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Abstract

In this study, we propose a new method to detect outlying observations in spherical data.

The method is based on the k-nearest neighbours distance theory. The proposed method is

a good alternative to the existing tests of discordancy for detecting outliers in spherical data.

In addition, the new method can be generalized to identify a patch of outliers in the data. We

obtain the cut-off points and investigate the performance of the test statistic via simulation.

The proposed test performs well in detecting a single and a patch of outliers in spherical

data. As an illustration, we apply the method on an eye data set.

Introduction

Spherical data are concerned with directions in three dimensions. They may arise in many areas

of scientific experimentation such as biological, geological and environmental sciences. For

example, the wind direction measured by two different equipments (see [1]) or the altitudes of

the moon and the sun observed at the beginning of the lunar month (see [2]) form spherical

data. The analysis of spherical data generally concentrates on the directional vector of the audi-

tory object and, in most cases, ignores the distance effects. Under this assumption, the represen-

tation of the data reduces to a more tractable two-dimensional spherical display of the data

namely latitude θ and longitude φ. While normal distribution is common for linear data, the

von Mises-Fisher distribution is regularly considered for spherical data. The distribution is also

known as Fisher distribution and assumes the data to be rotationally symmetric [3, 4].

Outliers are observations that are different in some way from the rest. For example, the

wind direction on one particular day which is in the opposite direction to that observed on

other days in the same monsoon season is a candidate to be an outlier. The existence of outliers

in circular data has been shown to affect parameter estimation and weaken the accuracy of

forecast (see for example [5, 6] and warrants proper treatment in the early stage of data analy-

sis. At present, several discordancy tests are developed to detect outlier in 2-dimensional direc-

tional data including [7–10]. Fewer similar studies are conducted for spherical data [11]. Used

probability plot as part of a preliminary examination on a given spherical data set to detect out-

lier. On the other hand [4], proposed formal tests of discordancy by extending the idea used in

[5] for circular data. In this paper, we propose a new outlier detection method for spherical

data using the k-nearest neighbours distance on a unit sphere. The distance between two
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points on the surface of a sphere is measured using the law of cosine. The proposed method

can detect not only single and multiple outliers but also a patch of outliers.

This paper is organized as follows: Section 2 reviews two existing tests of discordancy in the

Fisher distribution. Section 3 shows the distance between two-unit vectors. Section 4 reviews

the definition of k-nearest neighbours distance. Section 5 presents a new test of discordancy

for a patch of outliers. Through simulations, we obtain the percentage points of the test statistic

and study its performance in Section 6. For illustration, an application of the methods on a

real data set is presented in Section 7.

Tests of discordancy in the fisher distribution

Fisher distribution is a common unimodal distribution considered for spherical data. The

probability density functions of a Fisher distribution for a given random vector (Θ, F) is given

by

f ðy;φÞ ¼ ½k=ð4p sinh kÞ�exp½kfcos a cos yþ sin a siny cosðφ � bÞg� sin y ð1Þ

where 0�θ, α<π; 0�φ, β<2π; κ>0, (α, β) is the mean direction, and κ is a measure of the con-

centration about the mean direction.

Let (θ1, φ1),. . .,(θn, φn) be a random sample from a Fisher distribution with mean direction

(α, β). Let ð�y; �φÞ be the sample mean direction, R be the sample resultant length given by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
x þ S2

y þ S2
z

q

where Sx ¼
Pn

i¼1
xi, Sy ¼

Pn
i¼1

yi; Sz ¼
Pn

i¼1
zi, xi = sin θi cos φi, yi = sin θi sin φi, zi = cos θi

and �R ¼ R=n be the mean resultant length. Note that (xi, yi, zi) is in a direction of cosine. Fur-

ther, Rð� iÞn� 1 and �Rð� iÞn� 1
denote the values of resultant length and mean resultant length, respec-

tively, with the observation (θi, φi) omitted from the data set [4]. Recommended two test

statistics, the Ck and Ek statistics. The analogue of Collett’s C statistic is defined as

Ck ¼ max
i

�Rð� iÞn� 1 � �R
�R

( )

; where i ¼ 1; 2; . . . ; n: ð2Þ

While the analogue of Collett’s M statistic is

Ek ¼ n � 2ð Þ
1þ Rð� iÞn� 1 � Rn

n � 1 � Rð� iÞn� 1

( )

; where i ¼ 1; 2; . . . ; n: ð3Þ

[4] noted that the Ck statistic is a good statistic when κ is known or a good estimate if it is

available. In addition, the Ek statistic is developed by considering intuitive and formal likeli-

hood-ratio, whose distribution is available in compact form, and is independent of the value of

κ. The Ek statistic is based on a generalized likelihood-ratio test against the alternative hypothe-

sis that one observation is drawn from a Fisher distribution with different mean direction but

the same concentration parameter. In addition, both test statistics can detect a single outlier

and several outliers (see [4]).

