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Abstract

Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and 

influence cellular function via effects on membrane properties, and also by acting as a precursor 

pool for lipid mediators. These lipid mediators are formed via activation of pathways involving 

at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their 

biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, 
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lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via 

free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising 

prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. 

With the advent of new technologies there is growing interest in identifying these different 

lipid mediators and characterising their roles in health and disease. This review brings together 

contributions from some of those at the forefront of research into lipid mediators, who provide 

brief introductions and summaries of current understanding of the structure and functions of 

the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 

PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, 

oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, 

elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
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1. Introduction

Historically, lipids have been associated with two basic functions, as structural components 

of membranes and a source of metabolic energy. A third function as signalling and 

regulatory “bioactive lipid” molecules has more recently emerged, where a change in 

the concentration of the lipid leads to alterations in cellular function. A wide variety 

of lipids have been shown to exhibit bioactive properties, including glycerolipid-derived 

molecules, such as phosphatidic acid, monoacylglycerols, lyso-phosphatidic acid, and 

platelet activating factor; the sphingolipids, such as ceramide, sphingosine, sphingosine-1-

phosphate, ceramide-1-phosphate and lyso-sphingomyelin; and the endocannabinoids [1–

4]. However, although the bioactive role of lipids has only recently been more widely 

appreciated, the field of bioactive lipids arguably began in 1935 with the seminal work 

of Ulf Svante von Euler, who first identified the actions of substances that he would 

name “prostaglandins” [5]. Following the structural elucidation of prostaglandins in the 

early 1960s by Bergstrŏm, Samuelsson, and co-workers, the omega-6 polyunsaturated 

fatty acid (PUFA), arachidonic acid (ARA, 20:4n-6) was identified as the precursor 

of series 2 prostaglandins, and soon after dihomo-γ-linolenic acid (DGLA, 20:3n-6) 

and eicosapentaenoic acid (EPA, 20:5n-3) were shown to form series 1 and series 3 

prostaglandins, respectively [6]. Since this early work vast repertoires of fatty acid-derived 

bioactive lipid mediators have been identified.

Fatty acids undergo a wide variety of chemical modifications to greatly expand their 

functional repertoire and biological activities. The term “oxylipin” was introduced in 

1991 to refer to fatty acid-derived oxygenated compounds produced by at least one 

mono- or dioxygenase oxygenations [7], and is now used to encompasses a very wide 

variety of bioactive lipid mediators. Oxylipins can be formed either via enzymatic or 

nonenzymatic free-radical-catalyzed pathways. Three main enzymatic pathways involved 

in the production of oxylipins are; 1) cyclooxygenase (COX, prostaglandin endoperoxide 
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synthase, prostaglandin H synthase) and subsequent synthases; 2) lipoxygenase (LOX); and 

3) cytochrome P450 mixed function oxidase enzymes (CYP) [8], which are described in 

Section 2. Oxylipins derived from C18 PUFAs, such as linoleic acid (LA, 18:2n-6) and 

α-linolenic acid (ALA, 18:3n-3) are octadecanoids, whereas those derived from C20 fatty 

acids such as ARA, DGLA and EPA are eicosanoids, and the classical eicosanoids include 

the prostaglandins, thromboxanes, and leukotrienes. Docosanoids are derived from C22 

fatty acids, such as adrenic acid (AdA, 22:4n-6), docosapentaenoic acids (DPAs, 22:5n-3 or 

22:5n-6), and docosahexaenoic acid (DHA, 22:6n-3) [4].

The focus of this review is on the more recently identified enzymatically and 

nonenzymatically derived oxylipins, and consequently does not discuss the classical 

eicosanoids. Readers interested in this topic are directed to a number of excellent reviews 

[9–11]. This review brings together contributions from those at the forefront of their 

respective fields and reviews current understanding of the structure and functions of 

the main classes of nonclassical oxylipins, with particular focus on those derived from 

omega-3 and omega-6 PUFAs. The review begins with an overview of enzyme systems 

responsible for oxylipin biosynthesis, and then details the biosynthesis of the long-chain 

omega-6 and omega-3 PUFAs and recent work investigating the role of fatty acid desaturase 

enzymes in this process, before moving to octadecanoids, particularly those derived from 

LA, the specialized pro-resolving mediators (SPMs) derived from EPA, DPAn-3 and 

DHA, elovanoids (ELVs) derived from very long-chain PUFAs, nonenzymatically derived 

oxylipins, and concludes with the fatty acid esters of hydroxy fatty acids (FAHFAs).

2. Enzymatic oxylipin biosynthesis

Enzymatic biosynthesis of oxylipins occurs via multistep processes involving a range 

of pathways, which are initiated by the initial de-esterification of the fatty acids from 

membrane phospholipids, catalysed by enzymes from the phospholipase A2 superfamily 

[12,13]. In the following section a brief overview of the role of the cyclooxygenase (COX), 

lipoxygenase (LOX) and cytochrome P450 (CYP) enzymes in the biosynthesis of oxylipins 

is presented. For more detailed coverage the following reviews provide excellent coverage of 

the topic [10,14–16].

