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The Role of Ten-Eleven Translocation
Proteins in Inflammation
Christian Gerecke, Caue Egea Rodrigues , Thomas Homann and Burkhard Kleuser*

Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany

Ten-eleven translocation proteins (TET1-3) are dioxygenases that oxidize 5-
methyldeoxycytosine, thus taking part in passive and active demethylation. TETs have
shown to be involved in immune cell development, affecting from self-renewal of stem cells
and lineage commitment to terminal differentiation. In fact, dysfunction of TET proteins
have been vastly associated with both myeloid and lymphoid leukemias. Recently, there
has been accumulating evidence suggesting that TETs regulate immune cell function
during innate and adaptive immune responses, thereby modulating inflammation. In this
work, we pursue to review the current and recent evidence on the mechanistic aspects by
which TETs regulate immune cell maturation and function. We will also discuss the
complex interplay of TET expression and activity by several factors to modulate a
multitude of inflammatory processes. Thus, modulating TET enzymes could be a novel
pharmacological approach to target inflammation-related diseases and myeloid and
lymphoid leukemias, when their activity is dysregulated.

Keywords: epigenetics, TETs, inflammation, DNA-methylation, DNA-hydroxymethylation, dioxygenases, immune
cell regulation
INTRODUCTION

Epigenetic modifications of DNA are essential for control of gene expression in cells. The
5´-methylation of cytosine in CpG-dinucleotides is one of the best-studied and most frequently
observed epigenetic regulation element in mammalian cells. It plays a pivotal role in the
establishment, maintenance, and persistence of gene expression patterns, contributing to nearly
all cellular processes (1). Therefore, gene expression, which is modulated by epigenetic
modifications, is placed by specific enzymes (“writers”), and recognized by effector proteins
(“readers”). However, most of epigenetic marks are reversible, and various enzymes (“erasers”)
remove these marks (2, 3). DNAmethylation on the fifth carbon of cytosine in the CpG dinucleotide
is carried out by “writer” DNA-methyltransferases (DNMTs), including DNMT1, DNMT3A,
DNMT3B (whereas DNMT2 is considered a RNA-methyltransferase (4, 5), and is involved in
different biological roles of various genomic regions (6). The DNA methyltransferases (DNMTs)
convert cytidine to 5-methyl-2’-deoxycytidine (5-mdC) by transfer of a methyl group from S-adenyl
methionine (SAM), which usually occurs on sites where a guanine nucleotide follows cytosine (CpG
sites) in the DNA sequence (7). DNMT1 maintains the methylation pattern in DNA by binding to
newly synthesized DNA and methylating it, copying the original methylation pattern. In contrast,
DNMT3A and DNMT3B introduce methyl groups to DNA de novo. The maintenance of a balance
between DNA hypomethylation and hypermethylation is crucial for physiological processes in the
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cell. Genome-wide DNA hypomethylation is associated with
chromosomal instability, while loci-specific aberrant DNA
hypermethylation in CpG islands of gene promoter regions can
lead to gene silencing (8). This may result in facilitated
tumorigenesis and cancer progression.

In the genome, 5-mdC are unequally distributed throughout
the genome because the modified cytosine itself is mutagenic. It
can undergo spontaneous hydrolytic deamination to cause C !
T transitions, which in turn leads to severe DNA sequence
changes (1). Nevertheless, approximately 70 - 80 % of CpGs
are in a methylated status and therefore associated with
transcriptional repression (9). However, in gene promoters
CpGs are frequently unmethylated in order to control the
transcriptional activity of the respective gene. Mostly, CpGs are
clustered in CpG islands with a high content of cytosine and
guanine base pairs (9). It has become clear that aberrant patterns
of DNA methylation can lead to severe alterations in gene
expression and be a fundamental part of carcinogenesis.
Therefore, loss of normal DNA methylation occurs in DNA
repetitive elements like silenced transposable elements (1). In
contrast, aberrant DNA hypermethylation can be considered as a
crucial event for the initiation and progression of cancer (10).
This, in turn, can facilitate tumorigenesis and cancer progression
due to decreased expression of e.g. tumor suppressor genes and
disruption of cell cycle regulation, apoptosis, and/or DNA repair.

Once considered as non-reversible, recent technological
advancements enabled great improvement in knowledge of DNA
methylation dynamics and the possibilities of DNA demethylation
processes (6). Although DNA demethylation via DNA replication-
dependent passive dilution was known for several decades, the
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replication-independent active demethylation through the activity
of the “eraser” enzymes ten-eleven translocation (TET)
dioxygenases (TET1, TET2 and TET3) has just recently been
described (11, 12). The TET enzyme family belongs to the a-
ketoglutarate (aKG) dependent dioxygenases (aKGD) superfamily
(synonymous to aKG is 2-oxoglutarate). In mammals, TETs
catalyze the oxidation of 5-mdC to 5-hydroxymethyl-2’-
deoxycytidine (5-hmdC), 5−formyl-2’-deoxycytidine (5-fdC) and
5−carboxyl-2’-deoxycytidine (5-cadC), facilitating replication-
independent DNA demethylation via thymine DNA glycosylase
(TDG) base excision repair of 5-fdC and 5-cadC (11, 12). The
reaction mechanism is presented in Figure 1. However, more than a
mere intermediate of DNA demethylation, 5-hmdC is a stable
epigenetic modification distributed in a cell-, and tissue-type
specific pattern and specially enriched at enhancers and gene
bodies (13, 14). The TET-mediated conversion of 5-mdC to 5-
hmdC at promoters, and subsequent DNA demethylation appears
to be highly associated with transcriptional gene reactivation in
several contexts (15, 16). As TET proteins and their products, i.e.,
oxidized cytosine bases, are involved in the maintenance of several
biological processes, there has been accumulating evidence that they
play a complex role in the regulation of inflammatory responses.

The TET enzymes are differentially expressed in several
tissues during development and can regulate several conserved
signaling pathways, which involve important transcription
factors as Wingless (WNT), Notch, Sonic Hedgehog (SHH)
and Transforming Growth Factor Beta (TGFB). Thus, the
normal function of TET enzymes is fundamental for normal
embryonic development and TET deficiency in animal models
has shown to delay cell differentiation and result in dysregulated
A B

C

FIGURE 1 | (A) The TET protein structures; full-length TET1 consists of 2039 aa, TET2 of 1921 aa and TET3 of 1803 aa. TET1, TET2 and TET3 have a C-terminal
catalytic domain and contains a cysteine-rich domain and a double-stranded b-helix (DSBH) domain. A large low-complexity insert is found within the DSHB domain that
may have regulatory roles via post-translational modifications. The N-terminal parts of TET1 and TET3 contain a DNA-binding CXXC domain. TET2 is lacking the CXXC
domain, which CXXC finger protein 4 (IDAX) provides. (B) Structural similarities between the TET cosubstrate a-ketoglutarate (aKG) and the TET inhibiting molecules 2-
hydroxyglutarate (2-HG), succinate and fumarate. (C) The TET enzyme family belongs to the aKG dependent dioxygenases (aKGD) superfamily. In mammals, TETs
catalyze the oxidation of 5-methyl-2’-deoxycytidine (5-mdC) to 5-hydroxymethyl-2’-deoxycytidine (5-hmdC), 5−formyl-2’-deoxycytidine (5-fdC) and 5−carboxyl-2’-
deoxycytidine (5-cadC), facilitating replication-independent DNA demethylation via thymine DNA glycosylase (TDG) base excision repair of 5-fdC and 5-cadC.
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expression of genes involved in these signaling pathways.
Consequently, the absence of TETs results in central nervous
system defects and retinal deformity (17–22). Furthermore, TET
deficiency plays a pivotal role in the initiation and progression of
several malignancies and other aberrations.

