
OR I G I N A L A R T I C L E

Inference of patient-specific subpathway activities reveals a
functional signature associated with the prognosis of patients
with breast cancer

Junwei Han1 | Siyao Liu1 | Ying Jiang2 | Chaohan Xu1 | Baotong Zheng1 |

Minghao Jiang1 | Haixiu Yang1 | Fei Su1 | Chunquan Li3 | Yunpeng Zhang1

1College of Bioinformatics Science and

Technology, Harbin Medical University,

Harbin, China

2College of Basic Medical Science,

Heilongjiang University of Chinese

Medicine, Harbin, China

3School of Medical Informatics, Daqing

Campus, Harbin Medical University, Harbin,

China

Correspondence

Junwei Han, Chunquan Li, and Yunpeng

Zhang,

Emails: hanjunwei1981@163.com (JH);

lcqbio@163.com (CL); zyp19871208@126.

com (YZ)

Funding information

This work was supported in part by the

National Natural Science Foundation of

China (grant no. 31401127, 81572341), the

China Postdoctoral Science Foundation

(grant no. 2016M601443, 2016M591566),

the Postdoctoral Foundation of Heilongjiang

Province (grant no. LBH-Z16130, LBH-

Z15211), the Natural Science Foundation of

Heilongjiang Province (grant no. H2016074),

the Science and Technology Innovation

Talent Research Foundation of Harbin (grant

no. 2017RAQXJ195)

Abstract

Breast cancer is one of the most deadly forms of cancer in women worldwide. Better

prediction of breast cancer prognosis is essential for more personalized treatment. In

this study, we aimed to infer patient-specific subpathway activities to reveal a func-

tional signature associated with the prognosis of patients with breast cancer. We inte-

grated pathway structure with gene expression data to construct patient-specific

subpathway activity profiles using a greedy search algorithm. A four-subpathway

prognostic signature was developed in the training set using a random forest super-

vised classification algorithm and a prognostic score model with the activity profiles.

According to the signature, patients were classified into high-risk and low-risk groups

with significantly different overall survival in the training set (median survival of 65 vs

106 months, P = 1.82e-13) and test set (median survival of 75 vs 101 months,

P = 4.17e-5). Our signature was then applied to five independent breast cancer data

sets and showed similar prognostic values, confirming the accuracy and robustness of

the subpathway signature. Stratified analysis suggested that the four-subpathway sig-

nature had prognostic value within subtypes of breast cancer. Our results suggest that

the four-subpathway signature may be a useful biomarker for breast cancer prognosis.
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1 | INTRODUCTION

Breast cancer is one of the most deadly forms of cancer in women

worldwide. It is increasingly being realized that breast cancer is

extremely heterogeneous.1,2 The identification of better prognosis

biomarkers of the cancer is necessary for earlier diagnosis and more

personalized treatment. A number of clinical prognostic factors, such

as tumour node metastasis (TNM) stage, pathological grade and his-

tologic type of the tumour, have been used to predict the outcome

of cancer, but their predictive power is limited.3 Because of the

development of high-throughput experimental techniques, such as

microarrays and next-generation sequencing, many studies have

investigated prognostic signatures at the molecular level.4 Some

molecular signatures, such as the 70-gene signature discovered by

Netherlands Cancer Institute (NKI70),5,6 performed well as predictors

of survival in breast cancer. However, current studies have mainlyHan, Liu, Jiang, Xu equally contributed to this study.
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prioritized biomarkers by detecting the correlations of gene expres-

sion with survival data and have poorly considered biological interac-

tions and functions among genes.

Biological pathways are models containing structure information,

such as interactions, regulation, modifications and binding, between

genes. In addition, genes involved in the same pathway often per-

form a specific biological function together.7 Pathway databases,

such as the Kyoto Encyclopaedia of Genes and Genomes (KEGG),8

provide useful pathway structure information. Many pathway identi-

fication methods, such as signalling pathway impact analysis (SPIA),

have effectively uncovered dysregulated pathways underlying com-

plex traits and human diseases.9 However, entire pathways are often

too large to enable accurate interpretation of relevant biological phe-

nomena. In recent years, key subpathway regions representative of

the entire corresponding pathway are believed to be more useful in

terms of interpreting relevant biological phenomena, and abnormali-

ties of these subpathway regions may contribute to the aetiology of

diseases.10-15 Subpathway-GM10 was proposed to identify disease-

relevant subpathways by integrating information from genes and

metabolites and pathway structure information within the given

pathway. In the study, 16 statistically significant subpathways were

identified as associated with metastatic prostate cancer, of which a

subpathway region of histidine metabolism, which was ignored by

the entire pathway analysis method, was demonstrated to be associ-

ated with prostate cancer cell migration in dose-dependent and

time-dependent manners. SubpathwayMiner15 used a subgraph min-

ing method to find the subpathways in which all genes have highly

similar functions, and 36 dysregulated subpathways enriched by dif-

ferential expression genes were identified as associated with the ini-

tiation or progression of lung cancer. These studies showed that

abnormal subpathways may play important roles in the progress of

cancer.