The distance on a sphere

For any 3-dimensional data set, we can find a distance of any given point on a sphere by calcu-

lating the distance between two vectors. The distance between two-unit vectors x1 and x2

(where both have a length of unit radius) can be calculated by using the law of cosine. Let θ12
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be the angle between unit vectors x1 = (x1, y1, z1) and x2 = (x2, y2, z2). We can obtain the dis-

tance between the two points on a sphere by

dðx1; x2Þ ¼ ðx1 � x2Þ � ðx1 � x2Þ

¼ kx1k
2
þ kx2k

2
� 2ðkx1kkx2kcos y12Þ:

ð4Þ

Therefore Eq (4) can be simplified to

dðx1; x2Þ ¼ 2 � 2 cos y12

where 0�θ12�π. It is known that x1•x2 = kx1kkx2k cos θ12. Then

cos y12 ¼
x1 � x2

kx1kkx2k
:

Given that x1 and x2 are two-unit vectors, it must be that cos y12 ¼ xT1x2. In general, the

spherical distance between two-unit vectors is given by

dðxi; xjÞ ¼ 2 � 2 xi
Txj:

For simplicity, we may remove the constant giving

dðx1; x2Þ ¼ 1 � cos y12: ð5Þ

The K-nearest neighbours distance

If k = 1, we consider the distance of first nearest neighbours for a given point, say xi. First, we

denote d1i(xi, xj), for j = 1,2,. . .,n, i6¼j as the distance of first nearest neighbours between the i-
th observation and the rest of observations while d(1i)(xi, xj) the corresponding ordered dis-

tances. The first-nearest distance for the i-th observation is then given by

Q1

i ¼ dð1iÞðxi; xjÞ for j ¼ 1; 2; :::; n; i 6¼ j: ð6Þ

Note that fQ1
i ; i ¼ 1; 2; . . . ; ng gives a sequence of distances between successive observa-

tions on the p-dimensional surface. The statistic (6) can be generalized to detect a patch of out-

liers in spherical data by calculating the k-nearest distance for the i-th observation. For that, we

define Qk
i as the k-nearest neighbours distance for the ith ordered observation, k = 1,2,3,. . .

and i = 1,2,. . .,n such that

Qk
i ¼ dðkiÞðxi; xjÞ for j ¼ 1; 2; . . . ; n; i 6¼ j: ð7Þ

We will use the statistic (7) in the development of a new method for detecting a single, mul-

tiple as well as a patch of outliers in the following section.

A new method of outlier detection for spherical data

In this section, we use the k-nearest neighbours distance as a basic idea to be used in the devel-

opment of a new method to detect possible outliers in spherical data, denoted by Qk. Suppose

x1, x2,. . .,xn are (i.i.d) spherical observations from a Fisher distribution of sample size n. The

sample vector of a spherical sample is given by xi = (xi, yi, zi). Thus, the procedure to obtain the

outlier detection method using the Qk statistic is described as follows:

Step 1 Start with k = 1. Calculate Q1
i , i = 1,2,. . .,n as given by Eq (7).
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Step 2 If the value of Q1
i exceeds a pre-determined cut-off point, say CQ, then the i-th observa-

tion corresponding to Q1
i is identified as an outlier and the process is stopped. Otherwise,

proceed to the next step.

Step 3 Increase k by one, that is, k = 2. Calculate Q2
i , i = 1,2,. . .,n.

Step 4 If the value of Q2
i exceeds a pre-determined cut-off point, say CQ, then the observations

corresponding to Q2
i are identified as a patch of two outliers and the process is stopped.

Otherwise, the process continues by increasing the value of k by one at a time in the subse-

quence steps.

