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Age-related changes to the genome-wide DNA methylation (DNAm) pattern
observed in blood are well-documented. Clonal hematopoiesis of indetermi-
nate potential (CHIP), characterized by the age-related acquisition and
expansion of leukemogenic mutations in hematopoietic stem cells (HSCs), is
associated with blood cancer and coronary artery disease (CAD). Epigenetic
regulators DNMT3A and TET2 are the two most frequently mutated CHIP
genes. Here, we present results from an epigenome-wide association study for
CHIP in 582CardiovascularHealth Study (CHS) participants, with replication in
2655 Atherosclerosis Risk in Communities (ARIC) Study participants. We show
thatDNMT3A and TET2CHIP have distinct anddirectionally opposing genome-
wide DNAm association patterns consistent with their regulatory roles, albeit
both promoting self-renewal of HSCs. Mendelian randomization analyses
indicate that a subset of DNAm alterations associated with these two leading
CHIP genes may promote the risk for CAD.

Clonal hematopoiesis of indeterminate potential (CHIP) is a common
age-related phenomenon in which hematopoietic stem cells (HSCs)
acquire leukemogenic mutations resulting in the selection and
expansion of a genetically distinct subpopulation of blood cells (var-
iant allele fraction, VAF > 2%)1. The prevalence of CHIP detectable
through next-generation sequencing of blood DNA is up to 10% of
adults >70 years and nearly 20% of adults >90 years2–4. CHIP is asso-
ciated with increased risk for hematological cancers2, coronary artery
disease (CAD)4,5, congestive heart failure6, stroke7, chronic obstructive

pulmonary disease8–10, osteoporosis11, and all-cause mortality2,3. The
genes most commonly mutated in clonal hematopoiesis are the epi-
genetic regulators DNMT3A and TET2, and other commonly mutated
genes include regulators of HSC proliferation and tumor
suppression2,4.

DNA methylation (DNAm), the chemical addition of a methyl
group to DNA at a cytosine followed by a guanosine (CpG), is a com-
monly studied epigenetic mechanism with important roles in cell and
tissue differentiation. Similar to CHIP, DNAm patterns change
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distinctly with age, and have been associated with multiple diseases
including cancers12,13 and coronary artery disease14,15. Notably, the
products of the two most commonly mutated genes in CHIP regulate
DNAm, with DNMT3A catalyzing de novo methylation, and TET2 initi-
ating demethylation via conversion of methylated cytosines to
5-hydroxymethylcytosine16. During hematopoiesis, HSCs normally
acquire DNAm patterns consistent with terminal cell lineage, but
knockout of Dnmt3a in mice prevents HSCs from establishing new
DNAm patterns, leading to a self-renewal pattern17. Despite its
opposing regulatory role in demethylation, knockdown of Tet2 led to a
similar pattern of increased HSC self-renewal, and global loss of
hydroxymethylation in HSCs18. These results suggest that both the
addition and removal of methyl groups are necessary to promote
differentiation of HSCs, and that insight may be gained from examin-
ing the relationship between CHIP and DNAm at specific sites across
the genome.

We hypothesized that CHIP overall and gene-specific CHIP
mutations would be associated with distinct DNAm signatures, given
the roles of DNMT3A and TET2 in regulating DNAm. In this study, we
conducted multi-ancestry epigenome-wide association meta-analysis
of CHIP, followed by enrichment analysis and functional annotation of
associated CpG loci, and mediation analysis and Mendelian randomi-
zation to examine the potential interplay between CHIP and DNAm in
aging and disease.

Results
Baseline characteristics of the study population
The characteristics of the discovery cohort CHS (N = 582) and repli-
cation cohort ARIC (N = 2655) study participants are presented in
Table 1. In CHS, 61% of participants were female, 48% were African
American, and the mean (standard deviation) age was 73.6 (5.2) years
at the time of blood draw for whole-genome sequencing (WGS). In
ARIC, 61% of participants were female, 71%were African-American, and
the mean (standard deviation) age was 57.4 (5.9) years at the time of
blood draw for whole exome sequencing (WES). Overall, CHIP pre-
valencewas 14.8% (86/582) inCHS and 5.3% (142/2655) inARIC. The top
three CHIP genes in both cohorts included DNMT3A, TET2 and ASXL1
(Supplementary Fig. 1a), with median clone sizes in the 0.11–0.27 VAF
range (Supplementary Fig. 1b). Among individuals with CHIP, 86% of
CHS and 92% of ARIC participants had a single CHIP mutation with
VAF > 2% (Supplementary Fig. 1c). CHIP prevalence was 11.48% (21/183)
in CHS and 8.14% (72/884) in ARIC at 61–70 years of age (Supple-
mentary Fig. 1d).

Epigenome-wide association analyses
The EWAS workflow is presented in Supplementary Fig. 2. We per-
formed a multi-ancestry meta-analysis to carry out discovery EWAS in
CHS-AA and CHS-EA. We identified 7422, 4528, and 11,805 CpGs that
weredifferentiallymethylated (FDR<0.05) in individualswith anyCHIP,
DNMT3A CHIP, and TET2 CHIP, respectively; 539, 499, and 1595 CpGs
were significant according to a Bonferroni criterion (P < 1.04 × 10−7)
(Fig. 1a and Supplementary Fig. 3a, b). Among the 478,661 CpGs tested,
at FDR<0.05, the presence of any CHIP was associated with decreasing
DNAm at 1.17% (5618) of sites and increasing DNAm at 0.38% (1804) of
sites (Fig. 1a, b). Notably, the DNMT3A and TET2 EWAS profiles showed
opposing patterns. The presence of DNMT3A CHIP was associated with
decreasing DNAm at 0.93% (4435) of sites and increasing DNAm at
0.02% (93) of sites (Fig. 1c and Supplementary Fig. 3a). In contrast, the
presence of TET2 CHIP was associated with decreasing DNAm at 0.23%
(1092) of sites and increasing DNAm at 2.24% (10,713) of sites (Fig. 1d
and Supplementary Fig. 3b). Quantile-quantile plots of expected and
observed−log10(P) arepresented in Supplementary Fig. 4a–f. Consistent
with the widespread epigenetic regulatory role of the most frequently
mutatedCHIPgenes, thegenomic inflation factorwas 1.11, 0.92, and 1.45
in any CHIP, DNMT3A, and TET2 CHIP meta EWAS, respectively. In a Ta
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sensitivity analysis considering a more restricted definition of CHIP
requiring larger clone sizes (VAF >0.10; “expanded CHIP”), results were
similar to the EWAS for anyCHIP (7881CpGs associatedwith an inflation
factor of 1.40; Supplementary Fig. 5a–c).

We next performed a replication analysis of the FDR-significant
CpGs (FDR<0.05) in the ARIC study cohorts (1897 AA and 758 EA
participants). Approximately 66% (4912/7422), 84% (3803/4528), and
13% (1479/11,801) of CpGs associatedwith any CHIP,DNMT3ACHIP, and
TET2 CHIP were replicated with FDR<0.05 and concordant effect
direction in the multi-ancestry meta-analysis of ARIC-AA and ARIC-EA
EWAS.The lower replication rate forTET2 is likely attributable to the low

prevalence of TET2 CHIP among ARIC-EA, which only included one
individual with TET2CHIP (Table 1).Whenweperformed the replication
analysis solely in the ARIC-AA cohort, the replication rate was similar,
with 1423 of 11,801 CpGs successfully replicating, including 88% (1308)
of the sites replicated in the full meta-analysis (Supplementary Data 3).
Comparison of our TET2 discovery results to a previous EWAS of TET2
CHIP19 revealed that 63% (6943 out of 11,010 matched CpGs) of CpGs
associated with TET2 CHIP had concordant effect direction and FDR<
0.05 in Tulstrup et al.19 (Supplementary Data 4), suggesting that our
discovery analysis was robust. 1393 of the 1479 CpGs replicated in ARIC
were analyzed by;19 of these, >90% (1258) were corroborated in this
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Fig. 1 | Results from epigenome-wide association studies of four CHIP pheno-
types. aDirectionalManhattan plot of discoverymulti-ancestrymeta-EWAS for any
CHIP in CHS cohort, where direction indicates positive vs. negative correlations
betweenCHIP andDNAm. Each dot represents aCpG site,with genomic locationon
the x-axis and –log10(P)*sign(test statistic) on the y-axis, where P values are based
on a two-sided inverse-variance-weighted meta-analysis. Solid horizontal line
indicates Bonferroni significance, and dashed line indicates 5% FDR. b–d Volcano
plots depicting the effect size and −log10(P) from CHS meta EWAS of b any CHIP,

c DNMT3A CHIP, and d) TET2 CHIP. Dashed line indicates FDR < 5%, and colored
points highlight CpGs replicated in ARIC cohort. e Overlap of replicated CpGs
among the four CHIP EWAS. f Distribution of DNAm at the eight most significant
replicated CpGs associated with both DNMT3A and TET2. Colored points show
DNAmproportions at eachCpG for individuals withDNMT3A (blue) or TET2 (green)
CHIP, overlaid by density functions for each group and lines representing medians
of each distribution. For comparison, medians for individuals without CHIP are
shown as white circles.
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comparison, suggesting that our replication results are valid, though
conservative due to the low prevalence of TET2 in the younger ARIC
cohort and our stringent FDR-based replication criterion.