In this review, we focus on highlighting the current
understanding and emerging concepts in the mechanisms
through which TET proteins and their products modulate
inflammation in immune and non-immune cells, including also
relevant aspects of the regulation of myeloid and lymphoid immune
cell development, differentiation, and function. Finally, we present
future potential perspectives of how these findings could pave the
way to prevent and treat inflammation-related diseases. We outline
current understanding of the roles of TET proteins in regulating
adaptive and innate immune system and the crucial role in
epigenetic modulation by promoting DNA demethylation, and
producing oxidized products that affects these cells lineage and
function. Additionally, we summarize how aberrant DNA-
methylation plays a key role in proper hematopoietic stem and
progenitor cells (HSPC) self-renewal and lineage differentiation
dysregulation and can lead to aberrant stem cell function and
cellular transformation.
MODE OF ACTION OF TET ENZYMES IN
OXIDATION OF 5-METHYL-2’-
DEOXYCYTIDINE

Members of TET dioxygenase family are capable of oxidizing
methylated 2’-deoxycytidines to 5-hmdC, 5-fdC and 5-cadC,
which are eventually replaced by unmodified 2’-deoxycytidines
because of TDG-mediated base excision repair (23–25). TET
Frontiers in Immunology | www.frontiersin.org 3
proteins belong to aKGD, employing Fe(II) as metal cofactor
and aKG as cosubstrate (26, 27). The aKGD family has
approximately 70 members in mammals. In addition to TETs,
there exist numerous histone lysine demethylases, prolyl 4-
hydroxylases that modify the hypoxia-inducible factor (HIF-
P4Hs) or collagens (collagen P4Hs), the hypoxia-inducible
factor asparagine hydroxylase FIH (factor inhibiting HIF) and
FTO (fat mass and obesity-associated protein), the first identified
RNA demethylase (15). The aKGDs, including TET enzymes,
share the same reaction mechanism and cofactors, but their
substrates vary from DNA to RNA, proteins and fatty acids.
Besides Fe(II) and aKG, aKGDs require molecular oxygen (28,
29). The cofactors are coordinated at the active site by conserved
residues, Fe(II) by two histidines and an aspartate and aKG by a
positively charged arginine in TETs (Figure 2). The catalytic
domains possess a double-stranded b-helix structure known as a
jellyroll. Following cofactor and substrate binding, the molecular
oxygen oxidizes Fe(II), inducing substrate oxidation and
decarboxylation of succinate and CO2 (Figure 1C). The
human TETs are large proteins, full-length TET1 being
composed of 2039 amino acids (aa), TET2 of 1921 aa and
TET3 of 1803 aa (23). The aminoterminal parts of TET1 and
TET3 contain a DNA-binding CXXC domain (23), whereas this
is lacking in TET2 but mediated by CXXC finger protein 4
(IDAX) (30). The catalytic domains are in the C-termini and
contain a cysteine-rich domain and a double-stranded b-helix
domain (Figure 1A). A large low-complexity insert is found
within the double-stranded b-helix domain that may have
regulatory roles via post-translational modifications. The
human TETs are widely expressed, while experimental data
suggest that TET1 is preferentially expressed in embryonic
stem cells (ESCs) whereas TET2 and TET3 are expressed in
many tissues and have overlapping expression profiles (23).
A

B

C

FIGURE 2 | (A) Overall Structure of TET2-DNA Complex generated from pdb: 4NM6. The active site contains a highly conserved 2-His-1-carboxylate-amino acid
residue triad motif in which the catalytically essential Fe(II) is fixated by two histidine residues and an aspartic acid residue. A water molecule is also an essential part
of the complex. (B) The active site of TET2 containing N-Oxalylglycine (NOG). (C) The active site of TET2 containing the cosubstrate a-ketoglutarate (aKG).
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The catalytic activity of the TETs is strongly dependent on Fe(II)
and aKG (15, 29). From a therapeutic point of view, a limited
number of known TET enzyme activators can significantly
increase genome-wide 5-hmdC levels. Vitamin C is one of the
best-known substrates of the TET enzymes as well as a potent
antioxidant and reducing agent (31). It has been proposed that
vitamin C is responsible for the restoration of TET enzyme
catalytic activity through the reduction of Fe(III) to Fe(II) (32,
33). This hypothesis has, however, been contradicted by other
studies in which other strong reducing agents were unable to
enhance the TET-mediated hydroxylation of 5-mdC (34–36).
The mechanism by which vitamin C contributes to increased
levels of TET-mediated hydroxylation of 5-mdC is, therefore,
presently unclear. Additionally, retinol is proved to increase
TET2 expression in naïve ESCs (37). Besides, TET enzymatic
activity is strongly dependent on the availability of reaction
cofactors, including Fe(II), O2 and aKG (15). However, an
activity suppression can occur via product inhibition of the
aKG-metabolite succinate (Figure 1B). In this context, it is of
great interest that although the oncometabolite 2-
hydroxyglutarate (2-HG) has structural similarities to aKG,
unlike this natural substrate, it inhibits TET enzymatic activity
(Figure 1B) (15, 38–42). Indeed, the oncometabolite 2-HG is
produced due to mutations of the isocitrate dehydrogenases
genes IDH1 and IDH2, which play a central role in the citric
cycle. The resulted dysfunctional enzymes exhibit a neomorphic
gain of function, which leads to a decreased amount of the
essential TET cosubstrate aKG as it is irreversibly converted to
the oncometabolite 2-HG. Certainly, a specific CpG island
methylator phenotype in gliomas and colorectal cancers that is
characterized by DNA hypermethylation has been associated
with IDH mutations, which has led to several speculations that
IDHmutations contribute to tumorigenesis via altered epigenetic
regulation (43–45).
THE ROLE OF DYSFUNCTIONAL TET
ENZYMATIC ACTIVITY IN DEVELOPMENT
OF MALIGNANCIES

Aberrant DNA hypermethylation has been associated with
several types of cancer, including gliomas, acute myeloid
leukemia (AML) and cancers of the lung, breast, ovaries, and
colon (46–48). Additionally, a genome-wide decrease in 5-hmdC
levels is considered an epigenetic hallmark in many cancers (29,
49) and several studies have highlighted the diagnostic and
prognostic value of this mechanism. In hematological
malignancies, TET1 was first identified as a gene fused to MLL
(mixed-lineage leukemia) in an AML patient with a ten–eleven
translocation (50); however, this translocation does not occur
very frequently (51). Loss of function mutations in genes
encoding TET enzymes occur frequently in hematopoietic
malignancies, but rarely in solid tumors, which instead
commonly have reduced enzymatic activity (Figure 3). The
impairment of their expression and activity as defined by
reduced 5-hmdC levels may be caused by other factors. Thus,
Frontiers in Immunology | www.frontiersin.org 4
in glioma, TET2 mutations have not been described; however,
TET2 promoter methylation has been detected in 14% of low-
grade glioma patients without IDH mutation (52, 53). Since
promoter methylation is associated with transcriptional
repression, this suggests a decreased TET2 expression in these
patients, possibly leading to decreased levels of 5-hmdC. In
addition, Müller et al. (54) showed a strong correlation
between nuclear exclusion of TET1 and decreased levels in
glioma. In their study, 61% of the tumor samples had
decreased 5-hmdC levels. Of the 5-hmdC negative tumors,
70% showed nuclear exclusion of TET1, or no detectable TET1
protein, thereby demonstrating an additional mechanism that
may lead to decreased 5-hmdC in glioma.