Moreover, there are some other methods to identify subpath-

ways from pathway topology. For instance, PATHOME (pathway and

transcriptome information) first decomposed the pathways into lin-

ear paths (subpathways) from the top nodes to leaf nodes and then

evaluated the significance of differential expression patterns

between cancer and normal tissue along the subpathways. TEAK

(Topology Enrichment Analysis frameworK) extracted linear and non-

linear subpathways with pathway topologies and scored them using

the Bayes Net Toolbox to fit a context-specific Gaussian Bayesian

network for each subpathway. MinePath facilitated the decomposi-

tion of pathways into their constituent subpathways, and then, the

subpathways were matched with gene expression sample profiles in

order to evaluate their functional status and to assess phenotype dif-

ferential power. These subpathway analysis methods have mainly

identified dysregulated subpathways by comparing the expression

levels of their involved genes between tumour and normal tissues

and then analysing the performance of the methods. In this way,

patient-specific clinical or prognosis status of the subpathway is lost

before the outcomes are obtained. Identification of prognosis-related

subpathways may help to predict the survival of patients with cancer

and may provide information for personalized therapy.

This study aimed to infer patient-specific subpathway activities

for revealing a functional signature associated with the prognosis of

patients with breast cancer. We identified a four-subpathway signa-

ture with the ability to predict the overall survival of patients with

breast cancer and validated its prognostic value in five independent

breast cancer data sets.

2 | MATERIALS AND METHODS

2.1 | Data summary

We collected six independent breast cancer data sets of 1502

patients. We first used the gene expression data set of 255 breast

cancer patients in van de Vijver et al.6 to identify the prognostic sig-

nature. Microarray expression profiling was performed using Agilent

microarray technologies. The data set is frequently used in breast

cancer studies as it contains abundant clinical characteristics, includ-

ing age, tumour size, lymph node status, grade and oestrogen recep-

tor status. The patients were randomly divided into a training set

and (n = 147) and a test set (n = 148) with almost the same number.

We then enrolled five other independent breast cancer data sets

(GSE7390,16 GSE1456,17 GSE3143,18 GSE199219 and gene expres-

sion array in TCGA20) to validate the prognostic signature. A total of

1207 patients were enrolled in these data sets, and each data set

included more than 150 patients. Gene expression profiles were

measured by different microarray platforms. We downloaded the

clinical characteristics of patients in each set (if provided). For all of

the above data sets, the summary of patients and clinical characteris-

tics was listed in Table S1. The breast cancer patients in the training

sets were assigned into groups with poor or good prognosis accord-

ing to the status of patient death or not. In this study, the gene

expression levels of the data sets were log2 transformed which may

cause the raw data set to be approximate normal distribution. And

then the gene expression data were z-score normalized across

arrays.

For pathway data, we collected 236 biological pathways from

the KEGG database,8 which contained experimentally verified path-

way structure information (eg, interactions, regulation, modifications

and binding between genes). For each pathway, we converted the

data into an undirected and unweighted gene-gene network on the

basis of pathway structure information using the “iSubpath-

wayMiner” system.10,15

2.2 | Inference of patient-specific subpathway
activities

A subpathway was defined as a local region that induces a single

connected component in the entire pathway. The subpathways are

believed to be more useful in terms of interpreting the relevant bio-

logical phenomena, and abnormalities of subpathway regions may

contribute to the progression of diseases.10 We present a novel

method that integrates pathway structure information with gene

expression data to infer patient-specific subpathway activities. The
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expression values of each gene were overlaid on its corresponding

gene in the pathways to integrate the pathway structure with gene

expression. We searched for the subpathways within each pathway

whose combined expression levels across the samples were highly

discriminative of the status of cancer patients (Figure 1A). For a par-

ticular subpathway spk, we used ak to denote its vector of activity

scores for the cancer patients in a study and used c to denote the

corresponding vector of class labels (eg, good vs poor prognosis).

The activity vector ak was derived by normalizing the gene expres-

sion values gij to z-transformed scores zij; for each gene, i has a

mean li = 0 and a standard deviation ri = 1 over all samples j. The

jth element of ak corresponds to the subpathway activity of sample

j, and the individual zij of each member gene in the subpathway is

averaged into a combined z-score with formula (1):

akj ¼
X

i

Zijffiffiffi
n

p (1)

where n is the number of genes involved in the subpathway. The

discriminative potential of a candidate subpathway was evaluated by

many types of statistics; we defined the discriminative score S(Pk) as

the t-test statistic derived on the activity vector a between the

groups of samples distinguished by the class label vector c.