Summary statistics for all replicated CpGs from the discovery and
replication EWAS, as well as a combinedmeta-analysis across CHS and
ARIC, are presented for the three CHIP categories in Supplementary
Data 1–3, and the 20 most significant CpGs from the combined meta-
EWAS in DNMT3A and TET2 are shown in Tables 2 and 3. Among
replicated sites, 99.8% (3795/3803) of sites associated with DNMT3A
CHIP showed decreased DNAm, while 94.9% (1404/1479) of sites
associated with TET2 CHIP showed increased DNAm with CHIP. In the
combined meta-analysis, the two CpGs most significantly associated
with any CHIP and DNMT3A CHIP lie within the first intron of HOXB3.
86% of replicated CpGs associated with expanded CHIP were also
associated with any CHIP (Fig. 1e; Supplementary Fig. 6). However,
fewer of the TET2 andDNMT3ACHIP-associated CpGs overlappedwith
any CHIP and expanded CHIP EWAS, (12–13% and 34–43% respectively
for TET2 and DNMT3A). There was limited overlap between TET2- and
DNMT3A-associated CpGs; only 23 CpGs were common between the
two, though this was greater than expected by chance (OR = 1.98;
P =0.003). Eleven of these CpGs were common among the four CHIP
categories (Fig. 1e; Supplementary Fig. 6), where the presence of CHIP
was associatedwith reducedDNAm inall categories for all elevenCpGs
(Supplementary Table 1). For the other 12 CpGs, DNMT3A CHIP was
associated with decreased DNAmwhile TET2CHIP was associated with
increased DNAm (Fig. 1f).

Enrichment analysis
To investigate the regulatory and functional potential of CpG sites
associatedwith CHIP and specifically withDNMT3A or TET2mutations,
we performed a series of analyses to assess whether these sets of CpG
sites were enriched relative to other CpGs on the array for regions
likely to regulate genes, regions and/or genes associated with specific
biological processes, and regions identified as functionally relevant

(via methylation, chromatin accessibility, or gene expression profiles)
in HSCs vs. the components of whole blood. We also examined
enrichment for genes whose methylation has been found to associate
with these mutations in two more extreme contexts: DNMT3a knock-
outmice17 and AMLpatients with drivermutations inDNMT3A or TET2.

CHIP-associated CpG sites are enriched in promoter-adjacent
regulatory regions
Previous studies have highlighted that the distribution of genome-
wide DNAm changes associated with gene regulation and diseases is
not random20. For example, tissue-specific differentially methylated
regions (T-DMR) and cancer-specificDMR (C-DMR)havebeen found to
be depleted in CpG islands (CGI – CpG-rich regions that characterize
promoter regions), but 13-foldmore frequent in CGI shores ≤2 kb from
CGI21,22. It has also been reported that methylation shows greater var-
iation and stronger association with nearby gene expression at CGI
shores and CGI shelves (adjacent regions 2–4 kb from CGI)21,23. To
examine the regulatory potential of replicated CpGs, we assessed
enrichment for CGI, CGI shores, CGI shelves, and other regions (“open
sea”). Replicated CpGs were highly depleted in CGI in all three CHIP
categories (0.16 ≤ OR ≤0.36; 1.2 × 10−270 ≤ P ≤ 3.0 × 10−118 Supplemen-
tary Table 2). CpGs associated with any CHIP or DNMT3A CHIP
were highly enriched in CGI shores (1.9 ≤ OR ≤ 2.8;
2.5 × 10−267 ≤ P ≤ 4.0 × 10−78), while CpGs associated with TET2 CHIP
were depleted in shores (OR =0.79; P = 2.4 × 10−4) but enriched in CGI
shelves (OR = 1.87; P = 1.2 × 10−16). Sets of CpGs associated with
DNMT3A or TET2 CHIP were enriched in open sea regions (1.4 ≤OR ≤
2.4, 3.7 × 10−63 ≤ P ≤ 1.6 × 10−26), while CpGs associated with any CHIP
were depleted in these regions (OR =0.82; P = 8 × 10−11).

CpG sites associated with DNMT3A CHIP are enriched in regions
associated with stem cell reprogramming and cancer
Becauseof the role of CHIPmutations in blood cancers and inHSC self-
renewal and stemness vs. differentiation, we also examined whether

Table. 2 | Top 20 DNMT3A-CHIP-associated CpGs

CpG CHR Position Genea Discovery in CHS Replication in ARIC Combined meta-analysis

β (SE) P β (SE) P β (SE) P Directionb I2 Het P

cg04800503 17 46648533 HOXB3 −0.066 (0.0063) 9.9E−26 −0.051 (0.0026) 1.9E−83 −0.053 (0.0024) 3.1E−106 ---- 48.1 0.1227

cg23014425 17 46648525 HOXB3 −0.036 (0.0038) 2.5E−21 −0.024 (0.0013) 9.7E−78 −0.025 (0.0012) 2.4E−95 ---- 80.5 0.0015

cg25113462 2 239299293 TRAF3IP1 −0.036 (0.0038) 1.6E−21 −0.056 (0.0033) 1.8E−66 −0.048 (0.0025) 9.5E−83 ---- 82.3 0.0007

cg07727170 15 70458214 −0.019 (0.0024) 2.2E−15 −0.030 (0.0018) 2.9E−61 −0.026 (0.0014) 4.4E−72 ---- 77.5 0.0039

cg23551720 17 46633726 HOXB3 −0.033 (0.0040) 1.8E−16 −0.050 (0.0035) 6.2E−47 −0.043 (0.0026) 2.2E−59 ---- 74.2 0.0088

cg03785076 2 241936915 SNED1 −0.067 (0.0067) 1.3E−23 −0.060 (0.0048) 1.7E−35 −0.062 (0.0039) 3.1E−57 ---- 39.7 0.1737

cg16937168 2 241936844 SNED1 −0.067 (0.0068) 2.2E−22 −0.072 (0.0058) 2.7E−35 −0.070 (0.0044) 7.0E−56 ---- 62.9 0.0442

cg06186155 17 46648582 HOXB3 −0.028 (0.0038) 6.0E−13 −0.032 (0.0024) 5.1E-42 −0.031 (0.0020) 4.0E−53 ---- 0 0.6848

cg24400630 1 89728035 GBP5 −0.044 (0.0069) 1.1E−10 −0.049 (0.0035) 1.2E−42 −0.048 (0.0032) 1.2E−51 ---- 50.6 0.1079

cg23146197 12 66271002 HMGA2 −0.043 (0.0053) 6.9E−16 −0.052 (0.0042) 4.5E−36 −0.049 (0.0033) 6.7E−50 ---- 10.6 0.3397

cg09749364 15 40384779 BMF −0.039 (0.0052) 9.4E−14 −0.056 (0.0044) 7.4E−38 −0.049 (0.0033) 1.7E−48 ---- 67.2 0.0274

cg02836478 17 46652501 HOXB3 −0.033 (0.0052) 2.1E−10 −0.058 (0.0043) 1.9E−41 −0.048 (0.0033) 3.0E−47 ---- 80.7 0.0014

cg22925751 12 93509137 −0.037 (0.0047) 3.4E−15 −0.054 (0.0043) 8.7E−35 −0.046 (0.0032) 5.8E−47 ---- 68.2 0.0241

cg17839959 2 178421033 −0.021 (0.0028) 2.6E−14 −0.023 (0.0019) 1.8E−32 −0.022 (0.0016) 4.1E−45 ---- 0 0.9771

cg01525376 1 32716212 LCK −0.031 (0.0041) 5.9E−14 −0.033 (0.0028) 1.3E−32 −0.032 (0.0023) 7.0E−45 ---- 20.5 0.2869

cg22506548 1 2996949 PRDM16 −0.065 (0.0107) 1.1E−09 −0.043 (0.0034) 4.6E−37 −0.045 (0.0032) 2.8E−44 ---- 71.2 0.0155

cg25911968 2 69085916 −0.026 (0.0037) 2.1E−12 −0.033 (0.0027) 7.3E−33 −0.030 (0.0022) 3.5E−43 ---- 0 0.4199

cg24771152 6 31760608 VARS −0.046 (0.0061) 2.9E−14 −0.028 (0.0024) 1.2E−31 −0.031 (0.0022) 1.3E−42 ---- 79.8 0.0019

cg22946615 10 30257569 −0.036 (0.0064) 2.0E−08 −0.042 (0.0033) 9.7E−36 −0.040 (0.0030) 1.8E−42 ---- 58.2 0.0664

cg13545717 9 126585875 DENND1A −0.043 (0.0046) 5.8E−21 −0.045 (0.0045) 9.6E−23 −0.044 (0.0032) 4.9E−42 ---- 0 0.4182
aGene annotations reflect those provided in the Illumina manifest file; probes not annotated to a specific gene were left blank.
bDirection: + and – indicate positive or negative associations in the CHS AA, CHS EA, ARIC AA, and ARIC EA EWAS, respectively.
I2 (heterogeneity statistic) and Het P (heterogeneity P-value) from Cochran's Q test.
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CHIP-associated CpGs were enriched for the C-DMR and T-DMR
reported in ref. 21 and for induced pluripotent stem cell
reprogramming-specific DMR (R-DMR) determined experimentally by
Doi et al.24. We observed pronounced enrichment in the any CHIP and
DNMT3A CHIP categories for R-DMR (OR > 3.0; P < 4.9 × 10−53) and
C-DMR (OR > 1.6; P < 2.4 × 10−5) (Supplementary Table 3). In contrast,
TET2CHIP-associated CpGs showedmild but non-significant depletion
for both R-DMR and C-DMR (OR ≤0.83; P >0.05). All three CHIP
categories were significantly depleted for T-DMR, which may reflect
that the T-DMR were identified via comparisons of liver, spleen, and
brain so do not necessarily vary across blood cell subtypes.