2.1. Cyclooxygenase

Cyclooxygenases (COXs) are heme-containing enzymes possessing both oxygenase and 

peroxidase activities. COX catalyses the initial oxygenation of non-esterified fatty acids to 

produce prostaglandin H (PGH), a short-lived intermediate, which is further metabolised 

into prostanoids, such as the prostaglandin D, E and F series (PGD, PGE, PGF), 

prostacyclins (PGI), thromboxanes, and hydroxy fatty acids [17]. Vertebrates have two 

principal COX isoforms: COX-1 and COX-2 [18]. COX-1 is constitutively expressed in 

nearly all tissues, although particularly in blood vessels, smooth muscle cells, interstitial 

cells, platelets, and mesothelial cells [19]. COX-2 is an inducible enzyme in most tissues 

in response to inflammatory stimuli; however, constitutive expression has been observed in 

blood vessels, brain, gastrointestinal tract, kidney, lung, and thymus [20]. COXs oxygenate a 

wide range of unsaturated fatty acids and fatty esters [21].
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2.2. Lipoxygenase

Lipoxygenases (LOXs) are a family of dioxygenases that catalyse the formation of 

hydroperoxyl fatty acids and their metabolites, such as leukotrienes, lipoxins, and the SPMs, 

including resolvins (Rvs), protectins (PDs) and maresins (MaRs) derived from various 

omega-3 PUFAs [4], which are described in detail in Section 4.

There are six functional LOX genes in the human genome, which are expressed across 

a range of tissues [15]. LOXs were traditionally classified based on the position of 

the hydroxyl and hydroperoxy fatty acids they produce from ARA e.g., 5-LOX forms 

5-hydroperoxy-eicosatetraenoic acid (5-HpETE), but not 5-hydroxyeicosatetraenoic acid (5-

HETE), the latter being obtained through reduction of 5-HpETE by glutathione peroxidase. 

However, this nomenclature has limitations as the position varies according to different 

chain lengths of the substrates and some LOXs act at more than one position [11]. 

Furthermore, the most recently characterised LOX, epidermis-type lipoxygenase 3 (eLOX3) 

is unconventional in that it has limited lipoxygenase activity, and therefore the addition of 

gene names in addition to the enzyme name has been suggested [15]. Lipoxins, Rvs, PDs, 

and MaRs are formed by combinations of LOX activities and sequential epoxygenase and 

hydrolase activities, which generate epoxyalcohols (hepoxilins) and epoxyketones (eoxins). 

Hepoxylins are formed from 12-HpETE and eoxins from 15-HpETE and hepoxilins are 

epoxyalcohols, and eoxins are 14,15-analogs of leukotrienes [4].

A further class of metabolites generated from omega-3 PUFAs by LOX are the 

electrophilic fatty acid oxo-derivatives (EFOX), with 7-oxo-DHA,7-oxo-DPAn-3 and 5-oxo-

EPA produced from DHA, DPAn-3 and EPA, respectively [22,23]. EFOXs display a wide 

range of anti-inflammatory actions, including acting as agonists nuclear receptors, such as 

the peroxisome proliferator-activated receptors (PPAR) and inhibiting cytokine production in 

activated macrophages [23].

2.3. Cytochrome P450 mixed function oxidase

The third oxidative PUFA pathway involves the cytochrome P450 mixed function oxidase 

(CYP) enzyme activity as monooxygenases and catalysing epoxidation, hydroxylation 

or allylic oxidation reactions, which metabolise PUFAs to lipid mediators with many 

diverse biological functions at both the systemic and cellular levels [24,25]. Regio- 

and stereoisomers of epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic 

acids (HETEs) are produced from ARA, whereas those derived from EPA include 

epoxyeicosatetraenoic acids (EpETEs) and hydroxyeicosapentaenoic acids (HEPEs), and 

epoxydocosapentaenoic acids (EDPs) and hydroxydocosahexaenoic acids (HDoHEs) from 

DHA [25]. EPA is the preferred substrate for the majority of CYP isoforms, with DHA and 

ARA metabolized at similar rates [25].

3. Omega-3 and Omega-6 PUFA Biosynthesis

Since lipid mediators originate from PUFAs, this section will cover their in vivo synthetic 

pathways. The omega-3 and omega-6 families of PUFAs were first named by Ralph T. 

Holman [26], and the biosynthesis of their longer-chain versions, such as ARA and DHA, 
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proceeds via a series of alternating position-specific desaturation (fatty acid desaturase 

genes, FADS1 and FADS2, located at 11q12–13.1) and elongation (elongase genes, 

ELOVL2 at 6p24.2 and ELOVL5 at 6p12.1) steps from LA and ALA, respectively, and 

are summarised in Fig. 1. In the following section J.T. Brenna describes the biosynthesis of 
PUFAs and the role of fatty acid desaturase enzymes (FADS).