TET proteins may also be post-transcriptionally down-
regulated by microRNAs (miRNA) (55, 56). The miRNA miR-
29 inhibits the translation of TET1 and TDG in lung cancer cells,
in human dermal fibroblasts and vascular smooth muscle cells
miR-29 inhibits formation of all TET isoforms resulting in
effective 5-hmdC decrease (57, 58). Moreover, miR-26 and
TET or TDG levels are inversely correlated during pancreatic
progenitor cell differentiation (59). Additionally, in breast cancer
the TET family is a target of miR-22. Here, it promotes
invasiveness and metastasis by DNA methylation-dependent
silencing of miR-200 through the direct targeting of TET
proteins (56). Moreover, miR-22 is overexpressed and TET2
and miR-200 are downregulated in patients with gastric cancer,
and the aberrant expression of both correlates with poor survival
(60). Interestingly, in embryonal kidney cells the ancestor of the
CXXC domain for TET2, IDAX, may stimulate caspase-
FIGURE 3 | 5-hmdC levels and TET expression in solid tumors and leukemia.
The downregulation of TET gene expression, which is often associated with
reduced 5-hmC levels, has been observed in numerous solid cancers. TET
genes are rarely mutated in solid tumors, the impairment of their expression
and activity as defined by reduced 5-hmC levels may be caused by other
factors. The images were provided and adapted from Servier Medical Art
(smart.servier.com).
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dependent TET2 cleavage after targeting it to DNA (30). The
interaction of TET proteins with OGT (O6-Guanine transferase)
enables catalytic-independent gene expression regulation (61).
Due to the common alteration of OGT in many cancers, it may
affect the TET activity on oxidizing DNA, as well (62).
Additionally, various TET-interacting proteins, such as EZH2
(Enhancer of zeste homolog 2), SIN3A (SIN3 transcription
regulator family member A), the hematopoietic transcription
factor SPI1 and EBF1 (B cell factor 1), may modify the actions of
TET proteins; SPI1 (involved in the differentiation of B cells and
myeloid lineages) is often deregulated in leukemia and
potentially influences mRNA splicing (63). Another study
found that TET2 mediates the IFN-g/JAK/STAT signaling
pathway to control chemokine and PD-L1 (Programmed cell
death-ligand 1) expression, lymphocyte infiltration, and cancer
immunity (64). Generally, reduced TET activity was associated
with decreased Th1-type chemokines and tumor-infiltrating
lymphocytes and the progression of human colon cancer.
Deletion of TET2 in murine melanoma and colon tumor cells
reduced chemokine expression and tumor-infiltrating
lymphocytes, enabling tumors to evade antitumor immunity
and to resist anti–PD-L1 therapy. Conversely, systematic
injection of the TET activating compound vitamin C increased
chemokines and tumor-infiltrating lymphocytes, leading to
enhanced antitumor immunity and anti–PD-L1 efficacy and
extended lifespan of tumor-bearing mice. It has been
suggested, that TET activity could serve as a biomarker for
predicting the efficacy and patient response to anti–PD-1/PD-
L1 therapy. Additionally, stimulation of TET activity could serve
as an adjuvant immunotherapy of solid tumors.

Especially hematological malignancies are often linked to loss
of function mutations in TET genes (65), which leads to impaired
cell differentiation and transformation (66, 67). Furthermore,
four genes that play a role in the citric acid cycle, namely IDH1,
IDH2, SDH (succinate dehydrogenase) and FH (fumarate
hydratase), are frequently mutated in leukemias and various
types of solid cancers (38, 68, 69). These genes are able to affect
the activity of the TET proteins by changing the levels of
metabolites that compete with the TET cofactor aKG. In
humans, TET2 is one of the most frequently mutated genes in
hematopoietic cancers of both myeloid and lymphoid origin
(66). Human and murine hematopoietic progenitor and mature
immune cells show a high TET2 expression and high levels of 5-
hmdC (70). TET2 has been extensively shown to play an
important role in the regulation of hematopoietic stem cell
expansion, differentiation, and function (71). Loss of function
TET2mutations are often described as the first step in the multi-
hit model of development of leukemia (72). Even before the
discovery of the TET enzymatic function, deletions and somatic
mutations in TET2 were identified across multiple exons in
different types of blood cancers in humans (72). In myeloid
leukemias, e.g., in ∼30% of cases of secondary AML, ∼17% of de
novo AML, ∼30% of myelodysplastic syndromes (MDS), ∼50%
of chronic myelomonocytic leukemias (CMMLs), and ∼20% of
myeloproliferative neoplasms (MNP) show a mutated TET2.
Additionally, TET2 is also found to be mutated in certain
Frontiers in Immunology | www.frontiersin.org 5
lymphoid leukemias, e.g., ∼17% of T-cell acute lymphoblastic
leukemia (T-ALL), and in certain lymphomas, e.g., ∼33% of
angioimmunoblastic T lymphomas, and in ∼12% of diffuse large
B-cell lymphomas (73–75). TET2 mutations are shown to
increase with ageing, being observed in peripheral blood cells
of ∼5% - 10% of adults older than 65 years of age, and are one of
the most commonly detected alterations in clonal hematopoiesis
of indeterminate potential (CHIP). CHIP is a result from TET2-
mutant hematopoietic stem cell proliferative advantage and is
considered a preleukemic condition that accounts as a potential
driver of myeloid dysfunction and development of inflammatory
diseases such as type 2 diabetes, coronary heart disease, and
ischemic stroke (76). Data from a recent meta-analysis has
shown that in spite of the fact that TET2 mutations had no
significant prognostic value on myelodysplastic syndromes, the
response rates to hypomethylating agents were significantly
different between patients with and without TET2 mutations
(77). Both TET2-knockout murine and TET2-mutant human
hematopoietic stem cells display resistance to colony-suppressive
effects of TNF-a, therefore sustaining proliferative advantage in
an inflammatory environment (78). In summary, the role of TET
enzymes in the development of cancer has been examined and
extensively proven (16, 66, 79) (Figure 3).
THE ROLE OF TET ENZYMES IN MYELOID
CELL LINEAGE DIFFERENTIATION
AND FUNCTION

The cells of the innate immune system are often recognized as
the first line of host defense against pathogens and injury, being
fundamental not only for the initiation but also for the resolution
of inflammatory processes. Here, myeloid cells, including
macrophages, dendritic cells, neutrophils, mast cells and, with
the involvement of epithelial and endothelial cells as well, are
identified as important players in the recognition and response to
potentially harmful external and internal stimuli. This system
recognizes pathogens via a limited number of germline-encoded
pattern-recognition receptors (PRRs), including toll-like
receptors (TLRs), RIG-I-like receptors (RLRs) and the NOD-
like receptors (NLRs), which initiate complex intracellular
responses upon stimulation (80–85). All TET proteins (TET1-
3) have been implicated in the differentiation and/or function of
myeloid cells, regulating key aspects related to inflammation,
which is illustrated in Figure 4.

