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Gastric mucosal inflammatory response to H. pylori and its key virulence factor, lipopolysaccharide (LPS), are characterized
by a massive rise in apoptosis and the disturbances in NO signaling pathways. Here, we report that H. pylori LPS-induced
enhancement in the mucosal inducible nitric oxide synthase (iNOS) was associated with the suppression in Akt kinase activity
and the impairment in constitutive nitric oxide synthase (cNOS) phosphorylation. Further, we demonstrate that the LPS effect on
Akt inactivation, manifested in the kinase protein S-nitrosylation and a decrease in its phosphorylation at Ser473, was susceptible to
suppression by iNOS inhibition. Moreover, the countering effect of hormone, ghrelin, on the LPS-induced changes in Akt activity
was reflected in the loss in Akt S-nitrosylation and the increase in its phosphorylation at Ser473, as well as cNOS activation through
phosphorylation. Our findings demonstrate that up-regulation in iNOS with H. pylori infection leads to Akt inactivation through
S-nitrosylation that exerts the detrimental effect on the processes of cNOS activation through phosphorylation. We also report
that ghrelin protection against H. pylori-induced disturbances is manifested in a marked increase in Akt activity and evoked by a
decrease in the kinase S-nitrosylation and the increase in its phosphorylation at Ser473.

1. Introduction

Ghrelin, an endogenous ligand for growth-hormone secreta-
gogue receptor type 1a (GHSR1a), initially recognized for its
role in the regulation of food intake and energy homeostasis,
has emerged recently as an important factor in the control of
local inflammations, gastroprotection, and the modulation
of gastric mucosal inflammatory responses to H. pylori
infection [1–5]. The signaling mechanism that underlies
GHSR1a stimulation by ghrelin involves the activation of
heterotrimeric G protein-dependent pathways that result in
a multiple downstream network of protein kinases, including
Src/Akt kinase pathway implicated in the regulation of nitric
oxide synthase (NOS) system responsible for NO production
[5–7].

The physiological and pathophysiological implications
of NO depend on its local concentration, the type of NOS

isozyme involved in NO generation, substrate availability,
and the enzyme compartmentalization with respect to
protein target [8, 9]. A low level of NO generated by
membrane-associated Ca2+/calmoduline-dependent consti-
tutive (c) cNOS appears to access a pool of substrates that are
of importance to the maintenance of normal physiological
functions which include the regulation of cell-signaling
events associated with apoptogenic signal propagation [5, 8,
10, 11]. On the other hand, the high level of NO generated
by more distant cytosolic Ca2+/calmodulin-independent
inducible (i) iNOS in response to proinflammatory cytokines
and bacterial LPS has been implicated in host response
to sepsis and endotoxemia [9, 12]. However, sustained
iNOS activation associated with persistence of inflammatory
stimulus is also known to have cytotoxic consequences
reflected in transcriptional derangements and the induc-
tion of apoptosis [1, 11, 12]. Therefore, the disturbances
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in NO production associated with H. pylori colonization
and reflected in continual activation of iNOS and the
suppression of cNOS isozyme systems [13, 14] may be of
major consequence in defining the extent of gastric mucosal
inflammatory involvement.

The mechanism underlying cNOS activity is controlled
by a complex set of pre- and posttranslational factors that
affect dynamics of its subcellular targeting and the activity
by exposing the enzyme to fatty acid modification through
N-myristoylation and thiopalmitoylation, interaction with
regulatory cofactors, and the protein phosphorylation at
the critical Ser1179 with the involvement of protein kinase
Akt [5–7, 15–17]. This serine/threonine kinase, also known
as protein kinase B (PKB) or Akt/PKB, is a central player
in the regulation of apoptosis, cell cycle and metabolic
pathways, and signal transduction pathways activated by
growth factors and insulin as well as ghrelin [5, 6, 12, 17,
18]. Activation of Akt in response to insulin or ghrelin
occurs downstream of phosphoinositide 3-kinase (PI3K)
and involves the generation of the lipid second messenger
phosphatidylinositol-3,4,5-triphosphate, which accumulates
in the plasma membrane and serves as a recognition site for
the N-terminal PH (pleckstrin homology) domain of Akt
[18, 19]. The induced conformational changes in Akt result
in the exposure to phosphorylation within the activation
(A) loop at Thr308 and of Ser473 located within the HM
(hydrophobic motif) region of the C-terminal domain of
Akt [18]. These two sites of phosphorylation are apparently
necessary for full activation of Akt [12, 18].