Fatty acids were likely the first metabolites that were routinely reported as a panel 

of metabolites because of the early development of gas chromatography [27]. PUFA 

desaturation was presumed to be mediated by three desaturation enzymes known as the 6, 

5, and 4 desaturases. However, because of the wide variety of similar structural fatty acids, 

the specificity of these enzyme activities awaited the widespread availability of molecular 

tools. In recent years we have investigated the structural specificity of the FADS genes 

using specialized tools.We used genetically transformed yeast or human cells, both devoid 

of 6-desaturase activity, and a facile method for unambiguously determining double bond 

position without chemical standards [28,29] to investigate FADS1, FADS2, and FADS3 

structural specificity. In our transformed human cell experiments, human MCF-7 cells 

were transformed to stably express FADS1, FADS2 or an empty vector to investigate the 

function of FADS1 and FADS2 classical transcripts. In nearly all studies, all three cell 

lines were incubated with a single test fatty acid and the product measured. In this way 

we could be confident that findings of no activity in one enzyme vs. activity in the other 

was reflective of differential specificity. We have also discovered functions of alternatively 

spliced (nonclassical transcripts), beyond the scope of this brief review [30].

FADS3 is not a PUFA desaturase.The fatty desaturase gene cluster on chromosome 11 

arose by gene duplication, and consists of three similar genes:FADS1, FADS2, and FADS3 

[31].Each consists of 12 exons and 11 introns, with FADS1 and FADS2 arranged head-to-

head upstream of FADS3.FADS 1 and FADS2 were identified as catalyzing Δ5-desaturation 

[32] and Δ6-desaturation [33], respectively, in early work.Because of its genetic similarity, 

FADS3 was assumed to have PUFA desaturase activity.However, extensive searches for 

its substrates led to only two functions, one against a relatively rare fatty acid, and the 

other a global effect.FADS3 was identified as a “back-end” desaturase that catalyzed the 

conversion of vaccenic acid (11E-18:1) to the conjugated 11E,13Z-18:2 in the rat mammary 

gland [34].Vaccenic acid is the most abundant trans fatty acid in cow’s milk, though the 

diene product is below 0.1% of fatty acids in rat milk.Alterations in the fatty acid profiles 

of brain tissue in FADS3 knockout mice was also reported [35].Recently, with the aid 

of FADS3-knockout mice, FADS3 was shown to be a Δ14-desaturase for the sphingoid 

base, yielding 4E,14Z-sphingodienine [36], apparently consistent with its role as a back-end 

desaturase.This precursor/product pair is readily detected in normal tissue, thus showing 

FADS3 in vivo is not a desaturase for PUFAs. Thus, FADS1 and FADS2 appear to be 

responsible for all PUFA desaturation in mammals. Compared to their classical biochemical 

roles, the specificities of the classical transcripts are FADS1 and FADS2 are very different in 

their range of specificities and substrates, with FADS1 far more specific than FADS2.

In mammalian systems, FADS1 and FADS2 activity toward a particular omega-6 PUFA 

always shows activity toward the n-3 structural analogue, and usually at a higher kinetic 
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rate.That is, presence of a double bond at the n-3 position increases activity.As a shorthand 

we will refer to substrates as pairs.

FADS1.

FADS1 Δ5-desaturase activity appears to be entirely toward C20 PUFAs.The major activity 

is toward 20:3n-6/20:4n-3 to yield 20:4n-6 (ARA) and 20:5n-3 (EPA), respectively; in 

essential fatty acid deficiency, FADS1 Δ5-desaturates 20:2n-9 to 20:3n-9 (Mead acid).When 

6 desaturase activity is absent, FADS1 Δ5-desaturates 20:2n-6 to 5,11,14–20:3 (sciadonic 

acid), a structural analogue of ARA (5,8,11,14–20:4).Owing to the absence of the double 

bond at position 8–9, sciadonic acid is not a substrate for synthesis of prostaglandins, 

leukotrienes, or thromboxanes. Sciadonic acid is found in MCF-7 human breast cancer cells 

[37], long known to have no Δ6-desaturase activity, as well as in vivo in human breast 

cancer biopsies [38].Cats naturally have very low Δ6-desaturase activity [39] and make 

5,11,14–20:3, and possibly 7,11,14–20:3 via elongation of a Δ5-desaturated 11,14–18:2, as 

originally reported [40].

We reported evidence that FADS1 can insert a double bond at position 7 to make a rare 

PUFA, 7,11–20:2 [41].FADS1 has no activity toward normal or branched chain (iso, anteiso) 

saturated fatty acids [42]. Integrating the evidence for FADS1 function and genetics, FADS1 

appears to function primarily to synthesize and regulate the levels of its immediate product, 

the key eicosanoid precursor fatty acid, ARA. In this respect, FADS1 might be accurately 

called “ARA synthase”.

FADS2.

FADS2 was originally identified as the Δ6-desaturase catalyzing 18:2n-6/18:3n-3 conversion 

to 18:3n-6/18:4n-3.FADS2 was first identified as having Δ8-desaturase activity toward 

20:2n-6/20:3n-3 to make 20:3n-6/20:4n-3 [43].Later, FADS2 was shown to have Δ4-

desaturase activity toward 22:4n-6/22:5n-3 to yield 22:5n-6/22:6n-3 [44]. This activity is 

shown most clearly for 22:4n-6/22:5n-6 in pulse-chase experiments because of the low 

level of endogenous substrates.Synthesis of DHA via this pathway was shown by similar 

pulse-chase methods as well as isotope labeling, consistent with Δ4-desatuase activity in 

many organisms [45].FADS2 was recently shown in an unambiguous manner to desaturate 

24:4n-6/24:5n-3 to 24:5n-5/24:6n-3 [46]; this step is required in the Sprecher pathway of 

22:5n-6/22:6n-3 synthesis.