For each given pathway, a greedy search algorithm as previously

described21 was performed to identify subpathways within the path-

way network for which the discriminative scores S(spk) were locally

maximal. The search algorithm starts from a seeded gene i and

expands iteratively. At each iteration, the search algorithm considers

addition of a gene from the neighbours of genes in the current sub-

pathway. The additional gene is adopted if it yields a maximal score

increase. The search will terminate and output candidate subpath-

ways when no additional gene increases the score over a specified

improvement rate r in which (1 + r) 9 S(Pk) to avoid over-fitting the

expression data. In this study, we set r at 0.05. Furthermore, only

subpathways with more than three genes and less than 50 genes

were retained, which avoids overly narrow or broad functional sub-

pathways.

Three tests of significance are performed to evaluate the statisti-

cal significance of the subpathways identified in the search step. For

the first test, we performed a gene-based permutation test that per-

mutes gene labels across all the pathway networks and preserves

the gene expression profiles and prognosis status in the data set.

We then recomputed the discriminative scores for each real

subpathway. This permutation was used to test the correlation

between real subpathways and pathway structure. We performed

10 000 permutations for this test. Second, we recomputed the

scores for each real subpathway over 1000 random trials in which

the prognosis status vector was randomly permuted. This permuta-

tion was used to test the associations between real subpathways

and prognosis status. The third test was used to test whether the

real subpathways were statistically significant within their corre-

sponding entire pathways. For each real subpathway, we randomly

extracted the same number of genes, which initialized from the same

seed gene as the real subpathway, from the entire pathway and

recomputed the subpathway score. The real subpathway score was

compared with 1000 random scores. For each test (i = 1,2,3), the

statistically significant level of a subpathway was calculated as

P = M/N, where M is the number of permuted subpathway scores

greater than the real subpathway score and N is the permutation

times. We adjusted P using the false discovery rate (FDR) method

proposed by Benjamini and Hochberg22 to correct for multiple

comparisons. Because of different number of times for the three

permutation tests, we chose different FDR cut-offs. The significant

subpathways are selected that satisfy all three tests with

FDR1 < 0.0001, FDR2 < 0.001 and FDR3 < 0.001. In training set,

we obtained 922 significant subpathways. The subpathway activity

matrix was used for further analysis.

2.3 | Selection of subpathways mostly related to
prognostic classification

Based on the activity matrix of 922 significant subpathways, a ran-

dom forest supervised classification algorithm was used to identify

subpathways mostly related to prognostic classifications (Figure 1B).

The reason for using the random forest algorithm is that it could

incorporate interactions between subpathways and return measures

of subpathway importance. In the algorithm, we implemented an

iteration procedure to narrow down the subpathway set in which

the least important subpathways were discarded at each iteration

step. This strategy has been successfully used for subtype predic-

tions of breast cancer based on gene expression profiles.23 In detail,

we constructed ten thousand trees at each iteration step and set

the square root of the number of input subpathways to the size of

randomly chosen subpathways at each node of the single classifica-

tion tree. The important score for each subpathway was estimated

F IGURE 1 Identification of the subpathway signature in the training set. A, Gene expression profiles of tissue samples with phenotypes of
good or poor prognosis were transformed into a “subpathway activity matrix.” For a given subpathway spk in a certain pathway network, the
activity was a combined z-score derived from the expression of its individual genes. After overlaying the expression vector of each gene on its
corresponding protein in the pathway network, subpathways with discriminative activities were identified via a greedy search algorithm. Based
on permutation tests, the subpathway activity matrix of significant subpathways was obtained. B, The random forest supervised classification
algorithm was used to identify the subpathways that were most related to prognostic classifications. An iteration procedure was implemented
to narrow down the subpathway sets by discarding one-third of the least important lncRNAs at each step according to their importance score,
and nine subpathways remained. C, Development of a prognostic classifier for all combinations of the nine subpathways using the risk score
model. For each subpathway combination, patients were classified into high-risk and low-risk groups according to median risk scores, and the
log-rank test was used to evaluate the performance of classifications. The signature with the largest value of �log(p) was selected as the final
signature
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on out-of-bag samples by permutation testing, and one-third least

important subpathways were discarded at each step. After each dis-

card, we re-estimated the generalization error of the classification on

out-of-bag samples. We found that the generalization error changed

slightly at first, but it increased sharply when less than nine subpath-

ways were retained (Figure S1). Thus, nine subpathways mostly related

to prognostic classifications were selected among the 922 significant

subpathways. Detailed information on the nine subpathways is listed

in Table S2. Previously, this algorithm was successfully applied to iden-

tify the lncRNAs that are most related to oesophageal cancer.24 We

implemented the algorithm with the R package ranger.25

2.4 | Identification of the prognostic subpathway
signature

We developed a signature by selecting a combination of the nine

subpathways from the training set (Figure 1C). There are 511 (
P

Ci
9,

i = 1, 2, . . .,9) combinations of the nine subpathways. For each com-

bination, we calculated the risk score for every patient from the

activities of the subpathways by using a prognostic score model 26,27

as follows:

Risk score ¼
X

k2S
bkak ð2Þ

where S is one of 511 combinations; ak is the activity of subpathway

k; bk is the regression coefficient of a univariate Cox proportional

hazard regression model estimated on ak and the overall survival

data. A high-risk score indicates poor survival for patients. According

to the median of risk scores, patients in training set were classified

into high-risk and low-risk groups for each combination. We used

the Kaplan-Meier method to evaluate the power of classification for

each combination to determine which combination is optimum for

prognostic classification in the training set. For signatures consisting

of a specific number of subpathways (i = 1, 2, . . ., 9), the subpath-

way with the smallest P in the log-rank test was selected for each i

(Figure 1C). After the results were compared, a four-subpathway sig-

nature was then defined as the final signature.

3 | RESULTS

3.1 | Derivation of a four-subpathway prognostic
signature

For prognostic signature analysis, the147 breast cancer patients in the

training set were first assigned into groups with poor (41 patients) or

good (106 patients) prognosis according to the status of patient death or

not. We integrated the pathway structure with gene expression to infer

the patient-specific subpathway activities that were associated with

overall patient survival (Figure 1A). In total, 4531 candidate subpathways

were identified using a greedy search algorithm. Through the three dif-

ferent permutation analyses, 922 significant subpathways were obtained

with the default threshold (Materials and methods). A heat map of the

activities of 922 subpathways displayed clear differences between

patients with good prognosis and poor prognosis (Figure S2). The ran-

dom forest supervised classification algorithm was applied to identify the

subpathways most related to prognostic classifications (Figure 1B). Nine

subpathways were selected among the 922 significant subpathways.

We developed subpathway signatures that were constructed by

any combination of the nine subpathways (Figure 1C). In total, there

were 511 candidate signatures (Materials and methods). For each

candidate signature, we calculated the risk score for every patient

based on the activities of the subpathways using a prognostic score

model. In the training set, patients were classified into high-risk and

low-risk groups according to median risk scores. We further priori-

tized signatures using the Kaplan-Meier method and log-rank test to

derive an optimum subpathway signature to predict overall patient

survival. A four-subpathway signature with the best classification

results (the smallest P in log-rank test) was selected to construct the

final signature. Through univariate Cox proportion hazard regression

analysis, the activities of three subpathways (path:04390_17 in hippo

signalling pathway, path:04730_1 in long-term depression, and

path:00230_30 in purine metabolism) in the four-subpathway signa-

ture were positively associated with overall survival, and the activity

of the fourth subpathway (path:04151_102 in PI3K-Akt signalling

pathway) was inversely associated with overall survival. Detailed

information on each subpathway is listed in Table 1.

We derived a formula to calculate the risk score of the signature

for every patient from the activities of the four subpathways

weighted by the univariate Cox proportional hazard regression coef-

ficient26,27:

Risk score ¼ 1:013� activity of path:04390 17þ 0:750

� activity of path:04730 1þ 0:866� path:00230 30

� 0:927� activity of path:04151 102

ð3Þ

With this risk score formula, a patient in the training set was

classified as high risk if the risk score was higher than the median

risk score (0.1067) and as low risk if was not.

3.2 | A four-subpathway signature predicts overall
survival of patients with breast cancer

Patients in the training set were divided into a high-risk group

(n = 74) or a low-risk group (n = 73) using the four-subpathway sig-

nature with the median risk score as the cut-off. The activities of

four subpathways in the signature display obviously differences

between patients in the high-risk group and those in the low-risk

group (Figure 2A). Patients with high-risk scores had shorter overall

survival than patients with low-risk scores (median survival of 65 vs

106 months, P = 1.82e-13 in log-rank test; HR = 1.90, 95% CI 1.57-

2.30, P = 5.10e-11in univariate Cox proportion hazard regression

analysis) (Figure 2B and Table S3). Five clinical characteristics (age,

tumour size, LN status, tumour grade and ER status) were provided

in the training set. The distributions of age, tumour grade and ER

status differed significantly, but the distributions of other clinical fac-

tors did not (Table 2).
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TABLE 1 Detail information for the four subpathways in the signature

SubpathwayID Pathway Size HR (95% CI) P-value Genes

path04390_17 Hippo signalling

pathway

8 2.75 (2.0-3.79) 4.83E-10 YWHAZ, YWHAG, YAP1, SOX2, SERPINE1, TEAD3, BIRC5, FGF1

path04730_1 Long-term depression 10 2.12 (1.65-2.70) 2.59E-09 LYN, PRKCA, PLA2G4B, GNAS, GNAZ, GNA12, CRHR1, GRM1,

GNAQ, GNAI1

path04151_102 PI3K-Akt signalling

pathway

9 0.40 (0.27-0.56) 1.20E-07 GH2, JAK2, IL2RG, PIK3CD, IRS1, IL7R, IGF1R, FGF10, FGF18

path00230_30 Purine metabolism 8 2.38 (1.76-2.30) 1.40E-08 PDE1A, GMPS, ITPA, POLR3A, PDE2A, ENTPD2, RRM2, ADCY7

HR, hazard ratio; CI, confidence intervals.