TET1 has been suggested to play a role in the differentiation
from monocytes to macrophages and to the activation of
proinflammatory phenotype of macrophages. In the human
monocytic leukemia cell line THP-1, TET1 mRNA is increased
during macrophage differentiation induced by macrophage
colony-stimulating factor (M-CSF). Moreover, 5-hmdC levels
were shown to be enhanced on global levels and specifically in
the TNF-a promoter during the differentiation of monocytes to
macrophages. Importantly, CRISPR stable knockout of TET1 led
to decreased expression of TNF-a and other pro-inflammatory
March 2022 | Volume 13 | Article 861351
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cytokine genes, suggesting that TET1 is an important activator of
the TNF-a gene in macrophages (86). In line with these findings,
TET1 knockdown leads to inhibition of M1 macrophage
polarization through the NF-kB (nuclear factor kappa B)
signaling pathway. LPS/IFN-g-stimulated macrophages were
shown to display significant decrease in the production of
proinflammatory markers such as IL-6, TNF-a, CCL2, and
HLA-DR, when TET1 was down regulated (87). In a recently
published study, TET1 has been shown to display a striking
specificity in the regulation of gene expression in macrophages
related to cell migration and trafficking. In LPS-stimulated
macrophages, TET1 deletion repressed the expression of
CXCL1 (C-X-C Motif Chemokine Ligand 1), a chemokine that
regulates cell migration and recruitment, playing a role in
neutrophil influx during lung inflammation, for example (88).

In primary murine bone-marrow-derived macrophages,
TET3 was shown to inhibit type I IFN production after poly(I:
C) stimulation or viral infection (89). Thus, this study showed
that deletion of TET3 in macrophages elicited enhanced antiviral
responses. Mechanistically, TET3 suppressed IFN-b production
through the recruitment of the histone deacetylase 1 (HDAC1) to
the IFNB1 promoter, a mechanism that is independent from its
5-mdC oxidative catalytic activity (89). Non-classical monocytes
comprise around 2 - 11% of circulating monocytes and have
distinguished expression of surface markers, transcriptomic and
metabolic profiles in comparison to classical monocytes with
complex functions in homeostasis control and in the
pathophysiology of chronic inflammatory diseases (90, 91).
Recently, TET3 has been shown to be involved in the control
on the regulation of the repartition between subsets of classical
and non-classical monocytes. In fact, TET3 knockout mice were
shown to display an increased number of non-classical
monocytes. In this context, it is of interest that non-classical
Frontiers in Immunology | www.frontiersin.org 6
monocyte numbers are significantly decreased in CMML
patients (92).

There is an accumulating body of evidence that loss or
depletion of TET2 leads to alterations in differentiation and
function of different types of cells of myeloid lineage and their
progenitors. Short hairpin RNA (shRNA)-mediated depletion of
TET2 in murine bone marrow HSPCs has shown to skew their
differentiation towards monocyte/macrophage lineages (93).
Similarly, results from another working group shown that their
TET2-knockout generated mouse model displayed increased
Lin−Sca-1+c-Kit+ (LSK) cell pool with increased hematopoietic
repopulating capacity and altered cell differentiation skewing
toward monocytic/granulocytic lineages in an in vitro
competitive reconstitution assay (94). Evidence from in vivo
and in vitro experiments suggest that although TET2 loss does
not affect markers of terminal macrophage differentiation, TET2
plays an important role in macrophage functional polarization
(95). TET2 gene expression in murine macrophages has been
shown to be induced by LPS treatment, an effect that was
abolished by pretreatment with BAY 11–7082, an NF-kB
inhibitor. Interestingly, here it was shown that unstimulated
TET2–/– murine macrophages displayed increased gene
expression of multiple proinflammatory cytokines and
chemokines, while LPS-stimulated TET2–/– macrophages
demonstrated impaired ability to resolve inflammation,
expressing increased mRNA levels of IL1B, IL6, and ARG1
(Arginase 1) at later stages of LPS stimulation (95). Similar
findings were observed with murine and human TET2–/–

dendritic cells and macrophages. Furthermore, animal
experiments demonstrated that TET2-deficient mice were more
susceptible to colitis and to endotoxin shock in comparison to
wild-type mice, displaying a more severe inflammatory
phenotype and severe tissue damage (96). Mechanistic
FIGURE 4 | The role of TET proteins in myeloid cell lineage differentiation and function based on findings from different models presented in this review, including
human and murine cells and animal experiments applying rodents. TET2 deletion has shown to promote increased hematopoietic stem and progenitor cells (HSPCs).
TET2 has shown to be involved in different aspects of the differentiation of myeloid cells. Deletion or depletion of TET2 was shown to skew differentiation of HSPCs
towards monocytic/granulocytic lineages. TET2 regulates the function of monocytic populations such as dendritic cells, macrophages, and osteoclasts. TET1/2 have
been shown to play a role in monocyte to macrophage differentiation. All TET members (TET1/2/3) have been shown to have an effect in the function of
macrophages, affecting their activation, polarization (M1/M2) and cytokine expression. TET2 was shown to regulate mast cell differentiation and function in both a
catalytic-dependent and -independent manner. The cellular images were provided and adapted from Servier Medical Art (smart.servier.com).
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investigation revealed that TET2 interacts with IkBz, a specific
transcription factor for IL6, to promote IL6 transcription
repression during inflammation resolution through the
subsequent recruitment of HDAC2 (Histone Deacetylase 2) to
the IL6 promoter, a mechanism that is independent from TET2
catalytic activity (96).

Evidence on the transcription repression of IL1B in
macrophages mediated by TET2 via HDAC–mediated histone
deacetylation of IL1B promoter has also been shown. Beyond its
effect on the transcription of IL1B, TET2 deficiency in LPS/IFN-
g/ATP–treated macrophages was further shown to enhance the
priming of NLRP3 inflammasome, promoting increased cleavage
of pro–IL-1B to its active form. Moreover, results from animal
experiments from this working group have revealed that TET2
loss of function in macrophages led to increased proatherogenic
activity, suggesting a pivotal role of TET2-deficient macrophages
in the acceleration of atherosclerosis that is associated with
expansion of TET2-deficient HSPCs (97). In another study,
TET2-deficiency in hematopoietic cells by both, specific
ablation in myeloid cells and by partial reconstitution of the
bone marrow with TET2-deficient HSPCs, led to exacerbated IL-
1B, resulting in cardiac dysfunction with worse late-stage cardiac
remodeling in two experimental murine models of heart failure
(98). Consistently, findings from both studies have shown that
the treatment with MCC950, a specific NLRP3 inflammasome
inhibitor, was able abrogate the exacerbated IL-1B secretion,
promoting an atheroprotective effect and hindering the
development of heart failure in these murine models for clonal
hematopoiesis associated with TET2 somatic mutations (97, 98).

Plasmacytoid dendritic cells express endosomal sensors
TLR7/9 and have a massive capacity of producing INF, playing
a fundamental role in both innate and adaptive immune
responses against DNA and RNA viral infections. In order to
elicit INF-a/b production, these cells activate upon stimulation
important transcription factors such as IRF7 (interferon
regulatory factor 7), NFkB and AP-1. TET2 was shown to be
recruited by the zinc finger CXXC family epigenetic regulator
CXXC5 to the CpG island containing promoter of IRF7,
regulating its hypomethylation and thereby increasing its gene
expression. In comparison to controls, TET deficient dendritic
cells displayed decreased capacity to express IRF7. These findings
suggest that along with CXXC5, TET2 is an important
proinflammatory antiviral defense regulator of dendritic
cells (99).