The accumulating evidence, furthermore, indicates that
the activity of Akt may be also regulated through S-
nitrosylation at the kinase cysteine residues [12, 20]. Indeed,
S-nitrosylation of Akt by the exogenous NO donors and the
NO produced by iNOS has been implicated in conferring
insulin resistance, and Akt S-nitrosylation was reported to be
associated with the reduced kinase activity in muscle cells of
genetically obese, diabetic (db/db) mice [20, 21]. Moreover,
protein modification through targeted S-nitrosylation at
the critical cysteine residues is gaining recognition as an
important posttranslational event, that like posttranslational
modification through phosphorylation regulates a variety
of signal transduction events involving NO [5, 8–10, 17,
22].

Gastric ghrelin has been identified as an important
regulator of NOS system responsible for NO production
[6, 17, 23], and we have shown recently that the countering
effect of ghrelin on H. pylori LPS-induced gastric mucosal
cell apoptosis was reflected in the increase in cNOS activity
[5]. As protein kinase Akt plays a central role in a rapid
posttranslational cNOS activation through phosphorylation
[6, 15, 16], in this study we investigated further the nature
of the impairment in cNOS activation induced in gastric
mucosal cells by H. pylori LPS. Our data revealed that
the impairment in gastric mucosal cNOS phosphorylation
with the LPS results from iNOS-induced suppression in Akt
activity through S-nitrosylation. We further showed that
the countering effect of ghrelin was reflected in a marked
increase in Akt phosphorylation and a decrease in its protein
S-nitrosylation.

2. Materials and Methods

2.1. Gastric Mucosal Cell Incubation. The mucosal cells,
collected by scraping the mucosa of freshly dissected rat
stomachs with a blunt spatula, were suspended in five
volumes of ice-cold Dulbecco’s modified (Gibco) Eagle’s
minimal essential medium (DMEM), supplemented with
fungizone (50 μg/ml), penicillin (50 U/ml), streptomycin
(50 μg/ml), and 10% fetal calf serum, gently dispersed by
trituration with a syringe, and settled by centrifugation
[5]. Following rinsing, the cells were resuspended in the
medium to a concentration of 2 × 107 cell/ml, transferred
in 1 ml aliquots to DMEM in culture dishes, and incubated
under 95% O2 : 5% CO2 atmosphere at 37◦C for 16 h in
the presence of 0–200 ng/ml of H. pylori LPS [5]. In the
experiments evaluating the effect of ghrelin (rat, Sigma),
cNOS inhibitor, L-NAME, iNOS inhibitor, 1400W, Akt
inhibitor, SH-5 (Calbiochem), and ascorbate (Sigma), the
cells were first preincubated for 30 min with the indicated
dose of the agent or vehicle before the addition of the LPS.
The viability of cell preparations before and during the
experimentation, assessed by Trypan blue dye exclusion assay
[24], was greater than 97%.

2.2. Helicobacter pylori Lipopolysaccharide. H. pylori used for
LPS preparation was cultured from clinical isolates obtained
from ATCC no. 4350 [14]. The bacterium was homoge-
nized with liquid phenol-chloroform-petroleum ether and
centrifuged, and the LPS contained in the supernatant was
precipitated with water, washed with 80% phenol solution
and dried with ether. The dry residue was dissolved in a
small volume of water at 45◦C and centrifuged at 100, 000 ×
g for 4 h, and the resulting LPS sediment subjected to
lyophilization.

2.3. cNOS and iNOS Activity Assay. Nitric oxide synthase
activities of cNOS and iNOS enzymes in the gastric mucosal
cells were measured by monitoring the conversion of L-
[3H] arginine to L-[3H] citrulline using NOS-detect kit
(Stratagene). The cells from the control and experimental
treatments were homogenized in a sample buffer containing
either 10 mM EDTA (for Ca2+-independent iNOS) or 6 mM
CaCl2 (for Ca2+-depenedent cNOS) and centrifuged. The
aliquots of the resulting supernatant were incubated for
30 min at 25◦C in the presence of 50 μCi/ml of L-[3H]
arginine, 10 mM NAPDH, 5 μM tetrahydrobiopterin, and
50 mM Tis-HCl buffer, pH 7.4, in a final volume of 250 μl.
Following addition of stop buffer and Dowex-50 W (Na+)
resin, the mixtures were transferred to spin cups and
centrifuged and the formed L-[3H]citrulline contained in the
flow through was quantified by scintillation counting.