FADS2 has activity toward the saturated fatty acid 16:0 to make 16:1n-10 (sapienic 

acid), the most abundant unsaturated fatty acid on human skin, but seldom reported in 

internal tissue.FADS2 has no detectable activity toward 14:0 or 18:0. Based on competition 

experiments, we predicted that high levels of saturated fatty acids due to metabolic 

derangement would result in production of 16:1n-10 [47], recently confirmed in carcinoma 

[48,49].We recently followed up those experiments with saturated odd and branched chain 

fatty acids.Those studies show that FADS2 is active toward n-17:0, iso-16:0, iso-17:0, 

anteiso-17:0, iso-18:0 [42], inserting double bonds between carbons 6 and 7 and yielding 

the series of monounsaturated odd and branched chain fatty acids in human sebum.All told, 
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FADS2 is active toward at least 16 substrates and inserts double bonds in the 4, 6, and 8 

positions, far more promiscuous than FADS1.

4. Bioactive lipids mediators derived from PUFAs

4.1. Octadecanoids

There has been a large and rapid increase in the amount of LA consumed Worldwide, 

due to the agricultural shifts towards high-LA soybean and corn oils since the late 1930s 

[50]. Historic levels of LA intake ranged between 1 and 2% of daily calories pre-1930s, 

to the current situation where the average is greater than 7%, and LA is now the most 

highly consumed PUFA in Western diet [50]. LA has been shown to be the precursor to 

oxylipins, called oxidized LA metabolites, (OXLAMs), which have been linked to a range 

of pathological conditions [51]. Consequently, LA-derived octadecanoids are quantitatively 

the major class of oxylipins present in tissues and blood; however, compared to some 

of the other classes there is much less known about their functions [11], although early 

investigations indicated that in familiar Mediterranean fever, C18 oxygenated compounds 

were identified and elevated [52]. In the following section F. da Costa Souza, P. Lein, and 
A. Taha provide an overview of the structure and functions of octadecanoids, with particular 
focus on the LA-derived OXLAMs.

In 1929, George Burr and Mildred Burr settled a long-standing debate at the time on 

the essentiality of dietary fats [53]. They conclusively established that LA, along with 

ALA, are nutritionally essential [54]. In humans, LA is needed at 1–2% daily energy to 

maintain optimal growth and skin barrier integrity [55], whereas ALA is needed at 0.2–0.5% 

energy, also to maintain the skin barrier as well as brain function [56,57]. It is becoming 

increasingly recognized that the biological effects of LA and ALA are mediated through 

their oxidized lipid mediator products. This section will focus on LA because it is highly 

abundant in the diet and because its lipid-mediated roles in vivo remain understudied.

For many decades, LA’s presumed biological role was as a substrate for the synthesis of 

ARA via elongase and desaturase enzymes. ARA itself is not nutritionally essential but 

serves key biological roles in vivo through its enzymatically-derived oxidized metabolites, 

including prostaglandin E2, an immune modulator [58], and prostaglandin F2-alpha, which 

regulates blood flow [59].

Research in the 1980s provided evidence that LA is not only a precursor to ARA, but also 

to bioactive lipid autacoids known as OXLAMs. OXLAMs can be formed via auto-oxidation 

or COX [60,61], LOX [62,63], CYP [64], 15-Hydroxyprostaglandin Dehydrogenase [65] 

and soluble epoxide hydrolase (sEH) enzymes [66–68]. Notably, these are the same 

enzymes used to oxidize ALA and other PUFAs into bioactive lipid mediators. LOX and 

COX catalyze the addition of a hydroxy group to LA or ALA, while 15-PGDH converts 

hydroxylated LA or ALA into fatty acid ketones. CYPs produce epoxidized fatty acids 

that can be converted into diols by sEH. Examples of OXLAMs include LOX-derived 

9- and 13-hydroxyoctadecadienoic acids (HODEs), their ketone metabolites, 9- and 13-oxo-

octadecadienoic acids, as well CYP-derived epoxyoctadecamonoenoic acids (EpOMEs), and 

sEH-derived dihydroxyoctadecamonoenoic acids (DiHOMEs). Similarly, ALA oxidation 
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through the same enzymatic machinery yields hydroxyoctadecatrienoic acids (HOTrEs), 

epoxyoctadecadienoic acid (EpODEs) and dihydroxyoctadecadienoic acid (DiHODEs). 

Some ALA-derived oxylipins may have anti-inflammatory effects in vitro (e.g., 13-HOTrE) 

[69], yet the role and tissue distribution of several ALA metabolites remains unknown due to 

the lack of analytical standards.