Taken together, the CGI and DMR enrichment analyses suggest
distinct regulatory profiles for sets of CpGs associated with any CHIP,
DNMT3A mutations, and TET2 mutations. CpGs associated with
DNMT3Amutations, which tend to be hypomethylated, aremore likely
to reside in regions associated with gene expression (CGI shores),
cancer (C-DMR), and cellular reprogramming (R-DMR). In contrast,
CpGs associated with TET2mutations tend to be hypermethylated, are
enriched in a different set of regions likely to associate with gene
expression (CGI shelves), and are not enriched in C-DMR or R-DMR.

Genes near sites associated with DNMT3A and TET2 CHIP are
enriched for distinct biological processes
Gene ontology (GO) enrichment analysis was performed for genes
annotated to replicatedCpGs. For the 3803 replicatedCpGs associated
withDNMT3ACHIP, we identified 75 ontologies enriched at FDR <0.05
and 10 after Bonferroni adjustment for 22,710 ontologies
(P < 2.2 × 10−6). A majority of the enriched GO terms were related to
developmental and cellular processes, including several terms related
to vascular development (Supplementary Data 5). In contrast, among
the 1479 replicated CpGs associated with TET2 CHIP, we identified 27
enriched GO terms at FDR <0.05 and 9 at Bonferroni significance.
Ontologies enriched among TET2-associated sites generally related to
immune processes, including activation of immune cells of both the

myeloid and lymphoid lineages (Supplementary Data 6). No GO terms
were enriched among genes near the 4912 CpGs associated with any
CHIP. These results further support a pattern of distinct regulatory
consequences associated with DNMT3A vs. TET2 CHIP mutations.

Sites associated with DNMT3A and TET2 CHIP are enriched for
transcription factor binding motifs
Because DNAm changes may influence gene regulation through
modulation of transcription factor binding affinity25, weusedHOMER26

to investigate enrichment for 364 previously reported transcription
factor binding motifs. The 200-bp regions surrounding replicated
CpGs associated with DNMT3A CHIP were enriched for 40 motifs
(FDR <0.001; Supplementary Fig. 7), includingRUNX1 andRUNX2with
roles in HSC and osteoblastic differentiation, five members of the
GATA subfamily of transcription factorswith roles in development and
self-renewal, and five members of the Homeobox family including
HOXA9 with roles in AML. Regions surrounding TET2-associated sites
were enriched for 51binding sitemotifs (FDR<0.001), ofwhich the top
15 belonged to the Erythroblast Transformation Specific (ETS) family
of transcription factors with roles in cellular differentiation and pro-
liferation (Supplementary Fig. 8). Both DNMT3A- and TET2-associated
sites were highly enriched for motifs for ERG, an essential regulator of
hematopoiesis that is aberrantly expressed in leukemia27,28. The
enrichment of both sets of sites for motifs of transcription factors
involved in hematopoiesis and related proliferative processes further
supports a functional role for these DNAm changes and their possible
involvement in downstream consequences of CHIP such as HSC self-
renewal and leukemia.

Sites associated with DNMT3A and TET2 CHIP have distinct
DNAm profiles in HSCs
Because DNMT3A and TET2 mutations can cause HSCs to propagate
through self-renewal rather than differentiate into blood cells17,18, we
examined the DNAm profiles of CpGs associated with DNMT3A and

Table 3 | Top 20 TET2-CHIP-associated CpGs

CpG CHR Position Genea Discovery in CHS Replication in ARIC Combined Meta-analysis

β (SE) P β (SE) P β (SE) P Directionb I2 Het P

cg13742400 2 225639708 DOCK10 0.096 (0.0083) 2.3E−31 0.063 (0.0086) 3.4E−13 0.080 (0.0060) 3.4E−41 + + + + 79.9 0.0019

cg17607231 2 231090329 SP140 0.123 (0.0124) 2.5E−23 0.100 (0.0149) 1.8E−11 0.114 (0.0095) 6.6E−33 + + + + 0 0.5287

cg19695507 10 13526193 BEND7 0.107 (0.0110) 2.3E−22 0.069 (0.0097) 1.4E−12 0.086 (0.0073) 6.4E−32 + + + + 74 0.0091

cg26686361 16 85964073 0.119 (0.0123) 2.6E−22 0.095 (0.0142) 2.3E−11 0.109 (0.0093) 9.6E−32 + + + + 10 0.3431

cg12976883 2 231090376 SP140 0.072 (0.0074) 1.7E−22 0.056 (0.0093) 1.9E−09 0.066 (0.0058) 5.2E−30 + + + - 44.8 0.1427

cg13311440 1 160681404 CD48 0.072 (0.0077) 3.4E−21 0.058 (0.0093) 5.6E−10 0.066 (0.0059) 2.7E−29 + + + + 13.4 0.3253

cg10441424 5 1316636 0.035 (0.0033) 2.3E−26 0.015 (0.0033) 7.1E−06 0.025 (0.0024) 1.1E−26 + + + + 84.1 0.0003

cg11887996 12 120559003 0.061 (0.0060) 2.9E−24 0.032 (0.0071) 7.6E−06 0.049 (0.0046) 1.7E−26 + + + − 75 0.0073

cg18098839 3 167742700 GOLIM4 0.058 (0.0067) 5.1E−18 0.044 (0.0070) 3.0E−10 0.051 (0.0048) 2.9E−26 + + + − 42.6 0.1561

cg14064762 9 123688745 TRAF1 0.068 (0.0080) 2.0E−17 0.063 (0.0100) 3.6E−10 0.066 (0.0062) 5.0E−26 + + + + 0 0.8771

cg00476771 5 64398066 0.094 (0.0101) 1.5E−20 0.073 (0.0143) 2.9E−07 0.087 (0.0083) 5.0E−26 + + + + 0 0.6430

cg18642369 13 99651231 DOCK9 0.111 (0.0130) 9.4E−18 0.104 (0.0176) 2.7E−09 0.109 (0.0104) 1.7E−25 + + + + 0 0.4166

cg05165553 18 77171010 NFATC1 0.076 (0.0080) 2.1E−21 0.042 (0.0088) 1.5E−06 0.061 (0.0059) 1.0E−24 + + + − 82.5 0.0007

cg27133780 3 32474793 CMTM7 0.084 (0.0099) 2.7E−17 0.073 (0.0126) 5.3E−09 0.080 (0.0078) 1.1E−24 + + + − 33.6 0.2107

cg20556803 7 2114593 MAD1L1 0.084 (0.0087) 2.6E−22 0.048 (0.0118) 5.1E−05 0.071 (0.0070) 1.5E−24 + + + + 69.5 0.0201

cg08698943 10 3509758 0.090 (0.0108) 1.5E−16 0.079 (0.0137) 9.3E−09 0.086 (0.0085) 1.0E−23 + + + + 0 0.4917

cg08220966 10 88717364 MMRN2; SNCG 0.063 (0.0067) 7.1E−21 0.036 (0.0089) 5.0E−05 0.053 (0.0053) 3.1E−23 + + + − 72.9 0.0114

cg09667606 6 158507930 SYNJ2 0.080 (0.0087) 3.1E−20 0.044 (0.0095) 3.8E−06 0.064 (0.0064) 3.3E−23 + + + + 67.6 0.0259

cg13273540 3 176850227 TBL1XR1 0.081 (0.0096) 4.4E−17 0.056 (0.0101) 3.6E−08 0.069 (0.0070) 5.1E−23 + + + + 60.2 0.0564

cg18739367 8 38330740 0.060 (0.0070) 5.6E−18 0.043 (0.0084) 4.8E−07 0.053 (0.0054) 5.7E−23 + + + + 26.6 0.2522
aGene annotations reflect those provided in the Illumina manifest file; probes not annotated to a specific gene were left blank.
bDirection: + and – indicate positive or negative associations in the CHS AA, CHS EA, ARIC AA, and ARIC EA EWAS, respectively.
I2 (heterogeneity statistic) and Het P (heterogeneity P-value) from Cochran's Q test.
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TET2 CHIP in HSCs vs. downstream blood lineages. Specifically, we
compared distributions of average DNAm levels in whole-genome
bisulfite sequencing (WGBS) data across myeloid cells, lymphocytes,
and HSCs from the BLUEPRINT project29—first for the full set of CpGs
on the array, and then for sets of CpGs associated with DNMT3A and
TET2 mutations. Consistent with previous reports, the distribution of
average DNAm proportions across CpGs on the array was bimodal for
all three cell types, with the majority of sites either fully methylated or
fully unmethylated (gray points in Fig. 2a–c). In contrast, many of the
CpGs associated with DNMT3A or TET2 CHIP showed intermediate
methylation levels in WGBS data from myeloid cells, with median
DNAm proportions of 0.45 and 0.40 among CpGs associated with
DNMT3A and TET2 CHIP (Fig. 2a). Both of these sets of CpGs showed
higher levels of methylation in lymphoid cells, with median values of
0.64 and 0.85 respectively (Fig. 2b). Notably, in data from HSCs, the
two groups of CpGs showed diverging patterns. The majority of sites
associated with TET2 CHIP, which generally showed increased DNAm
with CHIP, were fully methylated in HSCs (median = 1.0). In contrast,
CpG sites associated with DNMT3A CHIP, which generally showed
decreased DNAm with CHIP, tended to have lower levels of DNAm in

HSCs (median = 0.33; Fig. 2c). These data suggest that DNMT3A and
TET2 CHIP, through opposing mechanisms, each lead to blood DNAm
profiles that are more consistent with HSC identity. Because of the
largenumber of CpGs in eachgroup, all pairwise comparisons between
cell types were significant (Wilcoxon P < 2 × 10−16).