2.4. Akt Activity Assay. The kinase activity of Akt in gastric
mucosal cells was measured with the Akt Activity Kit (Cal-
biochem) by quantifying phosphorylation of a biotinylated
peptide substrate (GRPRTSSFAEG). The cells were lysed
in lysis buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl,
10% glycerol, 1% Triton X-100, 1% deoxycholate, 2 mM
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EDTA, 1 mM sodium orthovanadate, 1 mM PAF, and 1 mM
NaF), containing protease inhibitor cocktail (Sigma), at
4◦C for 30 min, centrifuged at 14, 000 × g for 15 min,
and immunoprecipitated with anti-Akt antibody for 1 h
at 4◦C. Protein A/G agarose beads were then added for
additional 1 h, and the immune complex was recovered by
centrifugation and thoroughly washed with lysis buffer. The
agarose beads were then suspended for 30 min at room
temperature in the kinase assay buffer and centrifuged, and
the supernatants were used for the Akt activity assay by
following the manufacturer’s instruction.

2.5. Akt Phosphorylation Assay. Assessment of the phos-
phorylation status of Akt in gastric mucosal cells was
carried out using Akt (pThr308) and Akt (pSer473) ELISA
kits (Calbiochem). The mucosal cells were lysed on ice for
30 min in lysis buffer (10 mM Tris-HCl, pH 7.4, 100 mM
NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM NaF, 2 mM sodium
orthovanadate, 1% Triton X-100, 10% glycerol, 0.1% SDS,
0.5% deoxycholate, and 1 mM PMSF), containing protease
inhibitor cocktail and centrifuged at 14, 000 × g for 15 min.
The supernatants diluted (1 : 10) in standard diluent buffer
were pipetted in 100 μl aliquots into wells containing immo-
bilized capture antibody, and after washing, the complex
was reacted with antibody specific for Akt (pThr308) or Akt
(pSer473). After washing, the retained complex was labeled
with horseradish peroxidase and probed with TMB reagent
for spectrophotometric quantification at 450 nm.

2.6. Akt Protein S-Nitrosylation Assay. A biotin switch
procedure was employed to assess Akt enzyme protein S-
nitrosylation [25, 26]. The gastric mucosal cells were treated
with iNOS inhibitor, 1400W (30 μM) or ghrelin (0.5 μg/ml),
and incubated for 16 h in the presence of 100 ng/ml of H.
pylori LPS. Following centrifugation at 500 × g for 5 min,
the recovered cells were lysed in 0.2 ml of HEN lysis buffer
(250 mM HEPES, 1 mM EDTA, 0.1 mM neocuprin, and pH
7.7), and the unnitrosylated thiol groups were blocked with
S-methyl methanethiosulfonate reagent at 50◦C for 20 min
[26]. The proteins were precipitated with acetone, resus-
pended in 0.2 ml of HEN buffer containing 1% SDS, and
subjected to targeted nitrothiol group reduction with sodium
ascorbate (100 mM). The free thiols were then labeled with
biotin, and the biotinylated proteins were recovered on
streptavidin beads. The formed streptavidin bead-protein
complex was washed with neutralization buffer, and the
bound proteins were dissociated from streptavidin beads
with 50 μl of elution buffer (20 mM HEPES, 100 mM NaCl,
1 mM EDTA, and pH 7.7) containing 1% 2-mercaptoethanol
[26]. The obtained proteins were then analyzed by Western
blotting.