The long-standing question in the field is whether OXLAMs are bioactive. Early studies in 

the 1950s showed that chicks fed a diet containing LA without added vitamin E developed 

encephalomalacia and ataxia [70–72]. It was realized that the absence of vitamin E in the 

diet promoted the nonenzymatic oxidation of LA into OXLAMs. Adding purified OXLAMs 

to the diet induced similar pathological and behavioural symptoms in chicks, suggesting a 

direct influence of OXLAMs on brain function [73,74]. Additional studies by Hammock 

and colleagues showed that sEH-derived linoleate diols (known as leukotoxin diols) are 

cytotoxic and promote inflammation in rats and mice [75,76]. Other studies showed that 

OXLAMs are involved in lowering pain thresholds by binding TRPV-1 receptors [77], 

and in maintaining skin barrier integrity [78]. An early study also identified 13-HODE, a 

LOX-derived OXLAM, functioned as a chemorepellent to platelet adhesion in endothelial 

cells [79]. Collectively, the evidence suggests that OXLAMs are bioactive in vivo and in 
vitro.

Our group has been interested in knowing whether OXLAMs are present and bioactive in the 

brain, where they have been rarely studied. Despite being a major part of the diet [50], LA 

is not found in appreciable levels in the brain (<2% of total fatty acids) because it is mostly 

(~60%) beta-oxidized upon entry [80]. Thus, we questioned whether a portion of the LA that 

enters the brain is converted into OXLAMs, having established that OXLAMs are unlikely 

to cross the blood brain barrier in adult rats [81].

Our experiments showed that brain LA serves as a precursor to OXLAMs, but the extent of 

conversion depends on life stage. In adult rats, OXLAMs constitute 7% of detected oxylipins 

in the brain, and this value increases as dietary LA increases, suggesting that brain OXLAM 

concentrations are dependent on dietary LA levels [82]. Hence, more LA in the diet means 

more LA entering the brain and more OXLAMs synthesized there. In young rat pups (0–1 

day old males and females), we unexpectedly found that OXLAMs constituted 50% of brain 

oxylipins. We do not yet know whether the higher brain OXLAM composition observed in 

younger rats originates from diet (which contains OXLAMs) or conversion of dietary LA 

entering the brain into OXLAMs.

Our studies led us to further investigate the role of OXLAMs in the adult and developing 

rat brain. We found that in adults, OXLAMs are produced during global ischemia, similar 

to AA-derived prostanoids (and other eicosanoids), raising the possibility that they might 

be involved in the response to ischemic brain injury [83,84]. They also increase somatic 

pre-pulse facilitation, suggesting their involvement in neurotransmission [84]. In young 

pups, OXLAMs such as 13-HODE were shown to increase axonal outgrowth in primary 

rat cortical neurons derived from 0 to 1 day old male pups, providing evidence of their 

involvement in neuronal morphogenesis in early life [85].
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Overall, the evidence to date shows that OXLAMs are bioactive lipid mediators 

involved in regulating pain thresholds, inflammation, response to ischemic brain injury, 

neurotransmission and neuronal morphogenesis. However, many scientific gaps remain with 

respect to their newly identified roles in the brain. Specifically, what are the mechanisms 

mediating their effects in the brain? If brain OXLAM composition is dependent on dietary 

LA levels (at least in adult rats), what does this mean in terms of benefit or harm to 

the brain, given that dietary LA levels have increased by more than three-fold over the 

past century? At what stage of life (e.g., development versus aging) are these OXLAMs 

beneficial (or harmful) to the brain? Answering these questions will help calibrate dietary 

LA to levels that optimize brain function during development, adulthood and aging. The 

Burrs discovered that LA is essential at 1–2% energy; the question is what may be optimal 

beyond this level of dietary intake?

4.2. n-3 PUFA derived specialized pro-resolving mediators (SPMs) and Receptors

In the following sections N. Chiang and C.N. Serhan provide a brief overview of the current 

status of EPA- and DHA-derived SPMs and their biological functions in inflammation-

resolution. This followed by J. Dalli providing an overview of SPMs derived from DPAn-3. 

For ARA-derived lipoxins biosynthesis and functions, please see earlier in-depth reviews 

[86–89].

4.2.1. Resolution phase mediators in inflammation—Resolution of inflammation 

is an active biosynthetic process that connects the first response of the innate immune 

system to biosynthesis of the SPMs including Rvs, PDs and MaRs, as well as novel 

cys-SPMs [90]. The first resolvin biosynthesized from EPA was isolated and reported 

along with functional elucidation in 2000 using a systems approach with inflammatory 

exudates [91]. As of today, four potent bioactive resolvins produced from EPA (E-series 

resolvins) have been elucidated [92]. The DHA-derived resolvins were elucidated next 

and reported in [93,94]. The D-series resolvins and protectins biosynthesized from DHA 

were initially demonstrated to reduce inflammation (peritonitis), neuronal inflammation 

(microglial cells), and counter-regulate cytokines and chemokines to promote resolution of 

inflammation. Next, we systematically determined the stereochemical assignments of each 

of the potent bioactive SPMs, including protectins [95], and their aspirin-triggered epimers 

[96], and next reported the discovery and biosynthesis of the maresins from infiltrating 

macrophages [97]. Today in PubMed.gov with “resolvin” as the search term there are more 

than 1400 publications reporting the potent anti-inflammatory and pro-resolving actions 

as well as productions of the resolvins, protectins, and maresins in many disease models 

from investigators worldwide that confirm and extend the potent endogenous functions of 

SPMs and their potential in novel therapeutics as agonists of resolution of inflammation 

originally described for each SPM [98–100]. An early consensus report helped to define 

and underscored the potential of this new field of resolution with impact in modern 

medicine and surgery [101]. The emergence of new concepts and novel mediators within 

the resolution terrain that activate endogenous resolution programs and promote tissue 

regeneration have given rise to the new fields of resolution pharmacology and physiology. 

