 100-year design life will affect the environment.
According to the service life of its components (Table 4), the pre-stressed steel strands of the stay cables
installed on the cable-stayed bridge need to be replaced three times (within 100 years of service life).
The bridge deck pavement will be replaced 10 times. The drainpipe of the bridge will be replaced
twice. The bridge anti-collision railing will be replaced twice. The exposed concrete waterproof layer
of the bridge will be replaced 10 times.

Table 6. Statistical table of raw materials and accessory materials of the cable-stayed bridge.

Material Name Unit Quantity Number Material Name Unit C50 C40 C30

C50 concrete

m3

9050 15 Cement

m3

1337 213 560
C40 concrete 1761 16 Fly ash 315 54 124
C30 concrete 4714 17 Gravel 3693 770 1687

Asphalt concrete 447 18 Sand content 3102 629 2082

Rebar
Level I (Ton) 2037.5 19 Water 602 95 262
Level II (Ton) 37 20 Steel Ton 191.6

Plate rubber support m3 2.33 21

Bellows

ø127 (m) 3679
Stranded wire ø15.24 (Ton) 425.8 22 ø90 (m) 7783

Lasso Ton 350.3 23 ø80 (m) 3670

Cable anchor Set 168 24 90 × 19
(m) 28,428

Anchor

15——27
(Set) 240 25

Military beam,
steel pipe
bracket

Ton 2234

15——14
(Set) 126 26 Box beam steel

formwork Ton 384.1

15——9 (Set) 176 27 Box beam inner
model m2 21,600

15——5 (Set) 1496 28 Fang Mu m 9600
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Among the environmental impact values for the cable-stayed bridge, the carbon dioxide (CO2)
emissions accounted for 93.23% of the total emissions in Figure 7, which was one of the reasons for
choosing the five types of research parameters. The other 13 types of environmental impact values were
relatively small. It can be seen that, in the future, global warming due to gas emissions and its precise
and detailed research and analysis should be the focus of researchers in the construction industry.

This is due to the following three reasons: the large amount of transport waste, the large number
of used transport vehicles, and the long transport distance.

As shown in Figure 9, the environmental impact contribution of the cable-stayed bridge mainly
focussed on the processing and construction phases and the operation and maintenance phases.
The environmental impact contribution of these two phases was mainly concentrated on the production
of steel bars and steel products and the contribution of the exhausts from the passing vehicles,
accounting for 73% and 64.28% of the environmental impact contribution of each stage, respectively.
How to better reduce the environmental impact contribution in the future is worthy of in-depth
consideration by researchers, designers, and managers. The overall LCA environment contribution
order of the cable-stayed bridge was: GWP (93.23%) > WP (5.24%) > PMFP (0.98%) > AP (0.32%)
> FEP (0.23%). The highest proportions of GWP, PMFP, and AP in the operation and maintenance
phases were 67.26%, 51.64%, and 51.05%. The highest proportions of WP and FEP in the processing
and construction phases were 80.93% and 44.47%.

As shown in Figure 10, the environmental impact contribution of point 11 was the largest.
The environmental impact contribution of point 1 was the second-largest, and the environmental
contribution impact of point 16 was the third-largest; The environmental impact contributions of the
other points were much lower.

For Figure 11, the percentages show that the GWP in the operation and maintenance stage
accounted for 67.26% of the total GWP of the cable-stayed bridge, and accounted for 97.40% of the total
environmental contribution during the operation and maintenance phases. For point 1, the percentages
show that the GWP in the processing and construction phase accounted for 22.50% of the total GWP of
the cable-stayed bridge and 80.80% of the total environmental contribution in the construction and
installation phases. Finally, the environmental impact of point 16 was much lower, and percentages
show that the demolition phase GWP accounts for 9.20% of the total GWP of the cable-stayed bridge,
and the abandonment and demolition phase GWP accounted for 99.70% of the total environmental
contribution in the abandon and demolition phase.
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Through the research and analysis in Sections 4.1 and 4.2, it was concluded that the environmental
influence factors of cable-stayed bridges were divided into five index levels, and the influence factors
of each index level had an impact on the environment.

The study proposed a Markov chain model capable of considering the maintenance factors used
by Li et al. [45]. The Markov chain model can solve the problem of multiple factors. The given Markov
chain probability diagram shows the ratio of the environmental impact factors at each stage of the
cable-stayed bridge (Figure 11). The data comes from Table 5.

As shown in Figure 10, the environmental impact contributions of the cable-stayed bridge were
mainly from the processing and construction phases, which manifested as FEP = 193,738.3 kg and WP
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= 8191,263.9 kg, respectively. During the operation and maintenance phases, the contributions were
GWP = 121,031,298 kg, AP = 317,034.6 kg, and PMEP = 979,739.5 kg, respectively.
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5. Conclusions

This study analyzed a three-tower cable-stayed bridge in China. First, this research studied
and analyzed the definition of environmental impact assessment parameters, omitted the set of
13 parameters with small impact, and focussed on the analysis of the five parameters by applying
midpoint modeling. The final endpoint modeling analysis conclusion verified the accuracy and
effectiveness of this method. The amount of CO2 emission in the environmental impact value GWP of
the cable-stayed bridge accounted for 93.23% of the total emissions.

Second, the analysis data of the cable-stayed bridge adopted the data analysis of the whole bridge.
The bottom and topside parts of the bridge were all taken as the analysis object. The environmental
impact contribution of the concrete production stage was classified into the production and construction
phases for analysis because the cable-stayed bridge is a municipal project and it uses commercial
concrete. Therefore, the environmental impact contribution of the construction and installation phases
was mainly influenced by management technicians, accounting for 52.3% of the emissions during this
stage. At the same time, it shows that in the process of the LCA analysis, data classification analysis
should be set according to the actual situation of the project, which makes the results more scientific
and practical.

Third, the operation and maintenance stage of the cable-stayed bridge was the main aspect that
contributed to the environmental emissions, since most of the structural components of the cable-stayed
bridge were replaced 2 to 10 times during their lifetime, and each change had a significant impact on
the environmental impact contribution. Combined with vehicle exhaust emissions, this resulted in
a 64.37% environmental impact contribution of the operations and maintenance phases, where the
specific environmental impact contribution value was 124,307.2 t.

Finally, each stage contributed to the environmental emissions, and the numerical value reflected
the degree of environmental impact. In the last two phases in particular, carbonation had a greater
impact on the environmental impact contribution of the last stage. Especially in the operation and
maintenance phases, concrete carbonation absorbed 1712.9 tons of CO2, which made an important
contribution to the environmental impact. At the same time, the carbonation of the concrete opened
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up corrosion channels for the steel bars of the structural components, resulting in maintenance and
replacement during the operation stage, and finally, the cable-stayed bridge was demolished.

There are still some defects in this study. These lie in the insufficient analysis of the data of
equipment loss and damage caused by daily accidents, and environmental impact assessment caused
by the natural environment, such as earthquakes, tsunamis, and hurricanes. The data analysis, theories,
and methods of modeling used in this study can be used as a reference for research in this field.
Furthermore, the research results can provide ideas and references for researchers and managers to
study the whole-life analysis of a basic bridge.
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