Recently, TET2 has also shown to be post-transcriptionally
regulated during inflammatory processes affecting cytokine
expression through macrophage activation via feedback
regulatory mechanisms mediated by miRNAs (100, 101). Using
different knockout and myeloid cell-specific transgenic mouse
models, it has been shown that in LPS-activated bone-marrow
derived macrophages, the miR-let-7a/let-7d/let-7f cluster (let-
7adf) promotes IL-6 secretion by two different mechanisms. In
the direct mechanism, let-7adf targets specifically TET2, thereby
decreasing its expression at mRNA and protein levels. Indirectly,
let-7adf has been suggested to regulate the Lin28a/SDHA axis in
these LPS-activated macrophages (100). This miRNA cluster
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directly degradates TET2 mRNA and increases succinate levels,
which inhibits TET enzymatic activity, as described above
(102, 103).

Further, miR-125a-5p expression is upregulated in vascular
endothelial cells treated with oxidized low-density lipoprotein. It
targets the TET2 3′-untranslated region and so downregulates
TET2 expression in a concentration-dependent manner. In direct
consequence, these cells displayed decreased levels of 5-hmdC,
mitochondrial dysfunction, increased reactive oxygen species,
activation of NF-kB, NLRP3 inflammasome activation, increased
release of IL-1B and IL-18 and cell death through pyroptosis
(101). Interestingly, miR-125a-5p expression is enhanced in LPS-
stimulated murine bone marrow-derived macrophages,
suppressing the expression of the M1 phenotype while
promoting the expression of the M2 phenotype (104). In
contrast, another study has shown that LPS/IFN-g-stimulated
tumour-associated macrophages with increased expression of
miR-125a-5p led to promotion of M1 polarization by targeting
the factor FIH1 (inhibiting hypoxia-inducible factor-1 a) and
inhibition of M2 polarization through targeting interferon
regulatory factor 4 (IRF4) (105). Due to these contradictory
results, further research needs to unveil possible mechanistic
links between miR-125a-5p and TET2 to coordinate
macrophage polarization.

TET2 has also shown to regulate mast cell differentiation,
proliferation, and function (106–108) (Figure 4). TET2 loss of
function in mast cells affects the 5-hmdC deposition and alters
cytokine production. Cell culture experiments have shown that
TET2−/− murine bone marrow progenitor cells displayed delayed
differentiation to mast cells, while TET2−/− mast cells displayed
altered 5-hmdC patterns, disrupted gene expression, decreased
percentage of cells expressing IL-6, TNF-a, and IL-13 upon IgE
and antigen stimulation, and marked increased proliferation.
Interestingly, although vitamin C was able to enhance 5-hmdC
levels and partially rescue the differential gene expression in
TET2−/− mast cells, suggesting existing compensatory
mechanisms, proliferation differences between TET2−/− and
TET2+/+ cells remained unaffected (107). In another study, in
comparison to controls, TET2–/–mice display increased numbers
of immature promastocytes in the peritoneal cavity. RNA-
sequencing analysis on bone marrow-derived mast cells
derived from TET2–/– mice revealed transcriptional repression
of genes required for mast cell differentiation, maturation, and
function. TET2–/– mast cells displayed marked upregulation of
genes involved in in inflammatory response, migration, growth,
proliferation, and antiapoptotic mechanisms, whereas genes
involved in negative regulation of cell proliferation and
phosphorylation were downregulated. Importantly, TET2–/–

mast cells display dysregulated expression of transcription
factors, including MITF (Melanocyte Inducing Transcription
Factor) and CEBPa (CCAAT/enhancer-binding protein alpha),
and show reduced PTEN (Phosphatase and tensin homolog)
expression because of PTEN promoter hypermethylation and
hyperactivation of the PI3K/AKT/c-Myc pathway. Interestingly,
PTEN expression and maturation was rescued in TET2–/– mast
cells treated with the FDA-approved hypomethylating agent
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5-azacytidine, whereas the co-treatment of these cells with
5-azacytidine and vitamin C led to a complete restoration of
mast cell maturation and correction of hyperproliferation (106).

In mRNA oxidation-dependent manner, TET2 was shown to
promote pathogen infection-induced myelopoiesis through
ADAR1 (Adenosine deaminase acting on RNA)-mediated
repression of SOCS3 (suppressor of cytokine signaling)
expression at the post-transcription level. In mice experiments,
TET2 regulated both, abdominal sepsis-induced emergency
myelopoiesis and parasite-induced mast cell expansion. In
comparison to controls, a TET2-deficient mice model of
abdominal sepsis with acute mobilization and expansion of
myeloid cells have shown to be protected from sepsis with
lower mortality rates. Interestingly, while control mice
developed neutrophilia and inflammatory monocytosis with
increased serum levels of inflammatory cytokines (e.g., TNF-a,
keratinocyte chemoattractant, macrophage inflammatory
protein-1a), neutrophil and monocyte numbers were barely
altered in TET2-deficient mice (108).
THE ROLE OF TET PROTEINS IN B AND
PLASMA CELL DIFFERENTIATION
AND FUNCTION

B cells and plasma cells belong classically to cells of the
adaptative immune system and play an important role in acute
and chronic inflammatory processes, being involved in
pathophysiological mechanisms of several inflammatory and
autoimmune diseases due to their ability to drive or suppress
Frontiers in Immunology | www.frontiersin.org 8
inflammation (109–111). TET enzymes affect different aspects of
B cell development, differentiation, and function, which is
presented in Figure 5. Recent sequencing approaches of
different human B cell subpopulations revealed intense
alterations of the epigenomic landscape during B cell
differentiation, characterized by progressive demethylation
resulting in hypomethylation at later stages (112). While TET1
has been identified as a tumor suppressor of B cell lymphoma
and its loss in HSPCs promotes differentiation bias towards B cell
lymphopoiesis, its expression was shown to be decreased during
B lineage commitment (113). The mRNA levels of TET2 and
TET3, on the other hand, were observed to progressively increase
during B cell development (114). In mice, TET2 and TET3
conditional knockout at early stages of B cell development has
been shown to largely impede lineage-specific programmed
demethylation events (115). Interestingly, TET2 and TET3
were shown to cooperate with B linage-specific transcription
factors to promote 5-mdC oxidation and demethylation, thereby
improving chromatin accessibility at B cell enhancers. Loss of
both, TET2 and TET3 in mice has shown to lead to blockade of
pro- to pre-B cell transition in the bone marrow, decreased IRF4
expression at mRNA and protein levels and impaired the
germline transcription and rearrangement of the Ig light chain
(Igk) locus (116).