For readers interested in further details in in-depth reviews, please see [102–107].
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4.2.2. SPMs in human tissues and dysregulation in diseases—Mass 

spectrometry-based profiling approaches for the resolution metabolome have documented 

the temporal production of SPMs in humans (Table 1A) and preclinical animal systems, 

demonstrating in vivo the lipid mediator class switch. For example, human vagus nerves 

produce SPMs, e.g., RvE1, NPD1/PD1, MaR1, upon electrical stimulation [108] suggesting 

that this vagus-SPM circuits contribute to a new proresolving vagal reflex. Several 

clinical trials demonstrate omega-3 PUFA or marine oil supplementation increase SPM 

in vivo [109] (Table 1B). SPM biosynthesis is impaired in several diseases, including 

tuberculous meningitis [110], multiple sclerosis [111], and osteoarthritis [112], as well as 

in bronchoalveolar lavages [113], serum [114] and plasma [115] from COVID-19 patients. 

Thus, impaired endogenous resolution pathways may contribute to the pathogenesis of these 

diseases.

4.2.3. SPM functions and receptors—Each SPM demonstrates potent stereoselective 

actions (pico- to low nanomolar concentrations) via activation of specific G protein-coupled 

receptors (GPCR) on phagocytes and additional select cell types (Fig. 2).

Resolvins:  Resolution phase interaction products.

E-series resolvins:  RvE1 was the first identified pro-resolving molecule derived from EPA 

[91]. RvE1 via its receptor ERV1/ChemR23 (Kd ~11 nM) stimulates intracellular signals 

such as phosphorylation of S6 kinase (0.1–100 nM) (Fig. 2; reviewed in [116]). RvD1, 

in vivo, controls vascular inflammation, protecting against atherosclerosis by modifying 

oxidized LDL uptake and enhancing macrophage phagocytosis [117]. In aortic valve 

stenosis, targeted deletion of ChemR23 in mice heightens disease progression [118]. Of 

interest, an agonist antibody to the RvE1 receptor confirms that activation of the endogenous 

resolution mechanisms can control both inflammation and cancer burdens in mouse models 

in vivo [119].

D-series resolvins:  RvDs are biosynthesized from DHA; they are potent immunoresolvents 

active in the picomolar to low nanomolar concentrations [93,94]. RvD1 binds and activates 

human DRV1/GPR32 (Kd ~0.2 nM) to stimulate macrophage phagocytosis and efferocytosis 

(0.1–100 nM) (Fig. 2; reviewed in [101]). Some of the most exciting and unexpected 

findings at the time were the novel actions of RvD2. RvD2 (0.01–10 ng/mouse) limits PMN 

infiltration in acute inflammation and controls bacterial sepsis via its receptor DRV2/GPR18 

in mice (Fig. 2, and review [98]). RvD2 binds and activates human recombinant receptor 

DRV2/GPR18 (Kd ~10 nM) to stimulate macrophage phagocytosis and efferocytosis (0.01–

10 nM). In human sepsis, survivors had a higher percentage of GPR18-positive peripheral 

blood neutrophils compared to non-survivors, suggesting that DRV2/GPR18 expression 

levels are associated with disease severity [120]. In a more recent study, both DRV1 and 

DRV2 receptor expression were found to be higher on leukocytes from septic patients; 

both RvD1 and RvD2 partially reverse sepsis-induced leukocyte activation, and stimulate 

phagolysosome formation [121]. RvD2 suppresses tumor growth and enhances clearance 

of tumor cell debris, while DRV2/GPR18-deficient mice display defective tumor clearance 

[122]. In addition, RvDs are tissue/organ protective; RvD2 promotes keratinocyte repair 
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in DRV2-dependent manner [123] and stimulates muscle regeneration [124], as well as 

limits tissue necrosis in burn wound [125]. RvD4 reduces thrombus burden and decreases 

the release of neutrophil extracellular traps (NETs), i.e. NETosis, a critical component 

for thrombosis development [126]. These new roles of selective RvDs suggest that SPMs 

could provide an effective strategy in controlling thrombo-inflammatory disease. RvD5 and 

RvD1controls E. coli and S aureus infection, by controlling phagocytosis and bacterial 

killing as well as inflammation arising from collateral tissue damage; together these lower 

the antibiotic requirements for bacterial clearance [127]. Of interest, RvD5 is the first SPM 

that shows sex dimorphism in pain regulation, inhibiting pain in male, but not female mice 

[128].