2.7. Immunoblotting Analysis. The mucosal cells from the
control and experimental treatments were collected by
centrifugation and resuspended for 30 min in ice-cold lysis
buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10%
glycerol, 1% Triton X-100, 2 mM EDTA, 1 mM sodium
orthovanadate, 4 mM sodium pyrophosphate, 1 mM PMSF,

and 1 mM NaF), containing 1 μg/ml leupeptin and 1 μg/ml
pepstatin [5]. Following brief sonication, the lysates were
centrifuged at 12,000 g for 10 min, and the supernatants
were subjected to protein determination using BCA protein
assay kit (Pierce). The samples, including those subjected to
biotin switch procedure, were then resuspended in loading
buffer, boiled for 5 min, and subjected to SDS-PAGE using
40 μg protein/lane. The separated proteins were transferred
onto nitrocellulose membranes, blocked for 1 h with 5%
skim milk in Tris-buffered Tween (20 mM Tris-HCl, pH
7.4, 150 mM NaCl, and 0.1% Tween-20), and probed with
the antibody against phosphorylated protein at 4◦C for
16 h. After 1 h incubation with the horseradish peroxidase-
conjugated secondary antibody, the phosphorylated proteins
were revealed using an enhanced chemiluminescence. Mem-
branes were stripped by incubation in 1 M Tris-HCl (pH
6.8), 10% SDS, and 10 mM dithiotreitol for 30 min at 55◦C
and reprobed with antibody against total cNOS or Akt.
Immunoblotting was performed using specific antibodies
directed against cNOS, phospho-cNOS (Ser1179) and Akt,
phospho-Akt (Ser473) (Calbiochem).

2.8. Data Analysis. All experiments were carried out using
duplicate sampling, and the results are expressed as means ±
SD. Analysis of variance (ANOVA) followed by nonparamet-
ric Kruskal-Wallis test was used to determine significance,
and the significance level was set at P < .05.

3. Results

To further understand the modulatory role ghrelin on
the disturbances in NOS system associated with gastric
mucosal inflammatory responses to H. pylori infection, we
used rat gastric mucosal cells and examined the effect of
H. pylori key virulence factor, LPS, on the activity of a
serine/threonine kinase, Akt. We found that the LPS caused
a dose-dependent drop in the mucosal cell Akt activity,
which at 100 ng/ml LPS decreased by a 36% (Figure 1).
Moreover, we demonstrated that the inhibitory effect of the
LPS on Akt activity was reflected in a 39% drop in the
enzyme Ser473 phosphorylation, while phosphorylation of
the enzyme protein at Thr308 was not affected (Figure 2).

Furthermore, we found that preincubation of gastric
mucosal cells with ghrelin led to a concentration-dependent
suppression of the LPS-induced effect on Akt activity and
the extent of its protein phosphorylation on Ser473. As a
result, the activity of Akt in the presence of 0.5 μg/ml ghrelin
increased twofolds over that of the LPS (Figure 3), while
the enzyme protein phosphorylation at Ser473 showed a 2.1-
fold increase (Figure 4). We also established that the LPS at
100 ng/ml elicited a 19.8-fold increase in the mucosal cell
iNOS activity, while the cNOS activity showed a 4.3-fold
decrease. Preincubation with ghrelin at 0.5 μg/ml resulted in
a 77.7% reversal of the LPS inhibitory effect on the mucosal
cell cNOS activity as well as produced a 90.2% reduction in
the LPS-induced iNOS activity (Figure 5).

To reveal further insights into the involvement of Akt
in the regulation of NOS system, we examined the effect of
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Figure 1: Effect of H. pylori LPS on Akt kinase activity in rat
gastric mucosal cells. The cells were treated with the indicated
concentrations of the LPS and incubated for 16 h. Values represent
the means ± SD of five experiments. ∗P < .05 compared with that
of control (LPS-0).
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Figure 2: Effect of H. pylori LPS on Akt kinase threonine (Thr308)
and serine (Ser473) phosphorylation in rat gastric mucosal cells. The
cells were treated with the indicated concentrations of the LPS and
incubated for 16 h. ∗P < .05 compared with that of control (LPS-0).

ghrelin on cNOS activation. As cNOS is known to undergo a
rapid posttranslational activation through phosphorylation
at Ser1179 [5, 6], the mucosal cells prior to the incubation
with ghrelin were pretreated with Akt kinase inhibitor, SH-5,
and the lysates were probed with antibodies directed against
cNOS and phosphorylated cNOS at Ser1179 (Figure 6). The
results revealed that the LPS-induced suppression in cNOS
activity was associated with the inhibition in the enzyme
protein phosphorylation, while the reversal of the LPS
effect by ghrelin was reflected in a marked increase in the
enzyme protein phosphorylation at Ser1179. Furthermore, we
observed a drop in the ghrelin-induced cNOS phosphoryla-
tion in the presence of Akt inhibitor, SH-5 (Figure 6).