Antigenic activation of B cells results in the formation of
dynamic germinal centers (GC). Here, B cells clonally expand
and undergo activation induced cytidine deaminase (AID)-
induced hypermutations that are essential for shaping antibody
affinity and diversity. Upon GC exit, B cells differentiate into
antibody-secreting plasma cells and memory B cells (117). Both
TET2 and TET3 have shown to play a role in antibody class
FIGURE 5 | Regulation of lymphoid development and function by TET proteins. The presented scheme summarizes data from in vitro and murine models
highlighted in this review. TET proteins have a great impact on the development of different lymphoid cells. TET2/3 were shown to regulate invariant natural killer T
(iNKT) cells maturation and development and differentiation into iNKT1 and iNKT2. Ablation or depletion of TET2 has been shown to lead to early acquisition of
memory CD8+ T cell without disrupting effector function after acute viral infection. TET2 has shown to play a role in differentiation of T helper (Th) cells. Knockdown
of TET2/3 gives rise to the decreased responses of IL-4/13A induction against exogenous soluble antigen stimulation, leading to a restrained expression of Th2-
related genes. TET1/2/3 regulate the stability of the regulatory T cells (Treg cells). TET2/3 deletion leads to decreased FOXP3 expression and a shift to an
inflammatory phenotype. During B cell differentiation, TET2 and TET3 orchestrate B cell maturation and function. The cellular images were provided and adapted
from Servier Medical Art (smart.servier.com).
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switch recombination (118). In mice experiments, TET2 deletion
alone was enough to disrupt transit of B cells through GCs,
leading to GC hyperplasia, impairment of class switch
recombination, and blockade of plasma cell differentiation.
Remarkably, in a cohort of 128 patients with diffuse large B-
cell lymphomas, TET2 loss of function mutations was found in
∼12% of the cases (119). In TET2 knockout mice, AID-induced
demethylation was impaired and an aberrant DNA
hypermethylation of regulatory elements was observed with
potential disturbance on the binding of important
transcription factors, such as transcription factors involved in
exit from the GC reaction and B cell receptor, antigen
pr e s en t a t i on , and CD40 pa thway s . Impor t an t l y ,
hypermethylation signatures of murine GC B cells were found
to be significantly reflected in primary cells from TET2 mutant
patients with large B-cell lymphomas (120). It has been shown
that TET is required for optimal AID expression, and both TET2
and TET3 were shown to guide the GC exit of B cells to antibody
secreting plasma cells (114). Mechanistically, TET2 and TET3
enhance the expression of AID by depositing 5-hmdC and
facilitating DNA demethylation at TET2-responsive enhancer
elements located within the AID superenhancer, thereby
maintaining chromatin accessibility and promoting gene
expression (121).

TET2-deficient B cells were shown to express higher level of
IL-6 but not TNF-a in response to LPS stimulation. These
findings further demonstrate the general characteristics of
TET2 in repressing IL6 transcription in B cells and indicate
that TET2 may exert its broad repression of proinflammatory
genes in different types of immune cells (96). TET2 and TET3
have also been implicated in the regulation of key aspects to
prevent autoimmune inflammatory processes. The expression of
the co-stimulatory molecule CD86 was shown to be upregulated
on TET2- and TET3-deficient B cells, which displayed a
permissive chromatin state at the CD86 locus as a result of
decreased accumulation of HDACs. Dysregulated CD86
expression plays a role to the induction of autoimmune
inflammatory processes, contributing significantly to aberrant
activation of T and B cells in vitro and in vivo (122). Further
research of how TETs regulate inflammation and autoimmune-
related processes in B and plasma cells might reveal novel
potential pharmacological targets and strategies to modulate
autoimmune and chronic inflammatory diseases.
THE ROLE OF TET PROTEINS IN T CELL
DIFFERENTIATION AND FUNCTION

T cells, cells that are generally seem as members of the adaptive
immune system, have shown to play a prominent role in acute
and chronic inflammatory processes (123, 124). Genome-wide
mapping of 5-hmdC levels in T cells has revealed dynamic
changes during sequential steps of lineage commitment in the
thymus and the periphery. During the process of T-cell
development and differentiation, with 5-hmdC enrichment in
gene bodies of certain genes of developing T cells being strongly
Frontiers in Immunology | www.frontiersin.org 9
positive correlated with respective gene expression (125). TET2
and TET3 are expressed at high levels in thymocytes and
peripheral T cells, and are responsible for the majority of 5-
hmdCmodifications in these sets of T cells (Figure 5) (126–129).
It has been shown, that the deletion of both, TET2 and TET3, in
murine T cells caused a massive lymphoproliferative phenotype
with enlarged spleen and lymph nodes. The TET2/TET3 double
knockout mice did not live longer than 8 weeks due to decreased
thymic cellularity, lower number of CD4+/CD8+ double positive
cells, and an increased percentage of CD4+ and CD8+ single
positive cells, including phenotypes reminiscent of thymic
atrophy induced by stress or inflammation (130).

Depending on several signals, naïve CD4+ T cells can
differentiate into multiple lineages, including T helper cells
like, Th1, Th2, Th17, follicular T helper cells (Tfh), and
regulatory T cells (Treg). These differentiated cells are
characterized into these five major subsets based on their
expression of signature cytokines and lineage-specific master
transcription factors and play a critical role in coordinating
actions of other immune and non-immune cells during
inflammatory processes (131). CD4+ T cells homeostasis is
important for healthy immune responses, but also plays a role
in the pathogenesis of immune-mediated inflammatory diseases
such as multiple sclerosis (MS), psoriasis, and asthma (132).
TET2 has been shown to be more expressed in TCR (T-cell
receptor)-activated Th cell subsets in comparison to TET1 and
TET3. TET2 recruitment to the signature cytokine loci was
dependent on lineage-specific transcription factors, regulating
differentiation of Th1 and Th17. Under Th1 cell polarization in
vitro, TET2−/− T cells displayed a marked decreased expression of
IFN-g at mRNA and protein levels, whereas TET2−/− Th17 cells
displayed a decrease in the expression of IL-17 on mRNA and
protein levels in comparison to controls. Using a mice model of
myelin oligodendrocyte glycoprotein peptide-induced
experimental autoimmune encephalomyelitis, TET2 expression
has been shown to play a role in suppression of disease severity
by regulating the expression of IL10, IL17, and IFNG in Th cell
subsets (133). Importantly, IL10 expression is considered to be
generally an anti-inflammatory cytokine that plays a
fundamental role in preventing inflammatory and autoimmune
diseases (134).

Treg cells are known for their anti-inflammatory properties,
promoting tissue repair, and suppressing effector T cell proliferation
(135–138). Under specific conditions, however, these cells may lose
suppressive properties, releasing proinflammatory cytokines and
consequently contributing to inflammation-related diseases such as
in certain autoimmune diseases (139). The transcription factor
Forkhead box P3 (FOXP3) is crucial for Treg cells and its
expression is imperative and sufficient for their suppressive
activity. A decrease of FOXP3 expression can shift the function of
Treg cells, leading to expression of proinflammatory phenotypes
with increased secretion IFN-g and IL-17 (140). TET proteins have
been shown to mediate the increase of 5-hmdC and loss of 5-mdC
in Treg cell–specific hypomethylated regions, including conserved
noncoding sequence elements (CNS) 1 and 2, intronic cis-
regulatory elements in the FOXP3 locus. Moreover, TET2/TET3
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deficient mice displayed markedly compromised stability of FOXP3
expression. Vitamin C potentiates TET activity thereby promoting
FOXP3 expression stability (141). Treg cell specific demethylation
region (TSDR) demethylation such as the demethylation of CNS2
has been shown to be required for a Treg immuno-suppressive
phenotype induction in experiments that applied CRISPR-dCas9-
TET1-mediated targeted DNA demethylation technology (142)..
During thymic Treg development, IL-2 has been shown to be
required to maintain increased expression levels of TET2, whereas
TET2 downregulation was shown to prevent Treg cell specific
demethylation region (TSDR) (143). In contrast, IL-6 has been
shown to induce the expression of pro-inflammatory cytokines in
Foxp3+ Treg cells. IL-6 signaling has been shown to induce Dnmt3a
expression and activation, leading to DNA methylation of CNS2
and Foxp3 downregulation (144). Decreased TET2 and TET3 was
shown to compromise physiological Treg function in animal
experiments in which mice lacking TET2 and TET3 in Treg cells
develop inflammatory disease with splenomegaly and leukocyte
infiltration into the lung. Treg cells from these mice displayed
dysregulation of Treg signature genes while also upregulating genes
involved in cell cycle, DNA damage, and cancer, acquiring
ultimately an inflammatory phenotype (145). Recently, miR142-
3p has been shown to target TET2, impairing Treg cell
differentiation and stability in models of type 1 diabetes,
contributing to immune activation and progression during islet
autoimmunity. Thus, inhibition of miR142-3p improved islet
autoimmunity in animal experiments (146).