F IGURE 2 The four-subpathway signature predicts overall survival of patients with breast cancer. A, Heatmap of the activities of four
subpathways of the signature in the training set. B-H, Kaplan-Meier survival curves of patients classified into high- and low-risk groups using
the four-subpathway signature in the training, test, GSE1992, GSE7390, TCGA, GSE1456 and GSE3143 data sets, respectively. P was
calculated by log-rank test. Vertical hash marks indicate censored data
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We applied the same formula and cut-off point as those derived

from the training set to a test set of 148 patients to test the prog-

nostic value of the four-subpathway signature. The signature classi-

fied 67 and 81 patients into the high-risk and low-risk groups,

respectively. As expected, the overall survival time of high-risk group

patients was significantly shorter than that of low-risk group patients

(median survival of 75 vs 101 months, P = 4.17e-5 in log-rank test;

HR = 1.25, 95% CI 1.13-1.38, P = 9.12e-06 in univariate Cox pro-

portion hazard regression analysis) (Figure 2C and Table S3). The

clinical characteristics of tumour grade and ER status were signifi-

cantly different, whereas the other clinical characteristics (age,

tumour size and LN status) were not significantly different between

high- and low-risk group patients (Table 2).

We used the prognostic value of the signature to classify

patients from the five independent breast cancer data sets

(GSE1992, GSE7390, GSE1456, GSE3143 and gene expression array

in TCGA) to validate whether the four-subpathway signature had the

same or similar prognostic value in different populations (Table S1).

For each independent set, patients were divided into high-risk and

low-risk groups, and patients with high-risk scores had significantly

shorter overall survival than those with low-risk scores (Figure 2D-H

and Table S3). Specifically, the P of log-rank tests in the data sets of

GSE1992, GSE7390 and TCGA were all less than 0.001 (Figure 2D-

F). For the data sets of GSE1456 and GSE3143, the P of log-rank

tests were less than 0.05 (Figure 2G and H). For univariate Cox pro-

portion hazard regression analysis, the HRs of all five validated sets

were more than 1.2, and P was less than 0.01 (Table S3). These

results indicate that the subpathway signature can be used for classi-

fying patients with breast cancer. Moreover, three data sets

(GSE1992, GSE7390 and TCGA) provided various clinical characteris-

tics, and we analysed the differences in clinical characteristics

between high- and low-risk group patients (Table S4). ER status dif-

fered significantly between the two groups across three data sets,

and tumour grade differed significantly between the two groups in

the GSE1992 and GSE7390 data sets.

3.3 | Survival prediction by the four-subpathway
signature is independent of other clinical
characteristics

We then assessed whether the survival prediction ability of the

four-subpathway signature was independent of the other clinical

characteristics of patients with breast cancer. Multivariate Cox

regression analysis was performed using a backward stepwise vari-

able selection approach. Five data sets (training set, test set,

GSE1992, GSE7390 and TCGA) that included clinical characteristics

were adopted. The clinical characteristics provided by the different

data sets varied; therefore, the four-subpathway signature and other

clinical characteristics (such as age, tumour size, tumour grade, LN

status and ER status) of each data set were used as covariates.

Because some clinical characteristics (eg, LN status, ER status and

HER2 status) were missing for some patients in the GSE1992 and

TCGA data sets, we used the model of classification and regression

trees28 implemented by the R package rpart to impute the missing

TABLE 2 Clinical and pathological characteristics of patients with breast cancer with high- or low-risk subpathway signature in the training
and test sets

Characteristics

Training set (N = 147) Test set (N = 148)

High-risk
group (n = 74)

Low-risk
group (n = 73) P-value

High-risk
group (n = 67)

Low-risk
group (n = 81) P-value

Age, median (sd) 44.5 (6.32) 46 (4.56) .014* 43 (5.64) 45 (5.08) .38*

Tumour size (%)

≤2 cm 32 (43.24) 42 (57.53) .12 31 (46.27) 50 (61.73) .086

>2 cm 42 (56.76) 31 (42.47) 36 (53.73) 31 (38.27)

LN status (%)

Positive 40 (54.05) 39 (53.42) 1 32 (47.76) 33 (40.74) .49

Negative 34 (45.95) 34 (46.58) 35 (52.24) 48 (59.26)

Grade, No. (%)

1 7 (9.46) 30 (41.1) <.001 5 (7.46) 33 (40.74) <.001

2 18 (24.32) 26 (35.62) 22 (32.84) 35 (43.21)

3 49 (66.22) 17 (23.28) 40 (59.70) 13 (16.05)

ER status (%)

Positive 43 (58.11) 67 (91.78) <.001 37 (55.22) 79 (97.53) <.001

Negative 31 (41.89) 6 (8.22) 30 (44.78) 2 (2.47)

Median survival (months) 65.15 106.33 <.001** 75.07 101.8 <.001**

LN, lymph node; ER, oestrogen receptor.