Sites associated with DNMT3A and TET2 CHIP show differential
enrichment for accessible regions in HSCs and progeny cells
We next examined whether CpGs associated with DNMT3A and TET2
CHIP were preferentially located in regulatory regions active in HSCs
or downstream blood lineages. Because open chromatin is associated
with active regulatory elements and bound transcription factors30, and
demethylation has been shown to induce an open chromatin state31,
we investigated whether sites associated with DNMT3A or TET2
mutations were enriched for accessible regions of chromatin in HSCs
andfiveperipheral blood cell types.Using the eFORGE tool32, we tested
the top 1000 replicated CpG sites associated with DNMT3A or TET2
mutations for enrichment for DNase I hypersensitive (DHS) hotspots
identified by ENCODE33. Both sets of replicated CpG sites were enri-
ched forDHShotspots inHSCs,with the enrichmentmostpronounced
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Fig. 2 | Enrichment patterns among DNMT3A- and TET2-associated CpGs.
a–c Distribution of average methylation levels estimated from external WGBS data
formyeloid cells (a), lymphoid cells (b), and HSCs (c) for three sets of CpG sites: all
CpGs on Illumina 450K array (gray), and CpGs showing replicated association with
DNMT3ACHIP (blue) or TET2CHIP (green). Eachpoint represents a CpG,while filled
curves show the density function corresponding to all CpGs in each set. Horizontal
lines indicate median of distribution. Because of the large number of CpGs con-
sidered (N = 478,661), all pairwise comparisons between cell types were significant
(Two-sidedWilcoxon P < 2 × 10−16).d Enrichment in cell-specificDHS among the top
1000 DNMT3A- or TET2-associated CpGs, compared to 1000 random genomic-
context-matched CpGs (one-sided binomial test; N = 2000). Estimated OR (x-axis,

indicated by filled squares) shows extent to which DNMT3A- or TET2-associated
CpGs are enriched (or depleted) for DHS regions in six distinct cell types (y-axis),
compared to other sites on the array. Horizontal lines indicate 1−α confidence
intervals for estimated OR, using a Bonferroni-adjusted α of 0.05/12. Th1/2: Type 1/
2 T helper cells. e–f Comparison of DNAm profiles associated with gene-specific
mutations in CHIP vs. AML. Test statistics from EWAS of mutations in DNMT3A (e)
or TET2 (f) in the context of blood samples fromhealthy individuals with orwithout
CHIP (x-axis; Z-statistics from discovery sample meta-analysis, N = 582) vs. tumor
samples from patients with AML (y-axis; T-statistics from EWAS ofmutation type in
TCGA data,N = 127 (e) or 108 (f)). Black points: FDR<0.05 in CHS discovery sample
but did not replicate; Blue or green points: FDR <0.05 and replicated in ARIC.
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for DNMT3A-associated CpGs (OR = 4.1, P = 1.3 × 10−98; Fig. 2d). TET2-
associated CpGs showed enrichment for DHS hotspots among all five
blood cell types (OR > 1.5, 1.1 × 10−63 < P < 2.9 × 10−9), with a strong
enrichment for regions accessible in monocytes (OR = 3.3;
P = 1.1 × 10−63). DNMT3A-associated CpGs were enriched for DHS
among B cells, naïve T cells, and type 1 T helper cells (1.39 <OR< 1.59,
2.2 × 10−11 < P < 2.4 × 10−6) but not monocytes or type 2 T helper cells
(OR < 1.22; P >0.0042).

Genes proximal to DNMT3A-CHIP-associated sites show enrich-
ment for HSC marker genes
To further compare the differential DNAm profiles to regulatory pro-
files in HSCs vs. progeny cells, we tested whether the set of genes
annotated to replicated CpG sites associated with DNMT3A or TET2
CHIP mutations showed enrichment or depletion for genesets pre-
viously identified as marker genes for HSCs vs. other hematopoietic
cells using scRNA-seq data from the Human Cell Atlas bone marrow
tissue project34,35. Comparing 24 marker genesets, genes near
DNMT3A-associated sites showed the strongest enrichment for HSC
marker genes (OR = 2.6; P = 2 × 10−25), with more modest enrichment
for marker genesets for naïve T cells, monocytes, common myeloid
progenitor cells, and platelets (7 × 10−9 < P <0.0008; Supplementary
Fig. 9). In contrast, genes near TET2-associated sites showed nominally
significant depletion for HSC marker genes (OR =0.46; P = 0.004),
though were enriched for marker genesets for naïve T cells, mono-
cytes, and neutrophils (1 × 10−14 < P < 0.0008; Supplementary Fig. 9).
Comparison to human orthologs of marker genes identified in murine
hematopoietic cells36 showed a similar enrichment for HSC marker
genes among genes proximal to DNMT3A-associated CpGs (OR = 2.5;
P = 1.9 × 10−16), and a similar (but non-significant) depletion among
genes near TET2-associated CpGs (OR=0.71; P =0.3; Supplementary
Fig. 10). No other significant enrichments or depletions were observed
for genes nearDNMT3ACHIP-associated sites, thougheachof the three
lymphoid marker genesets showed nominally significant enrichment
(0.009 < P < 0.034). Genes near TET2-associated sites were enriched
for marker genes associated with natural killer cells (OR = 3.7;
P = 2.9 × 10−4) and granulocytes (OR= 2.9; P = 0.0016), and showed
nominally significant enrichment for monocytes (OR = 2.3;
P =0.0079). Finally, we evaluated enrichment in a set of 36 ortholo-
gous genes (33 encoding transcription factors, and three encoding
translational regulators) that were hypothesized as potential HSC
reprogramming factors based on >2.5-fold greater expression in
murine HSCs compared to 39 other hematopoietic cell types37. Genes
near DNMT3A-associated sites were highly enriched for these 36 fac-
tors (OR = 6.6; P = 5 × 10−39), while genes near TET2-associated sites
were not (OR =0.57; P = 0.51).

Taken together, the results from the cell-type-specific enrichment
analyses are consistent with a pattern where the hypomethylation
associated with DNMT3A mutations occurs in regions associated with
an HSC-like epigenetic and transcriptional profile, while the hyper-
methylation associated with TET2 mutations occurs primarily in
regions associatedwith accessibility and transcription in differentiated
blood cells.

Genes proximal to both DNMT3A- and TET2-CHIP-associated
sites show enrichment for genes hypo-methylated in Dnmt3a
knockout mice
Challen et al17. previously reported that knockout ofDnmt3a in mice is
associated with region-specific hypo- and hyper-methylation, and
provided lists of genes corresponding to both hyper- and hypo-
methylated regions. We assessed whether genes near sites associated
with DNMT3A or TET2 CHIP were enriched for human orthologs of
these genes. For genes near sites associated with DNMT3A CHIP, we
observed strong enrichment for orthologs of genes associated with
hypo-methylated regions in knockoutmice (OR = 2.4; P = 5 × 10−28), but

no enrichment for genes associated with hyper-methylated regions
(OR =0.82; P = 0.10). Genes near sites associated with TET2 CHIP were
moderately enriched for orthologs of genes associated with hypo-
methylated regions in DNMT3a knockout mice (OR = 1.4, P =0.014),
but not for genes associated with hyper-methylated regions (OR =
0.80; P = 0.26).

Overlap between replicated sites and sites associatedwith aging
To examine the extent to which CHIP may contribute to the well-
established DNAm signature of aging, we compared the results from
our CHS EWAS of CHIP to an EWAS of age performed using the same
dataset (see Methods). Of the 4341 sites significantly associated with
age (P < 1.045 × 10−7), 243 overlapped with the 7423 sites associated
with CHIP in the CHS (OR = 3.86; P = 7 × 10−64), and 176 overlappedwith
the 4192 sites that replicated in ARIC (OR = 3.95; P = 3 × 10−46), repre-
senting greater than-expected overlap in both cases. Comparing the
EWAS profiles of CHIP vs. age, there was no correlation between the
full set of Z-statistics from the two EWAS (r =0.015), but the CHIP and
age EWAS Z-statistics showed substantial correlation when restricting
to sites that were significant in the CHIP EWAS (r =0.44) or sites sig-
nificant in the age EWAS (r =0.52; Supplementary Fig. 11). Among the
4341 sites significant in the age EWAS, we performed Sobel tests38 of a
model where CHIP mediates the relationship between age and DNAm.
Nominally significant evidence of mediation (P <0.05) was observed
for only 174 of 4341 sites, fewer than the 5% expected by chance. No
sites showed significant mediation with FDR <0.05, suggesting a lack
of support for our hypothesis that CHIP could help explain the DNAm
signature of aging.