CD8+ T cells play an important role in the defense against
pathogens and are also potentially important in defense against
cancers (147). TET2 also regulates CD8+ T cell differentiation
and function. Concomitant IL-12 and TCR-mediated
stimulation of human naïve CD8+ T cells leads to TET2-
mediated demethylation of the IFNG- promoter eliciting an
increase in IFN-g expression (148). Interestingly, in a murine
model of acute viral infection, TET2 loss led to early acquisition
of a memory CD8+ T cells without disrupting antigen-driven cell
expansion or effector function after acute viral infection, with
TET2-deficient memory CD8+ T cells displaying superior
pathogen control after rechallenging. TET2 loss in these cells
elicited altered DNA methylation patterns with the majority of
differently methylated regions located in introns and coding
sequences of genes involved in cellular growth, proliferation,
development, death, and survival (149). Furthermore,
concomitant deletion of TET2 and TET3 in mouse CD4+/
CD8+ double-positive thymocytes have also shown to
dysregulate development and proliferation of invariant natural
killer T cells, suggesting that TET2 and TET3 carry proper
development and maturation of these cells by suppressing
aberrant proliferation mediated by TCR (130).

Altogether, there is data that demonstrates that TETs play an
important role in different subset populations of T lymphocytes,
affecting their differentiation and function. Future target research
to understand mechanisms by which TETs regulate function of
these cells during inflammatory processes in inflammation-
related diseases might lead to the finding of new venues for
inflammation-related disease prevention and treatment.
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THE INVOLVEMENT OF TETS IN THE
REGULATION OF NEUROINFLAMMATION

Neuroinflammation is an important defense mechanism of the
central nervous system against pathogenic and or infectious insults
that has also been identified as a common etiopathogenic factor
involved in several central nervous system disorders, such as MS,
depression, ischemic brain injury, Alzheimer’s disease, and
Parkinson’s disease, Amyotrophic Lateral Sclerosis, and
Huntington’s disease (150). Microglial cells, astrocytes,
oligodendrocytes, infiltrating myeloid cells are the main reactive
cellular components involved in neuroinflammation (151).
Microglia are the resident macrophages of the central nervous
system, playing a fundamental role in the immune responses in the
brain thereby preserving the integrity of neuronal circuits.
Remarkably, microglia can exhibit different phenotypes upon
different stimuli (152). For example, microglia are classically
activated in response to LPS or exposure to pro-inflammatory
cytokines (e.g., IFN-g, TNF-a), displaying a M1 proinflammatory
phenotype (153), whereas in response to IL-4 exposure, microglia
acquire complex antiinflammatory properties, altering their
expression of cytokines, surface markers, phagocytosis capacity,
and displaying enhanced potential to induce proliferation of T
cells with a regulatory signature (154). Several epigenetic
mechanisms, including histone modifications, DNA methylation,
and expression of non-coding RNAs (ncRNAs) have been shown
to modulate the alteration of microglia phenotypes, allowing these
cells to display the ability to adapt and respond to the
microenvironment and signal activation (155).

TET2 has been observed to be upregulated in microglia cells
upon TLR-mediated inflammatory stimuli through a NF-kB-
dependent pathway. During inflammatory responses, TET2 was
shown to alter transcription of important genes, leading to
cellular metabolic reprogramming and expression of different
inflammatory mediators. Moreover, in mice models for
neuroinflammation and in samples from Alzheimer’s disease
patients, TET2 expression was also shown to be increased.
Collectively, these findings suggest that TET2 is involved in the
inflammatory responses in microglia in vitro and in vivo (156).
Contrastingly, TET2 depletion has also been associated with
increased development of neuroinflammation in Alzheimer’s
disease. A mouse model for Alzheimer’s disease indicated
TET2 depletion resulted in increased amyloid-b plaque
accumulation, microglia overgrowth and proinflammatory
cytokine accumulation (e.g., IL-6, IL-1B, and TNF-a) (157).

TET2 has also been suggested to play a role in microglia
proinflammatory activation in Parkinson’s disease. By applying a
mice model of inflammation-mediated nigral neurodegeneration,
it has been demonstrated that TET2 loss was accompanied by
protection of nigral dopaminergic neurons. Thus, TET2
inactivation fully prevents nigral dopaminergic neuronal loss
induced by previous inflammation. This is of interest as patients
with Parkinson´s disease exhibit an epigenetic and transcriptional
upregulation of TET2 (158).

Although astrocytes are essential for protection of neurons,
there is growing evidence that astrocytes might also contribute to
March 2022 | Volume 13 | Article 861351

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gerecke et al. TETs in Inflammation
neuroinflammation when exposed to signals from damaged
neurons, proinflammatory microglia and/or damaging insults
(e.g., aggregated proteins, and environmental toxicants). Reactive
astrocytes acquire the capacity to produce pro-inflammatory
cytokines, such as IL-1B, and TNF-a, and ROS. DNA
methylation and demethylation have been implicated in the
differentiation and function of astrocytes (159, 160). For instance,
vitamin C was shown to promote astrocyte differentiation by
promoting TET-mediated DNA hydroxymethylation on
astrocyte-specific genes (161). The activation of specific pathways
including NF-kB and JAK/STAT pathways play an important
role in the conversion of reactive astrocytes and in reactive
astrogliosis (162).

As DNA demethylation of genes in the JAK-STAT pathway
have shown to be important for enhanced activation of STATs for
astrocyte differentiation (163) and TETs were shown to affect and
be affected by the NF-kB pathway in other cell types (101, 156), it
is likely that TETsmight also play a role in the neuroinflammatory
responses of astrocytes. Furthermore, TET activity seems to be
important for generation of oligodendrocytes, which are the
myelinating cells of the central nervous system. Oligodendrocyte
pathology is therefore evident especially in MS. Oligodendrocytes
are generated from oligodendrocyte progenitor cells (164) and all
TET proteins (TET1, TET2, and TET3) were shown to play a role
in the differentiation process with unique subcellular and temporal
expression patterns (165). Moreover, DNA hydroxymethylation
catalyzed by TET1 has been shown to be essential for myelin
repair in young adults and defective in old mice (166). However, in
MS remyelination is often incomplete. Interestingly, in patients
with MS TET2 expression is significantly downregulated in
peripheral blood mononuclear cells, which is associated with a
decrease of 5-hmdC levels (167). Further studies are still needed to
understand the complex role of TET enzymes in the
pathophysiology of MS.
FUTURE PERSPECTIVES FOR
THERAPEUTIC VENUES