As the activity of Akt kinase, in addition to the enzyme
protein phosphorylation at Thr308 and Ser473 [12, 18],
appears to be regulated through S-nitrosylation at the kinase
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Figure 3: Effect of ghrelin on H. pylori LPS-induced changes in
gastric mucosal cell Akt kinase activity. The cells, preincubated with
the indicated concentrations of ghrelin, were treated with the LPS
at 100 ng/ml and incubated for 16 h. ∗P < .05 compared with that
of control. ∗∗P < .05 compared with that of LPS alone.
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Figure 4: Effect of ghrelin on H. pylori LPS-induced changes
in gastric mucosal cell Akt kinase threonine (Thr308) and serine
(Ser473) phosphorylation. The cells, preincubated with the indicated
concentrations of ghrelin, were treated with the LPS at 100 ng/ml
and incubated for 16 h. Values represent the means ± SD of five
experiments. ∗P < .05 compared with that of control. ∗∗P < .05
compared with that of LPS alone.

cysteine residues [12, 20], we next analyzed the effect of
cNOS inhibitor, L-NAME, and iNOS inhibitor, 1400W, as
well as nitrosothiols reducing agent, ascorbate, on ghrelin-
induced changes in gastric mucosal cell Akt activity. As
shown in Figure 7, the LPS-induced inhibition in Akt activity
was subject to reversal not only by the pretreatment with
ghrelin, but also displayed susceptibility to iNOS inhibitor,
1400W, and ascorbate. Moreover, preincubation with these
two agents produced amplification in the effect of ghrelin on
Akt activity, whereas cNOS inhibitor, L-NAME, had no effect
on the extent of the LPS and ghrelin-induced changes in Akt
activity (Figure 7).

To gain additional leads as to the mechanism of H.
pylori LPS-induced suppression in gastric mucosal Akt kinase
activation and its reversal by ghrelin, we examined the effect
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Figure 5: Effect of ghrelin on H. pylori LPS-induced expression
of cNOS and iNOS activities in gastric mucosal cells. The cells,
preincubated with the indicated concentrations of ghrelin, were
treated with the LPS at 100 ng/ml and incubated for 16 h. Values
represent the means ± SD of five experiments. ∗P < .05 compared
with that of control. ∗∗P < .05 compared with that of LPS alone.
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Figure 6: Effect of Akt kinase inhibitor, SH-5 (SH), on ghrelin-
induced cNOS phosphorylation in the gastric mucosal cells exposed
to H. pylori LPS. The cells were treated with ghrelin (Gh) at
0.5 μg/ml or Akt inhibitor, SH-5 (30 μM) + Gh, and incubated
for 16 h in the presence of 100 ng/ml LPS. Cell lysates were
resolved on SDS-PAGE, transferred to nitrocellulose, and probed
with phosphorylation-specific cNOS (pcNOS) antibody, and after
stripping reprobed with anti-cNOS antibody. The immunoblots
shown are representative of three experiments.

of cNOS and iNOS inhibitors, and nitrosothiols reducing
agent, ascorbate, on the Akt enzyme protein phosphory-
lation at Thr308 and Ser473. We observed that while Akt
phosphorylation at Thr308 was not affected by the LPS or
ghrelin, the LPS-induced decrease in Akt phosphorylation at
Ser473 was subject to partial reversal in the presence of iNOS
inhibitor, 1400W, and ascorbate, but not the cNOS inhibitor,
L-NAME. Furthermore, both ascorbate and 1400W elicited
amplification in ghrelin effect on the gastric mucosal Akt
Ser473 phosphorylation (Figure 8).