Overlap between replicated sites and sites associated with leu-
kemogenic mutations in cancer
We next used data generated by TCGA12 to investigate DNAm profiles
in tumor samples fromAMLpatients harboring eitherDNMT3AorTET2
driver mutations. Of the 396,065 CpGs available for analysis in the
TCGAdata, 13,031 associatedwith the presenceof aDNMT3Amutation
in our EWAS of AML patients (see Methods; FDR<0.05), and 12 asso-
ciated with the presence of a TET2 mutation (FDR <0.05). CpGs that
were significant in our replication analysis ofDNMT3ACHIPweremore
likely than other CpGs to be significantly associated with a DNMT3A
mutation in the AML patients (OR= 19.6, P < 2 × 10−16). Sites associated
withTET2mutations in our replication analysis did not overlapwith the
12 CpGs associated with TET2 mutations in the AML patients but did
show greater than-expected overlap with the 26,016 sites nominally
associated (P <0.05) with TET2 mutations in AML (OR = 6.7,
P < 2 × 10−16). Figure 2e, f shows that for both genes, differential DNAm
was directionally consistent for the CHIP and AML EWAS, with the
majority of sites associated with DNMT3A CHIP showing decreased
DNAm in both contexts and the majority of sites associated with TET2
CHIP showing increased DNAm in both contexts. This directional
consistency led to correlation between DNMT3A CHIP and DNMT3A
AML test statistics (r =0.29; Fig. 2e) and TET2 CHIP and TET2 AML test
statistics (r =0.33; Fig. 2f); comparable correlations were not observed
between DNMT3A CHIP test statistics and TET2 AML test statistics
(r =0.10) or vice versa (r = 0.04).

Mendelian randomization analysis of CHIP-associated DNAm
and coronary artery disease
To investigate whether DNAm changes may mediate the relationship
between CHIP and CAD4,5, we tested whether DNAm at CHIP-
associated CpGs causally influences the risk for CAD using two-
sample Mendelian randomization (MR). For this analysis, 2580 CpGs
that replicated in at least one CHIP EWASmet the inclusion criteria (5
ormore independent associated cis-mQTL; seeMethods) to be tested
for causal association with CAD. The full MR summary statistics are
presented in Supplementary Data 7. Genetic instruments were
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selected as cis-mQTL for these CpGs from the GoDMC database39,39

(http://www.godmc.org.uk/) based on significant SNP-CpG associa-
tion (P < 5 × 10−8) and partial independence from other SNPs
(r2 < 0.05), followed by HEIDI-outlier analysis to remove pleiotropic
instruments (see Methods). CAD outcome summary statistics
were obtained from the independent meta-analysis of
CARDIoGRAMplusC4D40 andUKBiobank CADGWASby van der Harst
and Verweij41. CHIP has been shown to be associated with increased
risk for CAD3,5,42. Consistent with the epidemiological observations,
1298 CHIP-associated CpGs were associated with increased risk for
CAD in the MR analysis, of which 51 showed significant association
with CAD at FDR < 0.05 and 12 at the Bonferroni threshold (P < 0.05/
2580). However, there were 1282 CHIP-associated CpGs where the
change in DNAm was associated with reduced risk for CAD in the MR
analysis, of which 53 showed significant association with CAD at
FDR < 0.05 and 7 at the Bonferroni threshold. A forest plot repre-
senting FDR-significant association between CpGs and increased risk

for CAD is presented in Fig. 3, and scatter plots of corresponding SNP
effects on exposures and outcome for the 12 Bonferroni-significant
CpG sites were presented in Supplementary Fig. 12. Among the 51
exposure CpGs, 16 were associated with any CHIP, 31 associated with
DNMT3A CHIP and 4 associated with TET2 CHIP (Fig. 3). Of the sites
associated with DNMT3A CHIP, all showed decreased DNAm in indi-
viduals with CHIP, and decreased DNAm was associated with
increased CAD risk in theMR analysis. For the 4 TET2-associated sites,
3 were consistent with CHIP→ increased DNAm→ increased CAD risk.

Among the cis-mQTL used in the MR analyses, several were also
cis-eQTL in blood43 (Supplementary Data 8). For example, in CHIP-
associated CpG cg14594111, increased DNAm was causally associated
with reduced CAD risk (Fig. 3), and the mQTL associated with
cg14594111 were also cis-eQTL associated with reduced expression of
nearby genes including C5, CNTRL, GSN, PHF19, and RAB14 (Supple-
mentary Data 8). Likewise, in DNMT3A-associated CpG cg17969560,
increased DNAm was causally associated with reduced CAD risk, and

CHIP 
Category Exposure Nearby Gene Association 

with CHIP*

Mendelian randomization (MR)

#SNP OR FDR

TET2

cg01919885 RGS12 ++++ 8 1.05 1.2×10-2

cg18642369 DOCK9 ++++ 7 1.05 2.8×10-2

cg10233454 LRP1 ++++ 9 1.03 1.6×10-2

cg08530064 ---- 6 0.97 4.9×10-2

Any CHIP

cg21558509 SCARB1 -+++ 13 1.02 4.1×10-2

cg16988986 SORT1 ---- 18 0.98 4.3×10-2

cg04688330 SH3PXD2A ---- 25 0.98 2.1×10-2

cg21692620 CNTNAP1 ---- 10 0.97 3.9×10-2

cg12251075 NME2 ---+ 8 0.97 3.1×10-2

cg02056653 PCDHG(A,B,C) ---- 13 0.97 6.1×10-3

cg16124934 RPS6KL1 ---- 11 0.97 2.3×10-2

cg18534077 AS3MT ---- 17 0.97 1.5×10-3

cg00335591 TMEM184A ---+ 10 0.97 5.6×10-3

cg19758448 PGAP3 ---- 9 0.96 1.6×10-3

cg14550985 RIN1 ---- 6 0.96 2.0×10-2

cg04907151 PPP2R3A ---- 7 0.96 4.0×10-2

cg14594111 DAB2IP ---- 17 0.96 4.0×10-5

cg19247726 OBSCN ---- 10 0.95 3.8×10-2

cg14436426 OPRL1 ---- 7 0.95 1.4×10-2

cg13202523 ---- 6 0.95 1.2×10-2

DNMT3A

cg02289754 MKNK1 ---- 28 0.98 2.1×10-2

cg06998765 RPS6KL1 ---- 14 0.98 2.4×10-2

cg26104986 SERPINH1 ---- 25 0.97 4.8×10-4

cg23051272 RAI1 ---- 16 0.97 2.0×10-2

cg16172923 MAD1L1 ---- 14 0.97 1.2×10-2

cg14750778 PIGS ---- 14 0.97 8.1×10-3

cg25790453 MCF2L ---- 13 0.97 2.4×10-4

cg20742385 MCF2L ---- 15 0.97 2.0×10-4

cg13708645 KDM2B ---- 11 0.97 2.4×10-2

cg16630369 MAST4 ---- 7 0.97 2.1×10-2

cg20752878 ASGR1 ---- 10 0.97 2.7×10-2

cg17153045 LINC00880 ---- 11 0.97 3.0×10-2

cg08614441 MCF2L ---- 13 0.97 4.8×10-4

cg12013713 PARP12 ---- 10 0.96 1.1×10-2

cg11217654 DENND5A ---- 14 0.96 1.2×10-2

cg17330252 ---- 10 0.96 8.8×10-3

cg05381795 OPRL1 ---- 9 0.96 1.8×10-2

cg17467968 PEAK1 ---- 5 0.96 2.4×10-2

cg06086177 ZFHX3 ---- 7 0.96 3.4×10-2

cg08640824 SKI ---- 4 0.95 1.2×10-2

cg00207352 PLXNB1 ---- 4 0.94 2.9×10-2

cg03774988 OPRL1 ---- 5 0.94 1.6×10-2

cg17017272 MAN2A2 ---- 4 0.94 1.6×10-2

cg16397176 STARD4-AS1 ---- 7 0.94 3.2×10-3

cg13651137 DBH ---- 4 0.94 2.0×10-2

cg04839835 ---- 5 0.94 3.2×10-3

cg05131526 MAN2A2 ---- 4 0.93 1.1×10-3

cg05318210 TEX41 ---- 5 0.92 3.6×10-6

cg00636737 TCEA2 ---- 6 0.92 5.2×10-4

cg06573459 SGEF ---+ 6 0.9 4.8×10-4

cg17969560 LTBP3 ---- 4 0.83 3.4×10-5

OR for CAD per SD increase in DNAm (95% CI)
1.0 1.10.90.8

Fig. 3 | Mendelian randomization analysis of CHIP-associated CpGs and CAD
risk. For sets of replicated CpGs associated with CHIP, DNMT3A, and TET2 (y-axis),
the odds ratio (x-axis, indicated by filled squares) reflects the change in CAD risk
associated with each SD increase in DNAm, with lines representing 95% confidence
intervals estimated by GSMR. GSMR analysis was based on published summary
statistics (effect estimates) for cis-mQTL39 (N = 32,851) and CAD GWAS41

(N = 547,261). Only exposure CpGs showing causal evidence in the MR analysis
(FDR<0.05 based on P-values from two-sided χ2 test) are presented here; full
summary statistics are available in Supplementary Data 7. *”Associationwith CHIP”:
“+” or “-” signs indicate effect directions for associations with CHIP, DNMT3A or
TET2 in the meta-EWAS of CHS AA, CHS EA, ARIC AA, and ARIC EA EWAS. #SNP:
number of SNPs included in the MR analysis for each CpG.
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corresponding cis-mQTL were also cis-eQTL associated with reduced
expression of nearby genes, such as LTBP3 and NEAT1. At FDR sig-
nificance (FDR <0.05), four TET2-associated CpGs showed causal
association with CAD where increased DNAm in cg01919885,
cg18642369, and cg10233454 were causally associated with increased
CAD risk (1.03 ≤OR ≤ 1.05; 1.8 × 10−4 < P < 9.0 × 10−4), whereas increased
DNAm in cg08530064 was causally associated with reduced CAD risk
(OR =0.97; P = 2.0 × 10−3) (Fig. 3). Here, mQTL alleles associated with
increased DNAm were associated with reduced gene expression in
RGS12 (cg01919885), DOCK9 (cg18642369), STAT6 (cg10233454) and
TMEM176B/TMEM176A (cg08530064) (Supplementary Data 8).