Protectins:  Protectin D1/Neuroprotectin D1 (PD1/NPD1) is also biosynthesized from DHA 

via 15-LOX-initiated mechanism in several human cell types, murine exudates, and brain 

tissues [94]. In addition, PD1 is present in human exhaled breath condensates, and its 

levels are lower in subjects with asthma exacerbations [129]. DHA is converted via 15-LOX 

to the 16S, 17S-epoxide intermediate, confirmed by epoxide trapping experiments. This 

epoxide intermediate is further converted to PD1 via enzymatic hydrolysis [95]. The elicited 

bioactivity of this mediator in human retinal pigment epithelial cells led to coining its name 

as Neuroprotectin D1 (NPD1) [130]. This was strongly supported by the demonstration of 

its formation in the human brain and its selective decrease in memory areas of the brains 

of Alzheimer’s patients and in experimental Alzheimer’s disease models [131,132], as well 

as in experimental ischemic stroke [133]. The complete stereochemical assignments [95] 

enabled the demonstration of its potent actions on human PMN [1–100 nM] and acute 

inflammation in vivo [0.01–100 ng/mouse] as well as in many disease systems, confirmed 

and extended by many other investigators worldwide. Hence, while produced and functions 

in neural systems, the prefix (neuro)protectin D1 was introduced [130], and in the immune 

system, it is PD1 [134]. PD1/NPD1 displays potent neuroprotective actions in brain, retina 

and central nervous system, e.g. protecting from ischemic stroke, retina degenerative disease 

(for a recent review, see [99]) and traumatic brain injury [135]. NPD1/PD1 activates 

recombinant and macrophage GPR37 [EC50 ~ 26 nM]. Mice lacking this NPD1/PD1 

receptor display defects in macrophage phagocytic activity with delayed resolution of 

inflammatory pain [136]. PD1’s protective actions in multiple models of infections and 

sepsis are diminished in these Gpr37 receptor KO mice [137]. PDX is a positional isomer 

of PD1, biosynthesized via two sequential lipoxygenations [95]. PDx [0.1–10 μM] inhibits 

platelet activation [138], improves insulin sensitivity [139] and atherosclerosis [140] in 

type-2 diabetes. Both PDx and PD1 at equal amount suppress replication of influenza virus 

[141,142] (Fig. 3).A receptor for PDx remains to be identified. It is likely that PD1 and PDx 

have some overlapping yet distinct actions on select target cells.

Maresins:  The macrophage mediators in resolving inflammation. MaR1 was first identified 

in self-resolving inflammatory exudates and with human macrophages (MΦ) [97] via 12-

LOX-initiated mechanisms [143]. The complete stereochemistry of MaR1 was established, 

its total organic synthesis was achieved and confirmed by several independent teams 

(reviewed in [99]). MaR1 is pro-regenerative, pro-repair and neuroprotective in a wide range 

of tissues and organs across phyla (reviewed in [116]). MaR1 activates LGR6 (leucine-
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rich repeat-containing G protein–coupled receptor 6), a cell surface G protein-coupled 

receptor [EC50 ~ 1 nM] and stimulates key proresolving functions of phagocytes in a 

LGR6-dependent manner [0.01–10 nM] [144]. In addition, MaR1 inhibit smooth muscle 

cell activation and attenuate murine abdominal aortic aneurysm via LGR6 signaling [145]. 

Further, LGR6 is necessary for normal osteogenesis, demonstrated using LGR6-deficient 

mice, and MaR1 activates LGR6 signaling in osteoblasts [146]. With liver macrophages, 

MaR1 can also activate ROR-α (retinoic acid-related orphan receptor α), a nuclear receptor 

that might be relevant in liver pathology [147]. These findings highlight the cell-type 

specific and receptor-dependent actions of MaR1.

Cys-SPMs:  Three series of peptide-lipid conjugated SPMs, i.e., maresin conjugates in 

tissue regeneration (MCTRs), protectin conjugates in tissue regeneration (PCTRs) and 

resolvin conjugates in tissue regeneration (RCTRs), are collectively coined cysteinyl-SPMs 

(cys-SPMs) ([148]; reviewed in [149]). Each series contains three bioactive members that 

display potent pro-regenerative and pro-repair actions, including stimulating regeneration of 

freshwater planaria and promoting tissue repair in acute lung injury [148,150]. Using RNA-

sequencing of regenerating planaria, we identified cys-SPM-regulated pathways in planaria 

regeneration, including NF-κB pathways, and an ortholog of human TRAF3. In human 

macrophages and mouse infections, cys-SPM regulate the TRAF3/IL-10 axis in enhancing 

phagocyte functions in resolution [151]. In addition, PCTR1 uniquely enhances human 

keratinocyte migration, and promotes bacterial clearance in mouse skin wound [152]. These 

model systems give clear evidence for potent actions and structure-function relationships 

of Cys-SPMs. In vivo human results for Cys-SPM actions remain to be identified. Thus, 

the organ-protective actions of cys-SPMs are evolutionarily conserved across phyla, from 

primordial lower-phylum species such as planaria to mice and humans.

SPMs control infectious inflammation and the innate immune system.: SPMs exhibit 

potent host-protective actions in bacterial, parasitic and viral infections [90,98,153] (Fig. 