First, we need to obtain the cut-off points CQ for the Qk statistic. We design a simulation

study using the R software to find the percentage points under the null hypothesis of no outli-

ers in the circular data set. Note that parameters α and β are spherical location parameters

while κ is a concentration parameter. We found that the distances between observations gener-

ated from a Fisher distribution depend on n and κ but not on α and β (the detail is not given

here). For each combination of n and κ, we generate a sample from Fisher distribution with

both location parameters fixed (α = 0, β = 0) and calculate the Qk statistic. Then, we repeat the

process 3000 times and estimate the percentage points of the Qk statistic at 10%, 5% and 1%

upper percentiles when no outlier is present in the sample. Selected cut-off points CQ for the

Qk statistic are tabulated in Tables 1–3 for k = 1, 2 and 3 respectively.

For most combinations of the concentration parameter κ and percentile level, the cut-off

point decreases as the sample size increases. It can also be seen that, for small sample sizes, the

cut-off points are a decreasing function of κ. For larger sample sizes, the cut-off points have a

peak value at around κ = 30. The results indicate the proposed statistic depends on n and κ of

the underlying assumed model. As one might expect, it is also noted that the cut-off point also

increases as the value of the k-nearest distance increases due to larger distances on the sphere

between the points of interest.

Table 1. Cut-off points, CQ for Q1 statistic.

Level of percentiles κ

n 2 3 4 5 7 10 20 30 40 50

10 10% 0.89 0.74 0.58 0.45 0.33 0.23 0.11 0.08 0.06 0.05

5% 1.01 0.90 0.71 0.56 0.41 0.29 0.14 0.09 0.07 0.06

1% 1.23 1.16 0.99 0.81 0.58 0.46 0.20 0.13 0.09 0.09

30 10% 0.61 0.61 0.47 0.40 0.25 0.18 0.09 0.06 0.04 0.04

5% 0.70 0.75 0.60 0.49 0.31 0.22 0.11 0.07 0.05 0.04

1% 0.88 0.97 0.97 0.72 0.48 0.33 0.17 0.11 0.08 0.06

50 10% 0.51 0.56 0.45 0.35 0.23 0.16 0.08 0.05 0.04 0.03

5% 0.57 0.67 0.57 0.47 0.30 0.20 0.10 0.06 0.05 0.04

1% 0.74 0.86 0.85 0.68 0.44 0.33 0.14 0.09 0.07 0.06

80 10% 0.41 0.49 0.44 0.34 0.23 0.16 0.07 0.05 0.04 0.03

5% 0.47 0.60 0.54 0.45 0.30 0.20 0.09 0.06 0.04 0.03

1% 0.61 0.80 0.76 0.76 0.50 0.31 0.14 0.09 0.07 0.05

100 10% 0.36 0.48 0.44 0.34 0.22 0.15 0.07 0.05 0.03 0.03

5% 0.41 0.56 0.54 0.44 0.29 0.19 0.09 0.06 0.04 0.03

1% 0.53 0.76 0.78 0.72 0.42 0.31 0.13 0.08 0.06 0.05

200 10% 0.26 0.40 0.40 0.32 0.21 0.14 0.06 0.04 0.03 0.03

5% 0.30 0.47 0.49 0.41 0.26 0.17 0.08 0.05 0.04 0.03

1% 0.37 0.61 0.69 0.65 0.42 0.24 0.13 0.08 0.06 0.05

https://doi.org/10.1371/journal.pone.0273144.t001

PLOS ONE A new outlier detection method for spherical data

PLOS ONE | https://doi.org/10.1371/journal.pone.0273144 August 24, 2022 4 / 12

https://doi.org/10.1371/journal.pone.0273144.t001
https://doi.org/10.1371/journal.pone.0273144


The performance of the Qk statistic

Let P5 be the probability that the contaminant point is an outlying point and is identified as

discordance [12, p.185] and [13, p.64-68]. Stated that a good test is expected to have a high P5

[4]. Investigated the performance of several methods to detect a single outlier in spherical

Table 3. Cut-off points, CQ for Q3 statistic.