Discussion
Our study identified thousands of CpG sites across the genomewhose
DNAm was associated with CHIP, including distinct DNAm profiles
associated with mutations in each of the two genes most commonly
mutated in CHIP. Although this is the first study to identify these
opposing methylomic profiles in the context of CHIP, the observed
methylomic signatures of DNMT3A and TET2 are consistent with pre-
vious work studying mutations in these genes in other contexts. Our
observed pattern of decreased DNAm associated with DNMT3A
mutations and increased DNAm associated with TET2 mutations is
consistent with a recent study of conditional knockout mice that
observed a preponderance of hypomethylated regions when com-
paring regions of open chromatin in Dnmt3a-null to control mice, and
hypermethylated regionswhencomparingTet2-nullmice to controls44.
We observed the samepatterns of increased or decreasedDNAmwhen
we compared AML patients with DNMT3A or TET2 mutations to AML
patients with other mutations, and comparison between the AML and
CHIP results revealed significant overlap between sets of CpG sites
associated with DNMT3A or TET2 CHIP and those associated with
mutations in the corresponding gene in AML (Fig. 2e, f). Notably, the
DNAm samples used in our study of CHIP were all from healthy par-
ticipants with no apparent malignancy, and the average VAF was low
(~19%, Fig. S1b), compared to the VAF of somatic mutations found in
cancer (often 50%). This highlights that aberrant DNAm patterns
similar to those found inAMLmay predate clinicalmalignancy and can
also occur in individuals with CHIP who never progress to cancer. It is
also noteworthy that despite the low VAF in most individuals, we were
able to observe striking DNAm profiles associated with CHIP, resem-
bling profiles associatedwith leukemogenicmutations in AMLpatients
or with complete knockout of the genes in mice.

Taken together, these results suggest that there are distinct
DNAm profiles associated with impaired activity of DNMT3A or TET2
that can be observed across multiple contexts. Rather than a global
gain or loss of DNAm across the genome, each of these DNAm sig-
natures reflects gain or loss of DNAm at specific sites. DNMT3A-asso-
ciated sites showed enrichment for reprogramming-specific DMRs
identified by comparing DNAm of fibroblasts to induced pluripotent
stem cells derived from those fibroblasts24, and gene ontology analysis
of these signatures identified enrichment for ontologies relevant to
developmental and cellular processes among genes located near
DNMT3A-associated sites, and enrichment for immune processes and
immune cell activation among genes located near TET2-associated
sites. Ifwe consider the canonical regulatory role ofDNAmas a silencer
of gene expression, this would suggest that the loss of DNAm asso-
ciatedwithDNMT3Amutations leaves genes active in stem cells free to
be expressed, while the gain of DNAm associated with TET2mutations
silences genes active in the downstream progeny of HSCs.

Along these lines, examination of DNAm levels in HSCs and their
downstreamprogeny revealed that CpG sites associated withDNMT3A
mutations had decreased DNAm in HSCs compared to myeloid and
lymphoid cells, while sites associated with TET2 mutations showed
increased DNAm in HSCs (close to 100% methylation for many sites).
DNMT3A-associated sites also showed strong enrichment for regions

of open chromatin in HSCs, and genes near these sites were enriched
for HSC marker genes identified in both humans and mice. The two
sites showing the most significant association with DNMT3A CHIP
mapped toHOXB3, a gene found to be overexpressed in acutemyeloid
leukemia patients with DNMT3A mutations45 and highly expressed in
uncommitted hematopoietic cells46. In contrast, TET2-associated sites
were most enriched for regions of open chromatin in monocytes, and
genes near these sites showed depletion for HSC marker genes.
Overall, these patterns are consistent with a scenario wheremutations
in eitherDNMT3A or TET2 both lead to DNAmpatterns consistent with
HSC-like activity, but through different avenues: DNMT3A mutations
lead toDNAm loss that upregulates genes related toHSCactivity, while
TET2 mutations lead to DNAm gains that downregulate genes related
to immune cell activity, thus maintaining an HSC-like state. This sce-
nario aligns well with experimental data showing that knockout of
either Dnmt3a17 or Tet218 results in increased self-renewal of HSCs, but
that this occurs through immortalization of HSCs in Dnmt3a knockout
models47, while Tet2 knockout models show normal exhaustion of
HSCs but myeloid skewing during differentiation48. Our results sup-
port models previously suggested for Dnmt3a knockout49 and hypo-
thesized for CHIP in general50, where DNMT3A loss prevents the
silencing of the HSC self-renewal program that normally occurs
through methylation of key regions, while TET2 loss prolongs self-
renewal by disrupting the differentiation program normally activated
via demethylation of key genes and regions.

Notably, EWAS of DNMT3A and TET2 CHIP were recently per-
formed in a smaller set of individuals (N = 244), but this study did not
identify significant associations between DNAm and DNMT3A CHIP19.
The estimated effect sizes from our TET2 EWAS showed modest cor-
relation with theirs (r =0.269), and they also noted enrichment for
transcription factormotifs from the ETS family among their results for
TET2, but there was little correlation between effect sizes estimated
from their DNMT3A EWAS vs. ours (r = 0.046). Sample size differences
are one possible explanation for the difference between the two stu-
dies, but amore likely explanation is that DNAmdifferences associated
with DNMT3A CHIP were masked in the previous study due to the
inclusion of the top four principal components of DNAm as covariates.
Given the striking DNAm profile of DNMT3A CHIP we observed in the
CHS and ARIC cohorts, and the relatively large prevalence of DNMT3A
CHIP (55 of 244 individuals in ref. 19) it is likely that bothDNMT3ACHIP
and the cell type proportions (which were included as covariates) were
correlated with these principal components, inducing collinearity and
masking any association in the previous study. Our high replication
rate in ARIC (84% for CpGs significantly associated with DNMT3A CHIP
in the discovery analysis), along with the alignment of our findings to
previously reported experimental results, supports the presence of
robust and distinct epigenetic profiles associated with both DNMT3A
and TET2 CHIP.

A recent study by Nachun et al.51 reported associations between
CHIP and increased biological agemeasured by seven different DNAm-
based biomarkers of aging. Specifically, the presence of CHIP was
associated with an average increase in age acceleration (residual of
DNAm-predicted age after adjusting for chronological age) of 1.3–3.1
years across the seven biomarkers. This result supported our initial
hypothesis that increased CHIP in older individuals may help explain
the genome-wide pattern of age-related DNAm changes. We did
observe a moderate correlation in the DNAm profiles associated with
age vs. CHIP, butmediation analysis did not provide evidence for CHIP
as a potential mediator of the relationship between age and DNAm;
however, it may be useful to explore this further in larger studies.
Interestingly, Nachun et al. found that stratifying individuals with CHIP
based on positive vs. negative age acceleration identified a group at
elevated risk for coronary heart disease51, suggesting that CHIP and
DNAm-based age acceleration each contribute independent informa-
tion about disease risk.
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CHIP has been shown to contribute to the increased risk for CAD
in older individuals4,5, but the mechanisms underlying this increased
risk are not fully elucidated. Therapeutic hypotheses have focused on
inflammasome activation5,52,53 but the involvement of orthogonal
pathways is not well understood. Our MR analysis identified 51 CpG
sites where CHIP-associated DNAm changes may contribute to CAD
risk. For many of these CpGs, the instrumental variables associated
with change inDNAmhad an inverseeffect on the expression of nearby
genes, consistent with the canonical inverse relationship between
DNAm and gene expression. Several of these genes have documented
functions in lipids metabolism, inflammation, and atherosclerosis. For
example, CHIP is associated with reduced DNAm in cg14594111, which
is correlated with increased expression of complement C5. Increased
C5 level inplasma is correlatedwith atherosclerotic plaque volume and
coronary calcification54, whereas C5a—a protein fragment of the C5
protein— promotes atherosclerotic plaque disruptions55,56. DNMT3A
CHIP is associated with reduced DNAm in cg17969560, whose mQTL
instruments are correlated with increased expression of LTBP3 and
NEAT1. LTBP3 is implicated in development of aortic aneurysms and
dissections57–59, whereas NEAT1 is implicated in inflammation and
atherosclerosis60–62. TET2 CHIP is associated with increased DNAm in
cg10233454, which is correlated with reduced expression of STAT6.
Lower STAT6 expression reduces polarization of anti-inflammatoryM2
macrophages, increases plaque instability, and thus increases CAD
risk63,64. TET2 CHIP is also associated with reduced DNAm in
cg08530064, which is correlated with increased expression of
TMEM176A/TMEM176B. TMEM176A/TMEM176B is found to be causally
linked with HDL-C metabolism65,66, and higher expression of
TMEM176B inhibits the NLRP3 inflammasome by controlling cytosolic
Ca2+ 67. NRLP3 inflammasome is involved in atherosclerosis68 thus
higher expression of TMEM176B/TMEM176A could have protective
CAD effect in individuals with TET2 CHIP.