P-values are calculated by chi-square test, unless otherwise stated.

*Student’s t test.

**Log-rank test.
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values of clinical characteristics in the multivariate Cox regression

analysis. The results showed that the four-subpathway signature was

an independent prognostic factor for overall survival across four data

sets, except for the test set (Table S5). Meanwhile, in the test set,

the P of the subpathway signature (P = .0503) has just exceed the

significance threshold of 0.05.

3.4 | The four-subpathway signature has prognostic
value within subtypes of breast cancer

ER status of breast cancer is important clinically and is used both as

a prognostic indicator and as a treatment predictor.29 Breast cancers

can be classified as ER-positive (ER+) and ER-negative (ER�) sub-

types based on their ER status. We next carried out a stratified anal-

ysis in ER+ and ER� patients to evaluate whether the four-

subpathway signature could predict the survival of patients within

the same subtype. Log-rank tests of ER+ patients in both the train-

ing set (P = 8.7e-12, Figure 3A) and the test set (P = .006, Fig-

ure 3B) showed that the subpathway signature could classify ER+

patients with cancer into high- and low-risk groups. Additionally, the

four-subpathway signature showed similar prognostic value for the

ER+ patients in the TCGA (P = .0025, Figure 3C) and GSE7390

(P = .0004, Figure 3D) data sets. In clinical practice, patients with

ER+ breast cancer have a relatively good prognosis for 5-year sur-

vival,30 but there are still some high-risk patients in this cohort. The

subpathway signature may help doctors identify high-risk patients in

the ER+ cohort and perform adjuvant chemotherapy.

For patients with ER� breast cancer, the four-subpathway signa-

ture classified the patients into high- and low-risk groups in the training

set (P = .029, Figure S3A) but not in the test set (P = .15, Figure S3B).

As with the test set, the four-subpathway signature showed similar

prognostic value for ER� patients in the TCGA (P = .49, Figure S3C)

and GSE7390 (P = .8, Figure S3D) data sets. Patients with ER� gener-

ally have a relatively poor prognosis.31 The subpathway signature clas-

sified 83.8%, 93.8%, 87.3% and 79.7% of patients with ER� into high-

risk groups in the four data sets. In comparison, 45.9%, 53.1%, 18.6%

and 39% of patients with ER� have poor prognosis in the data sets.

This may result in a non-significant P in the log-rank test.

We also did stratified analyses of patients with HER2+ and

HER2� patients from the TCGA and GSE1992 data sets, and

obtained similar results (see Appendix S1 and Figure S4).

3.5 | Comparison of survival prediction power
between clinical characteristics and the four-
subpathway signature

We performed time-dependent ROC analysis32 to compare the sensitiv-

ity and specificity in survival prediction between the four-subpathway

signature and clinical characteristics (age, tumour size, tumour grade,

LN status and ER status) in the five data sets that provided clinical char-

acteristics (training set, test set, GSE1992, GSE7390 and TCGA). For

each data set, median follow-up time was used in time-dependent ROC

analysis. The P of the comparison test of the area under the ROC (AUC)

of the four-subpathway signature versus the AUC of tumour size, age,

F IGURE 3 Survival prediction in ER+
patients. Kaplan-Meier survival curves of
ER+ patients with breast cancer classified
into high- and low-risk groups based on
the four-subpathway signature. A, Training
set (n = 110). B, Test set (n = 116). C,
TCGA (n = 404). D, GSE7390 (n = 64).
Vertical hash marks indicate censored data

HAN ET AL. | 4311



ER status, tumour grade and LN status were calculated using the R

package time ROC.32 The four-subpathway signature showed better

prediction of survival than age and tumour size in regard to overall

survival across the five data sets (P < .05, Figure 4A-E). The predic-

tive ability of the four-subpathway signature was significantly differ-

ent in the training set and test set (P = 2.54e-09 and P = .027,

Figure 4A and B) compared with the predictive ability of ER status,

but it did not show a significant difference in the GSE1992, GSE7390

and TCGA data sets (P > .05; Figure 4C-E). Meanwhile, there was no

significant difference in these measures between the four-subpath-

way signature and tumour grade in the test set and GSE1992 set

(Figure 4B and C).

3.6 | All four subpathways of the signature are
essential for its prognostic value

We constructed all possible signatures containing one to four sub-

pathways in our signature to confirm that all four subpathways of

the signature were essential for the four-subpathway signature.