The loss of function of TETs, through either genetic mutations or
catalytic inhibition, has shown a strong causal relationship with
multiple malignancies (13, 65, 66). Based on recent discoveries,
several new treatment options are now under consideration. Data
from a recent meta-analysis has shown that, in spiteTET2mutations
had no significant prognostic value on myelodysplastic syndromes,
the response rates to hypomethylating agents were significantly
different between patients with and without TET2 mutations
(168). However, in patients with decreased 5-hmdC levels due to
elevated miRNA or CXXC expression, TET proteins are still
functional. These studies have already demonstrated that TET
overexpression is able to rescue the phenotype caused by
overexpression of TET-targeting miRNAs (55, 56). Moreover, the
expression of TETs is shown to be regulated on several levels, i.e., at
pre-transcriptional, pro-transcriptional (miRNAs), and post-
translational levels and, as mentioned before in this review, its
activity can be modulated by by re-inducing its activity or
Frontiers in Immunology | www.frontiersin.org 11
enhancing the remaining TET activity by certain compounds like
vitamin C (Figure 6) (37). For instance, on pre-transcriptional level,
TET1 promoter hypermethylation has been shown to be linked with
downregulation of TET1 and breast cancer metastasis (169).
Hydrogen sulfide derived from the metabolism of methionine has
shown to lead to sulfhydration of the transcriptional activator
nuclear transcription factor Y subunit beta (NFYB), resulting in
increased transcription of TET1 and TET2 (170). Post-translational
modification of TET enzymes, including O-linked-N-
acetylglucosamine (O-GlcNAc) Transferase, phosphorylation,
Po l y -Adeno s i n e R i bo s y l a t i on (PARy l a t i on ) and
monoubiquitination have shown to significantly affect their
enzymatic activity and stability (171). Although TET deficiency
enhances cell survival and increases cell “stemness”, recent studies
discuss the possibility of temporarily inhibiting TET activity in order
to enhance immune responses. In chimeric antigen receptor T cells
(CAR-T) are efficient therapeutic agent for B lymphocyte
malignancies (172).. Here it has been shown, that TET2
elimination can change the epigenetic map of cells and promote
the proliferation of CAR-T cells derived from a single cell clone,
thereby promoting remission in leukemia patients and improving
the efficacy of immunotherapy (172). Thus, TET2 deficiency
facilitated differentiation and expansion of CD8+ T cells, which
could provide protection against tumor and virus infiltration. Non-
specific TET inhibitors as 2-hydroxyglutarate should be able to boost
antigen-specific responses against tumours by themselves (118).
Therefore, there are different potential strategies that could be
used for modulating TET function in immune and non-immune
cells, potentially furnishing future research with novel therapeutic
venues involving TETs to target and ameliorate inflammation-
related diseases. It is important to note, however, that these
statements are highly exploratory and that the complexity of how
TET enzymes regulate immune responses in a cell and tissue type-
dependent manner represents a great obstacle for the exploration of
these mechanisms for modulating inflammation and in the context
inflammation-related diseases. Nevertheless, it appears highly
dangerous to misregulate TET activity and 5-hmdC levels
indiscriminately. Therefore, more investigations on how to target
specific cell types and tissues are still needed. Summarily, intensive
further research needs to be done applying different in vitro and in
vivo models to elucidate the mechanisms underlying the complex
regulation of the immune system performed by these enzymes and
how their modulationmight affect ultimately the immune responses.
CONCLUSION

Epigenetic regulation plays an important role in modulating
immune responses against infection or injury. Besides DNMT-
mediated DNA-methylation, the TET enzymes are involved in
immune cell development, affecting self-renewal of stem cells
and lineage commitment to terminal differentiation. Thus, TETs
and DNA-hydroxymethylation are important modulators of
immune responses and pathogenesis of inflammatory diseases.
Additionally, aberrant DNA-hydroxymethylation plays a key
role in dysregulation of HSPC self-renewal and lineage
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differentiation and can lead to aberrant stem cell function and
cellular transformation, leading to both myeloid and lymphoid
leukemias. Data demonstrate that TET enzymes regulate a broad
range of mechanisms in most of immune cells. Thus, they play an
important role in different subset populations of T lymphocytes,
affecting their differentiation and function. In addition, they
regulate inflammation and autoimmune-related processes in B
and plasma cells, as well. Furthermore, TET proteins are
involved in the initiation and development of autoimmune
diseases like MS and others. Here, the complex role of TET
enzymes in the pathophysiology of this is still unclear. In this
review, we focused on highlighting the current understanding
and emerging concepts in the mechanisms through which TET
proteins and their products modulate inflammation in immune
and non-immune cells, including also relevant aspects of the
regulation of myeloid and lymphoid immune cell development,
differentiation, and function. Besides all these fundamental
questions, modulating the activity of epigenetic regulating
Frontiers in Immunology | www.frontiersin.org 12
enzymes including TET proteins may be a promising way to
alter and to achieve the desired magnitude and direction of
immune responses.
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2-HG 2-hydroxyglutarate
aKG a-ketoglutarate
aKGD a-ketoglutarate dependent dioxygenases
5-cadC 5−carboxyl-2’-deoxycytidine
5-fdC 5-formyl-2’-deoxycytidine
5-hmdC 5-hydroxymethyl-2’-deoxycytidine
5-mdC 5-methyl-2’-deoxycytidine
aa amino acid
ADAR1 adenosine deaminase acting on RNA 1
AID activation induced DNA cytosine deaminase
AITL angioimmunoblastic T cell lymphomas
AML acute myeloid leukemia
AKT Akt kinase
BER base excision repair
CAR chimeric antigen receptor
CD4/CD8 cluster of differentiation
CEBPa CCAAT/enhancer-binding protein alpha
CHIP clonal hematopoiesis of indeterminate potential
CMML chronic myelomonocytic leukemia
c-myc cellular myelocytomatosis
CpG Cytosine Guanine dinucleotide
CXCL1 C-X-C motif chemokine ligand 1
CXXC cysteine xx cysteine
DC dendritic cells
DNMTs DNA-Methyltransferase
FH fumarate hydratase
FIH factor inhibiting HIF
FOXP3 forkhead box P3
FTO fat mass and obesity-associated protein
GATA3 GATA binding protein 3
GC germinal centers
HDAC histone deacetylase
HIF hypoxia inducible factor
HSPC hematopoietic stem and progenitor cells
IDAX CXXC finger protein 4
IDH isocitrate dehydrogenase
IFNB1 interferon beta 1
IFN-g interferon gamma
Igk Ig light chain
IKBZ IkappaB zeta

(Continued)
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IL Interleukin
iNKT invariant natural killer T cell
IRF4 interferon regulatory factor 4
IRF7 interferon regulatory factor 7
JAK janus kinase
KLF13 Krueppel-like factor 13
let-7adf miR-let-7a/let-7d/let-7f cluster
LPS lipopolysaccharide
LSK Lin−Sca-1+c-Kit+

MDS myelodysplastic syndromes
MITF melanocyte inducing transcription factor
MiRNA microRNA
MLL mixed-lineage leukemia 1
MNP myeloproliferative neoplasms
MS multiple sclerosis
ncRNAs non-coding RNAs
NF-kB nuclear factor kappa B
NLRs NOD-like receptors
NLRP3 NLR family pyrin domain containing 3
NOD nodulation factors
OGT O6- guanine transferase
OPCs oligodendrocyte precursor cells
P4H prolyl-4-hydroxylase
PD-L1 programmed death-ligand 1
PI3K phosphatidylinositol 3-kinase regulatory subunit alpha
PTEN phosphatase and tensin homolog
RIG retinoic acid inducible gene
RLRs RIG-I-like receptors
ROS reactive oxygen species
SDH succinate dehydrogenase
shRNA short hairpin RNA
Sin3A SIN3 transcription regulator family member A
SOCS3 suppressor of cytokine signaling
STAT signal transducer and activator of transcription
TBX21 T-box transcription factor TBX21
Tfh follicular T helper cells
Th cell T helper cell
Treg cell regulatoric T cell
TDG thymine DNA glycosylase
TET ten eleven translocation protein
TLRs toll-like receptors
TNFa tumour necrosis factor alpha
ZBTB7b zinc finger and BTB domain-containing protein 7B
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