Level of percentiles κ

n 2 3 4 5 7 10 20 30 40 50

10 10% 1.33 1.18 0.93 0.77 0.54 0.39 0.20 0.13 0.10 0.08

5% 1.43 1.33 1.08 0.93 0.63 0.46 0.24 0.15 0.12 0.10

1% 1.61 1.59 1.42 1.25 0.85 0.61 0.33 0.21 0.16 0.13

30 10% 0.94 0.92 0.77 0.60 0.42 0.28 0.14 0.10 0.07 0.05

5% 1.04 1.05 0.91 0.71 0.51 0.34 0.17 0.11 0.08 0.06

1% 1.23 1.28 1.21 1.01 0.69 0.48 0.23 0.15 0.12 0.09

50 10% 0.79 0.83 0.71 0.52 0.38 0.26 0.13 0.08 0.06 0.05

5% 0.86 0.96 0.83 0.64 0.44 0.31 0.15 0.10 0.07 0.06

1% 1.01 1.14 1.14 0.99 0.59 0.43 0.21 0.13 0.10 0.08

80 10% 0.65 0.78 0.65 0.53 0.35 0.24 0.11 0.07 0.06 0.04

5% 0.71 0.88 0.79 0.66 0.42 0.29 0.14 0.09 0.07 0.06

1% 0.83 1.02 1.05 0.94 0.62 0.40 0.19 0.12 0.09 0.08

100 10% 0.59 0.73 0.68 0.50 0.34 0.24 0.11 0.07 0.06 0.04

5% 0.65 0.81 0.82 0.61 0.41 0.29 0.13 0.09 0.06 0.05

1% 0.75 0.96 1.01 0.93 0.61 0.38 0.19 0.13 0.09 0.07

200 10% 0.49 0.67 0.64 0.49 0.33 0.22 0.10 0.07 0.05 0.04

5% 0.54 0.74 0.75 0.60 0.41 0.27 0.12 0.08 0.06 0.05

1% 0.62 0.86 0.96 0.81 0.61 0.36 0.18 0.11 0.09 0.07

https://doi.org/10.1371/journal.pone.0273144.t003

Table 2. Cut-off points, CQ for Q2 statistic.

Level of percentiles κ

n 2 3 4 5 7 10 20 30 40 50

10 10% 1.16 1.00 0.77 0.64 0.46 0.31 0.16 0.11 0.08 0.06

5% 1.27 1.17 0.92 0.75 0.54 0.37 0.20 0.13 0.10 0.08

1% 1.47 1.44 1.27 1.00 0.77 0.51 0.27 0.18 0.13 0.10

30 10% 0.80 0.79 0.63 0.51 0.35 0.24 0.12 0.08 0.06 0.05

5% 0.88 0.94 0.78 0.62 0.41 0.29 0.14 0.09 0.07 0.06

1% 1.04 1.18 1.10 0.88 0.57 0.42 0.20 0.13 0.11 0.08

50 10% 0.66 0.74 0.63 0.48 0.32 0.22 0.11 0.07 0.05 0.04

5% 0.75 0.84 0.75 0.57 0.39 0.26 0.13 0.08 0.06 0.05

1% 0.89 1.03 1.01 0.80 0.59 0.36 0.19 0.12 0.09 0.07

80 10% 0.54 0.65 0.56 0.44 0.29 0.20 0.10 0.07 0.05 0.04

5% 0.59 0.74 0.67 0.56 0.37 0.25 0.11 0.08 0.06 0.05

1% 0.72 0.90 0.93 0.82 0.53 0.34 0.16 0.11 0.08 0.07

100 10% 0.50 0.63 0.58 0.44 0.29 0.19 0.09 0.06 0.05 0.04

5% 0.56 0.72 0.69 0.55 0.35 0.22 0.11 0.07 0.05 0.04

1% 0.66 0.89 0.96 0.77 0.54 0.34 0.16 0.11 0.08 0.06

200 10% 0.41 0.56 0.55 0.44 0.28 0.19 0.09 0.06 0.04 0.03

5% 0.46 0.64 0.67 0.55 0.36 0.23 0.11 0.07 0.05 0.04

1% 0.57 0.81 0.91 0.85 0.52 0.34 0.16 0.10 0.07 0.05

https://doi.org/10.1371/journal.pone.0273144.t002
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distribution. Therefore, we compare the performance of the Qk statistic with the existing meth-

ods of Ek and Ck statistics to detect a single outlier and a patch of outliers for various values of

sample size and concentration parameters.