After the survival of these newly constructed signatures was com-

pared with the original four-subpathway signature using the log-rank

test, none of the signatures with fewer than four subpathways was

consistently associated with overall patient survival in all seven data

sets in our study (see Table S6). Furthermore, we tested the correla-

tion between each pair of the four subpathways in the signature.

F IGURE 4 Comparisons of the sensitivity and specificity for the prediction of overall survival by the four-subpathway signature (Subp),
tumour size (Size), age, ER status, grade and LN status in patients with breast cancer. Receiver operating characteristics (ROC) curves in the (A)
training set, (B) test set, (C) GSE1992, (D) GSE7390 and (E) TCGA. P-values show the area under the ROC (AUC) of four-subpathway signature
versus the AUC of tumour size, age, ER status, grade and LN status
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The results showed that the maximum Pearson correlation coeffi-

cient between the four subpathway activities is less than 0.6 (Fig-

ure S5). These results indicate that all four subpathways are

essential for the prognostic value of the signature.

3.7 | Comparison of the prognostic power of the
four-subpathway signature and a gene-based
signature

We then compared the prognostic power of the subpathway-based

signature and a gene-based signature on overall survival. The NKI70

gene signature (MammaPrint)5 is one of the most commonly used

gene-based models for breast cancer prognosis prediction, and it has

been approved by the Food and Drug Administration for use in clinics.

We applied the NKI70 method6 to the seven data sets used in our

study and compared the MammaPrint gene signature with our sub-

pathway-based signature. Specifically, we mapped the 70 genes in the

MammaPrint signature to the expression profile of each data set and

calculated the correlation coefficient of the expression levels of these

70 genes with their average profile in tumours from patients with a

good prognosis in the NKI study. As performed in the NKI study, the

patients in each data set were classified into high-risk or low-risk

groups according to the correlation coefficient (<0.4 or >0.4). The

Kaplan-Meier method and log-rank tests were used to compare the

results of the four-subpathway signature and those of the Mamma-

Print gene signature. In the training set and test set, the MammaPrint

signature gave log-rank test P of .005 and .032 for overall survival

analysis, respectively; in contrast, the four-subpathway signature gave

P of 1.82e-13 and 4.16e-6 for the test and training sets, respectively

(Figure S6). For the five independent validation sets, all the log-rank

test P-values of the four-subpathway signature were superior to those

of the MammaPrint signature (Figure S6).

We also used time-dependent ROC analysis to compare the

prognostic power of the four-subpathway signature with the Mam-

maPrint gene signature. The results showed that the predictive per-

formance of the four-subpathway signature was significantly higher

than that of the MammaPrint gene signature in the training set

(AUC: 0.867 vs 0.766, P = .013), GSE1992 (AUC: 0.796 vs 0.613,

P = .0038) and GSE7390 (AUC: 0.662 vs 0.557, P = .034)

(Figure S7A,C,D). For the other four data sets (test set, GSE1456,

GSE3143, TCGA), the predictive performance was quite consistent

between the four-subpathway signature and the MammaPrint gene

signature (Figure S7B,E-G). Moreover, there were a total of 35 genes

in the four-subpathway signature whose gene number was only half

of that in the MammaPrint signature. Thus, our subpathway signa-

ture used fewer genes but yielded the same or better results than

the MammaPrint signature.

3.8 | Functional analysis of the four-subpathway
signature

The samples were divided into high-risk and low-risk groups accord-

ing to the four-subpathway signature. For the signature, the

activities of the four subpathways displayed significant differences

between the high-risk and low-risk groups in the training set (t-test

P < .05, Figure 2A). We then investigated the changes of genes

involved in the four subpathways in the context of gene expression

data. Also, the expression levels of the involved genes displayed sig-

nificant differences between high-risk and low-risk groups (Figure 5).

This result indicates that the subpathways in the signature may have

an important biological function associated with the survival of

patients with cancer.

We next sought to explore the biological function of the sub-

pathways of the prognostic signature in breast cancer tumorigenesis

and development. For path:04390_17 in the hippo signalling path-

way, genes in the subpathways were mapped to the original path-

way, and a local region was identified (Figure S8). This local region

corresponds to key pathway downstream transcription co-activators:

YAP/TAZ, which has been reported to be associated with regulating

cell growth, differentiation and apoptosis.33,34 Specifically, elevated

yes associated protein 1 (YAP1) activity has been correlated to a

poor prognosis in several cancers,35,36 TEA domain transcription fac-

tor 1 (TEAD1) has been shown to be the major YAP1 partner in

breast cancer cell lines,37 and fibroblast growth factor 1 (FGF1) plays

an important role in the regulation of cell survival, cell division,

angiogenesis and cell differentiation.38 The other three subpathways

have also been reported to be associated with the development of

breast cancer (see Appendix S1 and Figures S9, S10, S11).