Finally, we examined the dependence of Akt S-
nitrosylation on the LPS-induced iNOS activation by the
biotin switch method [25, 26]. The gastric mucosal cells
were incubated with H. pylori LPS or ghrelin + LPS or
iNOS inhibitor, 1400W, + LPS, and the lysates following
the biotin switch procedure were probed with antibodies
directed against phospho-Akt (Ser473) and total Akt. Western
blot analysis revealed that Akt in the cells exposed to
the LPS alone showed a marked increase in the protein
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Figure 7: Effect of iNOS inhibitor, 1400W, cNOS inhibitor, L-
NAME, and ascorbate on the ghrelin-(Gh-) induced changes in Akt
kinase activity in gastric mucosal cell exposed to H. pylori LPS. The
cells, preincubated with 30 μM 1400W (14W), 300 μM L-NAME
(LN), or 300 μM ascorbate (As) were treated with Gh at 0.5 μg/ml
and incubated for 16 h in the presence of 100 ng/ml LPS. Values
represent the means ± SD of five experiments. ∗P < .05 compared
with that of control. ∗∗P < .05 compared with that of LPS alone.
∗∗∗P < .05 compared with that of Gh + LPS.

S-nitrosylation; the preincubation with iNOS inhibitor,
1400W, led to a pronounced decrease in the LPS-induced Akt
S-nitrosylation, whereas the effect of ghrelin was reflected in
the loss of Akt S-nitrosylation and the increase in the kinase
phosphorylation at Ser473 (Figure 9). These data suggest that
upregulation in iNOS with H. pylori infection and subse-
quent Akt kinase S-nitrosylation exerts the detrimental effect
on the processes dependent on Akt activation, including that
of cNOS phosphorylation.

4. Discussion

Increase in gastric mucosal proinflammatory cytokine
expression, enhancement in epithelial cell apoptosis, and the
disturbances in NO signaling pathways are well-recognized
features of gastritis associated with H. pylori infection
in humans as well as characterize mucosal inflammatory
responses to H. pylori LPS in the animal model of the LPS-
induced gastritis [5, 13, 14, 27]. Moreover, the disturbances
in NO production associated with H. pylori colonization
of gastric mucosa and reflected in continual activation of
iNOS and the inhibition of cNOS are considered of major
consequences in defining the extent of gastric mucosal
inflammatory involvement. As serine/threonine kinase Akt
plays a central role in the regulation of NOS system [6, 15,
28], in this study we investigated the influence of H. pylori
on the processes associated with the activation of kinase Akt.

Employing rat gastric mucosal cells exposed to H. pylori
key virulence factor, LPS, we demonstrated that the LPS-
induced drop in cNOS activity and upregulation in iNOS
was associated with the suppression in the activity of Akt
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Figure 8: Effect of iNOS inhibitor, 1400W, cNOS inhibitor, L-
NAME, and ascorbate on the ghrelin-(Gh-) induced changes in
Akt kinase threonine (Thr308) and serine (Ser473) phosphorylation
in gastric mucosal cell exposed to H. pylori LPS. The cells,
preincubated with 30 μM 1400W (14 W), 300 μM L-NAME (LN),
or 300 μM ascorbate (As), were treated with Gh at 0.5 μg/ml
and incubated for 16 h in the presence of 100 ng/ml LPS. Values
represent the means ± SD of five experiments. ∗P < .05 compared
with that of control. ∗∗P < .05 compared with that of LPS alone.
∗∗∗P < .05 compared with that of Gh + LPS.
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Figure 9: Effect of ghrelin (Gh) on H. pylori LPS-induced Akt
S-nitrosylation. The gastric mucosal cells were treated with iNOS
inhibitor, 1400W (30 μM), or Gh (0.5 μg/ml) and incubated for 16 h
in the presence of 100 ng/ml LPS. A portion of the cell lysates were
processed by biotin switch procedure for protein S-nitrosylation,
along with the reminder of the lysates, resolved on SDS-PAGE,
transferred to nitrocellulose and probed with phospho-Akt (Ser473)
antibody, and after stripping reprobed with anti-Akt antibody. The
immunoblots shown are representative of three experiments.

that was reflected in a decrease in the kinase phosphorylation
at Ser473, while phosphorylation at the kinase Thr308 was
not affected. Thus, our findings add further credence to the
literature data indicating that of the two phosphorylation
sites (Thr308 and Ser473) required for full activation of Akt;
bacterial toxins induce inactivation of Akt that correlates

with reduced phosphorylation at the kinase Ser473 [21, 29].
Furthermore, we found that preincubation with gastric hor-
mone, ghrelin [1], recognized for its modulatory effect on the
inflammatory responses to bacterial infection [2–5], exerted
countering effect of the LPS-induced changes in Akt activity
and the extent of the kinase phosphorylation on Ser473 as well
as led to an increase in the cNOS activity and a reduction in
the activity of iNOS. We also observed that, in consonance
with the documented involvement of Akt in rapid cNOS acti-
vation through phosphorylation at Ser1179 [5–7], the induced
upregulation in cNOS activity by ghrelin was reflected in
the increase of enzyme phosphorylation that was susceptible
to suppression by Akt inhibitor, SH-5. Since Akt plays a
central role in the regulation of NOS system and the signaling
mechanism underlying ghrelin action involves the activation
of Src/Akt pathway [5, 6, 15, 28], the presented findings point
to the role of ghrelin in controlling the extent of gastric
mucosal inflammatory consequences of H. pylori infection.