To study the performance of the Qk, Ek and Ck statistics to detect a single outlier, we first

generate samples for two cases, a) n = 10, κ = 3 and b) n = 30, κ = 50. The samples are gener-

ated in such a way that n−1 of the observations come from Fisher distribution with α = 0, β = 0

while one observation (outlier) from Fisher distribution with α = λπ, β = 0, κ = 30, 0�λ�1. If

the value of Qk
i , E

k
i and Ck

i are greater than the corresponding cut-off point and the ith observa-

tion is located at the outlying value, then we have correctly detected an outlier. We repeat the

simulation 3000 times and obtain the value of P5 or known as probability of correct detection

of an outlier which has been introduced into the samples. Note that, the cut-off points for the

Ek and Ck statistics are obtained from Monte Carlo simulation according to the procedure in

obtaining the cut-off points for Qk statistic.

Fig 1 plots the performance of the Qk, Ek and Ck statistics to detect a single outlier for small

sample size and small concentration parameter value. Generally, for small sample size, the Qk

statistic performs better than the Ek statistic only. However, the performance is almost identi-

cal when larger sample size and larger concentration parameter values are considered as

shown in Fig 2.

We also investigate the performance to detect a patch of outliers for the three statistics. For

small sample size and small concentration parameter value, the performance of the Qk statistic

is comparable to the Ek and Ck statistics as shown in Fig 3. A much closer result is observed for

larger sample size and larger concentration values as shown in Fig 4. The trend is observed for

other combinations of sample size and concentration parameter values. This suggests that the

Qk statistic can be a good alternative outlier detection method for spherical data.

Practical example

For illustration, we now apply the proposed and existing spherical discordancy tests into a set

of eye data. We consider the eye data consisting of 23 patients (unit in radians) recorded using

optical coherence tomography (OCT) at the University Malaya Medical Centre (UMMC).

Fig 1. The performance of the Qk, Ek and Ck statistics for n = 10 and κ = 3 for a single outlier.

https://doi.org/10.1371/journal.pone.0273144.g001
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OCT technology originally is used in ophthalmology to image the posterior segment and has

also been used to image anterior segment structures such as the cornea. The angle imaging of

the anterior segment OCT in UMMC patients’ eyes were obtained with Anterior Segment

OCT (AS-OCT). The measurements selected are the angle of the posterior corneal curvature,

φ, and the angle of the eye (between posterior corneal curvature to iris), θ. As such, we are

keen to identify possible outliers in this data set as given in Table 4.

The summary statistics for the given spherical data set are calculated; the sample mean

direction is given in a longitude and latitude expression, ðŷ ¼ 0:6833; φ̂ ¼ 1:5744Þ with the

Fig 2. The performance of the Qk, Ek and Ck statistics for n = 30 and κ = 50 for a single outlier.

https://doi.org/10.1371/journal.pone.0273144.g002

Fig 3. The performance of the Qk, Ek and Ck statistics for n = 10 and κ = 3, for a patch of three outliers.

https://doi.org/10.1371/journal.pone.0273144.g003
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concentration parameter k̂ ¼ 17:9100. The spherical plot of the data is given in Fig 5. The

samples are located around a north pole. This indicates that both variables, namely the poste-

rior and angle of the eye, recorded these 23 observations to be in the same direction. However,

there is one observation lying further away from the rest.

It is known that Q-Q plot and probability plotting are commonly used to investigate the

goodness of fit of linear, circular and spherical data samples (see for example [14–16]). It is

used to visualize the goodness of fit and to identify the presence of outlier(s) at earlier stage

[11]. Provided procedures of plotting an ordered value for spherical data which is assumed to

follow a Fisher distribution. They proposed three types of procedures, namely, colatitudes, lon-

gitude and two-variable plotting procedure for a Fisher model. The procedures considered

three-ordered-value plots. Two of them examine the marginal distributions of the two vari-

ables and one of them is to find the association between these two variables. The details of the

procedures can be obtained in [11]. Note that, the quantile of the unit exponential distribution

Fig 4. The performance of the Qk, Ek and Ck statistics for n = 30 and κ = 50, for a patch of three outliers.

https://doi.org/10.1371/journal.pone.0273144.g004

Table 4. The bivariate eye data.