4 | DISCUSSION

Breast cancer is increasingly recognized as being highly heteroge-

neous.1,2 Routine clinical practice, such as the TNM staging system,

is not adequate for breast cancer prognosis. However, prognostic

assessment is crucial for earlier diagnosis and more personalized

treatment. Recently, the identification of molecular signatures with

high-throughput biological data was a promising approach to predict-

ing the prognosis of patients with cancer.5 However, a common

problem with using high-throughput data is the “curse-of-dimension-

ality” problem with many more genes than sample numbers. We

overcame this problem by incorporating gene expression data into

pathway structure and using a greedy algorithm to search the sub-

pathways associated with the prognosis of patients. Although a num-

ber of methods for identifying subpathways associated with cancer

have been proposed,10-15 the advantage of our method is that it

considered patient-specific clinical and prognosis information in the

identification of subpathways, and constructed subpathway activity

profiles for each patient in the data set.

The prognostic value of the four-subpathway signature was veri-

fied in the test set and five independent validation sets. The gene

expression profiles of these data sets were measured by five differ-

ent platforms of two chip company (Agilent and Affymetrix)

(Table S1). The four-subpathway signature was found to robustly

predict the survival of patients with breast cancer from the above

data sets. The good prognosis prediction of the signature in these
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data sets may have benefited from the construction of patient-speci-

fic subpathway activities. We compared the prognostic value of the

four-subpathway signature with that of the MammaPrint gene signa-

ture, which is one of the most common clinically used gene-based

models for breast cancer prognosis prediction. The predictive perfor-

mance of the four-subpathway signature was superior to that of the

MammaPrint signature across the breast cancer data sets used in

our study based on the log-rank test and time-dependent ROC anal-

ysis (Figures S6 and S7). The subpathway signature, which incorpo-

rates higher-order information of biological pathways, may be the

reason for the production of more robust results than the gene-

based signature.

We also found that there were only three overlapping genes

between the MammaPrint signature and our subpathway signature.

We then test if there are more overlaps at the pathway level instead

of gene level. The 70 genes in the MammaPrint signature were then

mapped to the KEGG pathway database. Twenty-five pathways

were annotated with at least one gene, of which five are statistically

significant (hypergeometric test, P < .05). Interestingly, we found

that the four subpathways in our signature are all ranked top ten in

the 25 MammaPrint pathway list. Moreover, there are two over-

lapped pathways (Hippo signalling pathway and PI3K-Akt signalling

pathway) between five MammaPrint pathways and four subpath-

ways in our signature. Through hypergeometric test on the two

pathway set, the statistically significant P-value reached .002. These

results indicate that the MammaPrint signature and our subpathway

signature are quite consistent in pathway level and may perform

some similar biological function.

Although the four-subpathway signature was proposed to predict

the overall survival of various patients with breast cancer, we wanted

to know whether the signature could classify patients with the same

subtype into high- and low-risk groups with significantly different

survival prospects. Learning about the different subtypes of breast

cancer can be very helpful for understanding treatment options and

prognosis. Recently, ER+ breast cancer is one of the most common

types of breast cancer diagnoses. Patients with ER+ breast cancer

have a generally good prognosis for 5-year survival,30 but this out-

come is not always the case. In our stratified analysis, the four-sub-

pathway signature effectively classified patients with ER+ into high-

and low-risk groups across four data sets (Figure 3A-D). This result

indicates that the subpathway signature may help doctors to identify

high-risk patients in the ER+ cohort, which may further lead to tailored

treatment. For patients with the ER� subtype, which generally have a

poor prognosis in clinical practice,31 a high proportion of these

patients was classified into high-risk groups by the prognostic value of

the four-subpathway signature, which resulted in a non-significant P

in the log-rank test. Thus, a more specific signature for classifying

patients of breast cancer with the ER� subtype remains to be devel-

oped.

We further compared the survival prediction power between

clinical characteristics and the four-subpathway signature. The

results showed that the four-subpathway signature displayed better

predictions of survival than age or tumour size in regard to overall

survival across five sets based on time-dependent ROC analysis (Fig-

ure 4). Thus, we expect that the four-subpathway signature can

assist doctors in clinical practice.

Currently, one limitation of the method is that it classifies sam-

ples into high-risk or low-risk group according to the median risk

score in the training set, which is not interpretable in clinical set-

tings. This is a common limitation for the current bioinformatics

method for identifying prognosis signature based on high-throughput

experimental data. Another limitation is that normally prognosis is

defined as 5-year survival or 10-year survival; however, the data for

all patients with breast cancer with follow-up information at least

F IGURE 5 Heatmap of the expression
levels after z-score transformation for the
genes involved in the four-subpathway
signature in the training set
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5 year or 10 year are generally unavailable. Instead, we defined poor

or good prognosis according to the status of patient death or not in

the study. We believe that the prognosis classification performance

of the methods will be considerably improved once we have a more

complete survival data. To make our method clinically usable, some

essential biological experiments need to be performed to test the

association between the four-subpathway signature and pathogenic

mechanism of breast cancer.
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