Interestingly, the MR analysis also identified 53 CpG sites where
CHIP-associated DNAm changes showed a protective effect against
CAD. Similar to the 51 “risk” CpG sites, the majority of these sites
showeddecreasedDNAmwithCHIP, but for these sites theMRanalysis
suggested that decreased DNAm at these sites was protective against
CAD. Several of these sites were annotated to the first intron or pro-
moter region ofDNMT3B, which, if upregulated, could potentially help
compensate for reduced DNMT3A activity. Four were annotated to the
first intronof PRDM16, which is protective against cardiac hypertrophy
and heart failure69, and whose expression in adipose tissue protects
against diet-induced weight gain, likely through greater energy
expenditure and activation of brown fat cell (as opposed to white fat
cell) activity70. While it may seem counterintuitive for CHIP-associated
DNAm changes to be identified as protective against CAD, the results
of our functional annotation analyses suggest that the primary role of
the DNAm changes associated with CHIP is to determine self-renewal
vs. differentiation of HSCs. If DNAm does mediate the relationship
between CHIP and CAD, it may be that the overall increase in CAD risk
is incidental—i.e., that the CHIP-associated DNAm changes include a
mix of risk and protective effects that when averaged lead to an
increase in risk.

A potential limitation of our study was that DNAm and CHIP were
not always measured on concurrent samples. While concurrent mea-
surement in all sampleswouldminimize potential sources of noise, it is
important to note that once CHIP is acquired (VAF > 2%), the CHIP
clone grows or remains stable in the majority of individuals71,72. CHIP
was measured either prior to or concurrently with first DNAm mea-
surement for 84% of CHS participants in this study, and prior to or
concurrently with the second for >99% of individuals. A second lim-
itation was that CHIP prevalence was lower in our replication sample
compared to our discovery sample. This was likely due to the younger
age range of the replication sample, as Supplementary Fig. 1d shows
comparable prevalence in CHS and ARIC within age groups. Another

possible contributing factor is that our discovery vs. replication ana-
lyses relied on CHIP called from WGS vs. WES data. However, the
previous work73 has reported similar prevalence for CHIP called via
these two approaches, and the prevalence of DNMT3A and TET2 CHIP
in the ARIC AA cohort was similar to the population prevalences
reported using WGS data for this cohort in73. Based on high rates of
replication, the differences in prevalence did not appear to hinder our
replication of CHIP or DNMT3A CHIP. In contrast, only one individual
with a TET2mutation was present in the ARIC EA cohort studied here.
This led to a lower replication rate for CpGs associated with TET2CHIP
in the multi-ancestry meta-analysis, with only 13% replication of CpGs
significant in the TET2 discovery analysis as compared to 84% repli-
cation for DNMT3A CHIP and 66% replication for any CHIP. However,
comparison to the results from the EWAS of TET2 CHIP reported in19

suggested an effective replication rate of 63%, supporting that our
discovery results are robust and the lower replication rate stems from
low prevalence of TET2mutations in the younger ARIC cohort. Future
studies in larger and older cohorts will help address this limitation, and
will enable the examination of other genes with a lower population
prevalence of mutations (e.g. ASXL1).

In conclusion, our results are consistent with a pattern where the
two most common CHIP mutated genes both promote self-renewal of
HSCs through opposing mechanisms, with DNMT3A mutations asso-
ciated with loss of DNAm in regulatory regions near genes associated
withHSC activity, and TET2mutations associatedwith gain of DNAm in
regulatory regions near genes associatedwith activity of progeny cells.
Mendelian randomization analysis suggests that some of the DNAm
alterations associated with CHIP may promote the risk for age-related
clinical outcomes such as CAD, while others may be protective
against risk.

Methods
Study cohorts
The Cardiovascular Health Study (CHS) is a population-based cohort
for studying the risk factors for coronary heart disease and stroke in
people ≥65 years of age74. Our discovery sample consisted of 582 CHS
participants who had both CHIP and DNAm data available. DNAm was
measured from blood samples taken from these participants in years 5
and 9 (N = 405), year 5 (N = 171), or year 9 only (N = 6). CHIP calls were
based on whole-genome sequences (WGS) of blood samples, the
majority of which were taken 3 years prior (year 2, N = 192) or con-
currently (year 5, N = 294) with the first DNAm measurement. 86 par-
ticipants had CHIP calls based on blood samples taken during years
6–9 (so prior to or concurrent with the second DNAmmeasurement),
and the remaining fpur individuals had CHIP calls based on year
10 samples.

Replication samples consisted of 2655 participants from the
Atherosclerosis Risk in Communities (ARIC) Study. DNAm was mea-
sured from blood DNA samples taken at visit 2 (year 1990–1992;
N = 2228) and visit 3 (year 1993–1995; N = 427). CHIP calls were based
on whole exome sequences (WES) of blood DNA samples taken at visit
2 (N = 2234) and visit 3 (N = 421).

Informed consent was obtained from all study participants, and
the study design and methods were approved by the respective insti-
tutional review boards at each of the collaborating institutions: Uni-
versity of Washington Institutional Review Board (CHS); University of
Mississippi Medical Center Institutional Review Board (ARIC: Jackson
Field Center); Wake Forest University Health Sciences Institutional
Review Board (ARIC: Forsyth County Field Center); University of Min-
nesota Institutional Review Board (ARIC: Minnesota Field Center); and
Johns Hopkins University School of Public Health Institutional Review
Board (ARIC: Washington County Field Center). Each study received
institutional certification before depositing sequencing data into
dbGaP, ensuring approval by all relevant institutional ethics commit-
tees and compliance with relevant ethical regulations.
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DNA methylation measurement
DNA methylation data for CHS and ARIC peripheral blood leukocyte
samples were measured via the Illumina Infinium HumanMethyla-
tion450 BeadChip (Illumina Inc., San Diego, CA) (see Supplementary
Note 1 for details).

CHIP calls
CHIP was detected previously in CHS from WGS blood DNA in the
NHLBI Trans-Omics for Precision Medicine consortium73. The same
procedure was applied for WES data in ARIC. Mutect2 software75 was
used for somaticmutation calling fromWGSdata inCHS andWES data
in ARIC. CHIP was called from the Annovar76 annotated VCF files using
a custom R script and predefined list of CHIP genes, variants, and
rules. The detailed CHIP calling pipeline was previously reported in
Bick et al.73 (https://app.terra.bio/#workspaces/terra-outreach/CHIP-
Detection-Mutect2). Individuals with a CHIP mutation at variant allele
fraction (VAF) > 2% were defined as CHIP, and those without a CHIP
mutation as control. CHIP mutations with VAF > 10% were considered
expanded CHIP clones.

Discovery and replication EWAS
Ancestry-stratified epigenome-wide association analysis was per-
formed using the CpGassoc (v2.60) R package77. Separate EWAS were
performed in African-American (AA) and European American (EA)
individuals within both the discovery and replication cohorts. Each
EWAS fit a linear model for each CpG that modeled DNAm proportion
as the outcome with CHIP status as the independent variable, adjusted
for age, age2, sex, batch, and estimated cell type proportions. In the
CHS, individual random effects were included to account for repeated
measures from the two longitudinal timepoints. We modeled CHIP
status in three different ways, as an indicator variable for the presence
of CHIP (yes/no), presence of a CHIP mutation in DNMT3A, or the
presence of a CHIP mutation in TET2. METAL software78 was used to
perform inverse variance weighted fixed effect meta-analysis and
Cochran’s Q-test for heterogeneity79. In the discovery analysis, we
performed multi-ancestry meta-analyses to combine the results from
EWASwithinCHS-AA andCHS-EAwithin eachof three EWAS (anyCHIP,
DNMT3A CHIP, and TET2 CHIP). P-values were computed for each site
based on two-sided Z-tests, and genome-wide significance was asses-
sed via false discovery rate (Benjamini-Hochberg FDR <0.05) and
Bonferroni threshold P < 1.04 × 10−7 (0.05/478661). CpGs significant in
the discovery analysis (FDR <0.05) were followed up with a replication
analysis in ARIC. In the replication analyses, we fit the linear model
described above to sets of discovery CpGs from the three aforemen-
tioned CHIP categories; models were fit separately in the ARIC-AA and
ARIC-EA cohorts, followed by a multi-ancestry meta-analysis. CpGs
with FDR<0.05 and effect direction concordant with the discovery
analysis were considered to be successful replications. As a sensitivity
analysis, discovery and replication EWAS was also performed for a
more restrictive definition of CHIP (VAF >0.10; Supplementary Note 1).

Enrichment tests
We tested each set of replicated CpGs from the three EWAS for
enrichment of location relative to CpG islands (CGI), previously
established differentially methylated regions (DMR), gene ontologies,
and transcription factor bindingmotifs. Within each set of enrichment
tests, weused a Bonferroni-adjusted significance criterion to adjust for
the three EWAS and the multiple enrichment categories, unless
otherwise specified. We used two-sided Fisher’s exact tests to test for
enrichment of replicated CpGs in relation to CGI, CGI shores (≤2 kb
from CGI), shelves (2–4 kb from CGI), and open sea regions (>4 kb
from CGI)20,21. We used Illumina annotation data on experimentally
determined tissue-specific differentially methylated regions (DMR),
cancer-specific DMR (CDMR), or reprogramming-specific DMR
(RDMR)24 and performed Fisher’s exact tests to elucidate whether

replicated CpGs were enriched in these categories. We performed
gene ontology enrichment analysis on sets of genes near replicated
CpGs using the missMethyl Bioconductor R package80 v1.26.1. Finally,
we used the HOMER software suite26 v4.11 to test the 200-bp regions
surrounding replicated CpGs for enrichment for previously reported
transcription factor binding motifs while accounting for regional dif-
ferences in GC content. For the HOMER analysis we used the default
settings to perform one-sided binomial tests to test for enrichment of
known motifs 8, 10, or 12 bp in length, with the 200-bp regions sur-
rounding CpGs not associated with DNMT3A or TET2 mutations
(FDR >0.05) provided as background sequences for comparison.