Patient φ (rad) θ (rad) Patient φ (rad) θ (rad)

1 1.599 0.422 13 1.470 0.981

2 1.208 0.463 14 1.744 1.023

3 1.456 0.733 15 1.674 1.286

4 2.098 0.733 16 1.382 0.937

5 1.401 0.684 17 0.557 0.909

6 1.819 0.944 18 1.688 0.642

7 1.569 0.757 19 1.628 0.724

8 1.562 0.705 20 1.560 0.656

9 1.850 0.632 21 1.808 0.646

10 0.639 0.644 22 2.089 0.471

11 1.696 0.930 23 2.293 0.154

12 1.965 0.429

https://doi.org/10.1371/journal.pone.0273144.t004
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is denoted by e, Ui;n ¼
i� 1

2ð Þ
n for the uniform model is denoted by u and the quantile of the N

(0,1) distribution is denoted by q.

The colatitude plot of the eye data as shown in Fig 6(A) indicates that the data follow Fisher

distribution as the plot gives almost a straight line through the origin. This is further supported

by the longitude plot as shown in Fig 6(B) which gives an approximately straight linear plot of

slope close to 45˚ passing through the origin. From Fig 6(C), we can clearly see one observa-

tion that lies far from the rest, indicating the existence of one possible outlier. Therefore, we

apply the proposed discordancy test on the data. Upon applying the maximum likelihood esti-

mation method, we obtain the estimate parameters of the Fisher distribution. The values of the

parameters are â ¼ 0:6833 and b̂ ¼ 1:5744.

Based on the estimated parameters, we obtain the critical values of three test statistics using

the R statistical software. The values are shown in Table 5. We apply the discordancy tests

including our proposed test statistic and obtain their test statistic values. The values of the test

statistics which correspond to observation number 17 are Ck
17
¼ 0:0104, Ek

17
¼ 5:6622,

Q1
17
¼ 0:0366, Q2

17
¼ 0:1702 and Q3

17
¼ 0:1930. Table 5 shows the cut-off points for the three

methods at 10% significance levels. Based on Table 5, only Q2 and Q3 statistics can detect

observation 17 as an outlier at 10% upper level. This observation corresponds to a patient with

Fig 5. Spherical plot of eye data.

https://doi.org/10.1371/journal.pone.0273144.g005
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Fig 6. Plots of eye data, (a) Colatitude plot, (b) Longitude plot, (c) Two-variable plot.

https://doi.org/10.1371/journal.pone.0273144.g006

Table 5. The (10% upper level) critical values of discordancy tests for n = 23 and κ = 17.9100.

Statistics Ck Ek Q1 Q2 Q3

Critical values 0.0116 6.2700 0.1015 0.1393 0.1659

https://doi.org/10.1371/journal.pone.0273144.t005

Fig 7. Spherical plot of eye data (a patch of two outliers).

https://doi.org/10.1371/journal.pone.0273144.g007
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small values of angle of the posterior corneal curvature compared to other patients and thus

may warrant further investigation.

Next, we are keen to demonstrate the application of the tests to detect a patch of outliers.

Observation 10 is chosen and located closely to observation 17 so that a patch of two outliers

exist in the data. The new coordinate for observation 10 is θ = 0.9599, φ = 0.6109.

From Fig 7, it can be seen clearly that both observations (observations 10 and 17) are

located far from the rest. Upon applying descriptive statistics, the value of the sample mean

direction is given in a longitude and latitude expression, ðŷ ¼ 0:6939; φ̂ ¼ 1:5607Þ and the

concentration parameter k̂ ¼ 16:5789. The values of the test statistics and the cut-off points

for the three methods at 10% significance levels are given in Table 6. As a result, the Q2 and Q3

statistics successfully detected observations 10 and 17 as a patch of two outliers at 10% upper

level while the other test statistics failed.

Conclusion

In this paper, we proposed a new discordancy test for detecting outliers in spherical data based

on the k-nearest neighbours distance. We further demonstrated the applicability of the pro-

posed Qk statistic on the eye data set by successfully identifying a single outlier and a patch of

outliers in the data. A novel aspect of this method is in its ability to detect a patch of outliers

which can be enhanced for cluster analysis in spherical data. The proposed procedure should

work for other spherical distributions.
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Table 6. The test statistics values and the (10% upper level) critical values of discordancy tests for n = 23 and κ = 16.5789.

Statistics Ck Ek Q1 Q2 Q3

Critical values 0.0122 6.1296 0.1114 0.1473 0.1755

Observation 10 0.0099 4.9557 0.0022 0.1844 0.1871

Observation 17 0.0100 5.0162 0.0022 0.1702 0.1928

https://doi.org/10.1371/journal.pone.0273144.t006
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