Mounting evidence indicates that physiological and
pathophysiological implications of NO depend on the type
of NOS isozyme involved in NO generation, substrate
availability, and the enzyme compartmentalization with
respect to signaling target [8, 9]. Moreover, both constitutive
and inducible forms of NOS system have been implicated in
protein modification through targeted S-nitrosylation at the
critical cysteine residues that result in functional alterations
[5, 8, 10, 30]. Indeed, S-nitrosylation with the involvement
of cNOS has been linked to the apoptogenic signal inhibition
and the events of cytosolic phospholipase A2 activation,
while the NO generated by iNOS has been implicated in S-
nitrosylation of proteins involved in insulin signal transduc-
tion and the reduced Akt kinase activity in muscle cells of
diabetic mouse [5, 17, 20, 21]. Therefore, to gain additional
leads into the mechanism of ghrelin suppression of the
LPS-induced disturbances in gastric mucosal Akt kinase
activation, we examined the effect of NOS inhibitors and
nitrosothiols reducing agent, ascorbate, on Akt activity and
its protein phosphorylation at the critical Thr308 and Ser473.
We found that, while phosphorylation at Akt Thr308 was not
affected, the LPS-induced suppression in Akt activity and
the extent in its protein phosphorylation at Ser473 displayed
susceptibility to iNOS inhibitor, 1400W, and ascorbate, but
not to cNOS inhibitor, L-NAME. Furthermore, both 1400W
and ascorbate elicited amplification in ghrelin effect on Akt
activity and its protein phosphorylation at Ser473. These data,
together with well-known susceptibility of S-nitrosylated
proteins to reduction by ascorbate [17, 20, 21, 25, 26],
demonstrate that H. pylori LPS-induced disturbances in
gastric mucosal Akt activity occur with the involvement of
iNOS-mediated Akt protein S-nitrosylation that interferes
with the kinase activation through phosphorylation at Ser473.
Moreover, our results suggest that the countering effect
of ghrelin on the LPS-induced changes in Akt activity is
associated with the loss in Akt S-nitrosylation and the
increase in its phosphorylation at Ser473.

The supporting evidence as to the role of ghrelin in the
modulation of the gastric mucosal consequences of H. pylori
interference with Akt activation through S-nitrosylation
comes from the results of biotin switch assay. We found that
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the mucosal cells exposed to incubation with H. pylori LPS
showed a marked increase in Akt protein S-nitrosylation,
whereas the effect of ghrelin on the LPS-induced suppression
in Akt activity was reflected in the loss in S-nitrosylation
and the increase in the kinase phosphorylation at Ser473.
Further, Western blot analysis revealed the dependence of
Akt S-nitrosylation on the LPS-induced activity of iNOS. We
observed that suppression of the iNOS activity with a specific
inhibitor, 1400W, led to a drop in Akt S-nitrosylation. These
results are indicative of the involvement of iNOS-derived NO
in the suppression of Akt activity through S-nitrosylation.
Thus, the sustained upregulation in gastric mucosal iNOS,
identified patients with gastritis caused by H. pylori infection
[13, 14, 31, 32], may be of major significance in defining the
extent of gastric mucosal inflammatory involvement.

Taken together, our study demonstrates that the upreg-
ulation in iNOS elicited in gastric mucosal cells by H. pylori
LPS leads to Akt kinase inactivation through S-nitrosylation
that exerts the detrimental effect on the processes of cNOS
activation through phosphorylation. We also report that
ghrelin countering effects against H. pylori-induced distur-
bances are manifested in a marked increase in Akt activity,
caused by a decrease in the kinase protein S-nitrosylation and
an increase in its phosphorylation at Ser473.
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