Functional annotation of replicated sites
To investigate the functional potential of CpG sites associated with
DNMT3A or TET2 mutations, we assessed whether these sets of CpG
siteswere enriched (relative to other CpGs on the Illumina 450K array)
for regions identified as functionally relevant in the components of
whole blood and inHSCs based on cell-type specific DNAm, chromatin
accessibility, or gene expression profiles obtained from external
reference data. Among genes near CpGs associated with DNMT3A or
TET2 CHIP, we also examined enrichment for genes associated with
differential methylation in DNMT3a knockout mice17. For each set of
tests, weused a Bonferroni-adjusted significance criterion to adjust for
the two sets of CpGs and the multiple enrichment categories, unless
otherwise specified.

Cell-type specific DNAm. To characterize the DNAmprofiles of these
CpG sets in HSCs vs. downstream blood lineages, we computed aver-
agemethylation levels at eachCpG according toWGBS data generated
as part of the BLUEPRINT project29. Preprocessed DNAm data (counts
of methylated and total reads by site) were downloaded from GEO
series GSE87196 for HSCs and six peripheral blood cell types (CD4+
and CD8+ T cells, B cells, natural killer cells, monocytes, and neu-
trophils) obtained from purification of blood samples from three
healthy donors. To establish average DNAm levels for HSCs vs. pro-
geny cells while maximizing genomic coverage, data were combined
across donors and within myeloid (monocytes and neutrophils) and
lymphoid (T cells, B cells, andnatural killer cells) lineages to form three
datasets representing average DNAm levels in myeloid cells, lymphoid
cells, and HSCs. The R functions liftover() and findOverlaps() from the
rtracklayer (v1.54.0) and GenomicRanges (v1.46.1) Bioconductor
packages81 were used to identify CpGs in the WGBS data that over-
lapped with CpGs analyzed in the EWAS. Two-sided Wilcoxon tests
were then used to compare the cell-type-specific DNAm distributions
for our sets of replicated CpGs vs. other CpGs on the array.

Cell-type specific chromatin accessibility. To examine whether
these CpG sets are enriched for regions of accessible DNA in HSCs and
downstream progeny, we used the eFORGE tool32 v2.0 to test the top
1000 CpG sites in each set for enrichment in regions identified as
DNase I hypersensitive (DHS) hotspots generated by the ENCODE
project33 for HSCs and five peripheral blood cell types. eFORGE uses a
binomial test to assesswhether overlapwithDHShotspots is greater in
our sets of replicated CpG sites compared to 1000 genomic-context-
matched random probe sets from the same array. To assess sig-
nificance, we compared the p-value from each binomial test to a
Bonferroni-adjusted significance criterion adjusted (α = 0.05/
12 = 0.0042 to account for two sets of CpG sites tested for enrichment
in six cell types). For descriptive purposes, we generated odds ratios as
the ratio of (1) the odds of sites overlapping DHS in our data to (2)
the odds of sites overlapping DHS in the 1000 matched random sets.

Cell-type specific gene expression. To examine whether genes
proximal to these CpG sites are enriched for cell-type-specific gene
expression patterns, we used the Illumina 450K annotation to
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associate each CpG site with a gene, and used two-sided Fisher’s exact
tests to test these gene sets for enrichment or depletion of sets of
genes previously identified as marker genes for HSCs vs. other hema-
topoietic cells derived from human bone marrow34 or mouse bone
marrow, spleen, and peripheral blood36,37. For murine genesets, we
identified human orthologs from Ensembl Release 10582 using the
biomaRt Bioconductor package83. Enrichment or depletion for marker
genesets was assessed using two-sided Fisher’s exact test with Bon-
ferroni adjustment for the number of cell types considered.

Dnmt3a knockout mice. We obtained lists of genes previously iden-
tified ashypo- or hyper-methylated inDnmt3a knockoutmice from the
supplemental materials of ref. 17. As above, we identified human
orthologs from Ensembl Release 10582, and tested for enrichment via
two-sided Fisher’s exact tests.

Comparison of replicated sites to sites associated with aging
To investigate the overlap between CHIP-associated sites and sites
showing differential DNAmwith age, we used CpGassoc to perform an
EWAS for age in the CHS sample. Similar to our discovery EWAS, this
analysis considered DNAmproportion as the outcome, with age as the
independent variable and covariates for CHIP, sex, batch, and esti-
mated cell type proportions, and random effects to account for
repeated measures. We then compared results from the CHIP vs. age
EWASby considering (1) the proportion of CpGs that were significantly
associated with both traits, and (2) Pearson correlation between the
meta-analysis Z-statistics from the two EWAS. For CpG sites associated
with both traits, we performed two-sided Sobel tests38 to assess whe-
ther CHIP is a potential mediator of the relationship between age and
DNAm, defining significance as FDR <0.05.

Comparison of replicated sites to sites associated with leuke-
mogenic mutations in cancer
To assess the overlap between sites associated withDNMT3A and TET2
mutations and sites that associate with thesemutations in the context
of acute myeloid leukemia (AML), we downloaded data generated by
The Cancer Genome Atlas (TCGA) that included Illumina 450K DNAm
data for tumor samples from 140 adult AML patients for whom
potential driver mutations had been identified via whole-genome or
whole-exome sequencing12. We then used CpGassoc to perform an
EWAS forDNMT3Amutations by comparing patients withDNMT3A but
not TET2mutations (N = 28) to patients with other mutations (N = 99),
adjusting for age and sex as covariates. We performed a similar EWAS
to identify sites with differential DNAm in patients with TET2 but not
DNMT3Amutations (N = 9) compared to patients with othermutations
(N = 99). We compared the results of these EWAS to the results from
our discovery EWAS and meta-analysis, assessing the correlation
between test statistics as above.

Mendelian randomization analysis
To evaluate the potential of DNAm as a potential mediator of the
relationship between CHIP and coronary artery disease (CAD), we
performed two-sample Mendelian randomization (MR) between
exposures (replicated CHIP-associated CpGs) and outcome (CAD).
Here, cis-methylation quantitative trait loci (cis-mQTL) from the
GoDMC database39 were used as instrumental variables (IVs) for the
replicated CpGs (excluding MHC region 6: 27486711-33448264) asso-
ciated with either any CHIP, DNMT3A or TET2 CHIP. The summary
statistics of the CAD GWAS meta-analysis of CARDIoGRAMplusC4D40

and UK Biobank from van der Harst and Verweij41 were used. We used
the generalized summary-data-based Mendelian randomization
(GSMR) method of GCTA v1.93.284,85 for the analysis.

We prepared a European ancestry LD reference panel using
20,000 random samples from the UK Biobank imputed GWAS data-
set. SNPs with allele frequency difference >0.2 between the GWAS

summary dataset (mQTL or CAD QTL) and the LD reference were
excluded. In the forward GSMR analysis we considered replicated
CpGs with at least five partially independent (linkage disequilibrium,
LD r2 < 0.05) cis-mQTL with association P < 5 × 10−8. HEIDI-outlier
analysis (heterogeneity in dependent instrument, described in Zhu
et al.85) was then performed to detect and exclude variants with
pleiotropic effects and IVs with P < 0.01 were excluded. For the FDR-
significant (FDR < 0.05) GSMR results, we extracted cis-expression
quantitative trait loci (cis-eQTL; Bonferroni-adjusted P < 0.05) from
eQTLGen (www.eqtlgen.org)43 to see whether the cis-mQTL used in
MR were also cis-eQTL, and compared the change in DNAm with
corresponding change in gene expression.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
To protect the privacy of research participants and the confidentiality
of their data while ensuring that these data are available for appro-
priate use by researchers, all raw data used in this study are available
via controlled access. Individual whole-genome sequencing data for
CHS whole genomes generated via TOPMed and the CHIP somatic
variant call sets are available through controlled access via dbGaP
(https://www.ncbi.nlm.nih.gov/gap/) accession code phs001368. Indi-
vidual whole exome sequencing data from ARIC are available via
dbGaP accession code phs000668. DNA methylation data, as well as
phenotypic data, are available via controlled access via ancillary study
proposals. Timelines for the approval process range from 4–9 weeks
for CHS and 3–6 weeks for ARIC ancillary studies, with specific criteria
and proposal forms for the respective studies available at https://chs-
nhlbi.org/node/6222 and https://sites.cscc.unc.edu/aric/ancillary-
studies-pfg. Summary statistics for replicated associations are avail-
able in Supplementary Data 1–4, and full discovery EWAS summary
statistics are available from the Downloads page of the Cardiovascular
Disease Knowledge Portal (CVDKP; https://cvd.hugeamp.org/
downloads.html#other). For enrichment analyses, WGBS data from
BLUEPRINT29 were downloaded from from GEO series GSE87196,
murine marker genesets were obtained from Ensembl Release 10582,
and tumor DNAm data from TCGA12 were downloaded from https://
gdc.cancer.gov/about-data/publications/laml_2012.

Code availability
Code used to generate data presented here is available at: https://
github.com/MMesbahU/CHIP-EWAS86.
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