3). For example, RvE1 controls herpes simplex virus (HSV)-induced murine ocular 

inflammation [154]. PD1 and PDx suppress influenza virus replication [141,142]. In 

bacterial and viral coinfection pneumonia in mice, the aspirin-triggered 17R-epimer of 

RvD1 (AT-RvD1) enhances clearance of pneumococci in the lungs [155]. With human 

macrophage from cystic fibrosis patients, RvD1 and RvD2 (10 nM) reduce SARS-

CoV-2 induced inflammatory response [156]. In light of COVID-19 pathologies with 

hyperinflammation of the respiratory and cardiovascular systems as well as coagulopathies 

[157–159], the anti-inflammatory, pro-resolving, microbial clearing, anti-thrombotic and 

organ-protective actions of SPMs may be useful in controlling disease severity in SARS-

CoV-2 infections and perhaps long-term COVID-19 symptoms (reviewed in [98]).

In summation, the structural elucidation, complete stereochemical determinations and 

identification of specific receptors for each SPM enable confirmation of their potent actions 

in controlling inflammatory response, promoting resolution and tissue repair. Endogenous 

SPMs present in human tissues are within both their bioactive concentration ranges and 

affinities for cognate receptors (c.f. Table 1 and Fig. 3). Results from these studies opened an 

opportunity path for interrogating SPM in resolution physiology and pharmacology.
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4.3. DPAn-3 is precursor to novel bioactive mediators

A less well studied omega-3 PUFA that forms part of many organs and tissues is 

DPAn-3 [160]. Genome wide association studies uncovered links between single nucleotide 

polymorphisms in the gene encoding for the fatty acid elongase 2 (ELOVL2) and increased 

plasma DPAn-3 levels [161]. Several studies suggested a role for this essential fatty 

acid in the regulation of inflammation [160]. We recently queried whether the ability 

of this fatty acid to regulate inflammation was at least in part due to its conversion to 

novel bioactive mediators. Structure elucidation studies demonstrated that in inflammatory 

exudates and in the circulation DPAn-3 is converted to bioactive mediators [162]. These 

novel autacoids exert potent leukocyte directed activities to limit tissue damage by governing 

cellular recruitment to the site of inflammation and counter regulating the production of 

pro-inflammatory mediators (Fig. 4). Given that the biosynthetic pathways leading to the 

formation of these novel molecules are shared with the DHA and EPA derived SPM, these 

novel bioactive mediators were assigned to the Rv, PD and MaR families [162,163].

4.3.1.  DPAn-3-derived SPM in the regulation of acute inflammation—
Endogenous formation of these bioactive mediators is reported both during homeostasis 

and active inflammation. Lipid mediator profiling of plasma lipid mediator concentrations 

in healthy volunteers uncovered a diurnal regulation in the production of DPAn-3-derived 

D-series resolvins (RvDn-3 DPA) [164]. The peak in the production of these mediators is 

coincident with an increase in plasma plasminogen activator inhibitor-1, a serine protease 

inhibitor that functions as the principal inhibitor of tissue plasminogen activator and 

urokinase, and the activation of circulating platelets and phagocytes thereby increasing the 

risk of thrombosis [165]. Intriguingly we observed that RvDn-3 DPA, when added to blood 

from healthy volunteer’s ex vivo, downregulated the expression of adhesion molecules on 

circulating phagocytes and the formation of phagocyte-platelet heterotypic aggregates. This 

vasculo-protective role of RvDn-3 DPA was supported by observations made in patients 

with cardiovascular disease, where both the diurnal regulation and the production of these 

mediators are reduced [164]. These changes were linked with increased peripheral blood 

phagocyte and platelet activation. Ex vivo incubation of these mediators with peripheral 

blood from patients with cardiovascular disease downregulated both platelet and phagocyte 

activation. Notably, RvDn-3 DPA display different potencies at regulating peripheral blood 

phagocyte and platelet activation, with RvD5n-3 DPA exhibiting the greatest ability to 

regulate these biological processes [164]. Recent studies indicate that the biological 

activities elicited by RvD5n-3 DPA on phagocytes are mediated by the orphan receptor 

GPR101 [166]. This receptor is expressed on human and mouse neutrophils, monocytes and 

macrophages and is activated by RvD5n-3 DPA at nM – pM concentrations.

The biological activities of RvD5n-3 DPA are not limited to the vasculature. Investigations 

into mechanisms that contribute to the exacerbation of arthritic inflammation by the 

pathobiont Porphyromonas gingivals highlight a decrease in the concentrations of this 

mediator in the intestines of arthritic mice [167]. This decrease was linked with a disruption 

in intestinal barrier function, facilitating barrier breach and the consequent exacerbation of 

joint disease by Porphyromonas gingivalis [167]. Notably, administration of this mediator 

restores both barrier function and reduces arthritic inflammation. Zhou and colleagues 

Dyall et al. Page 13

Prog Lipid Res. Author manuscript; available in PMC 2022 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recently described role for RvD5n-3 DPA in experimental sepsis, whereby they observed 

that soluble fibrinogen-like protein 2 regulates the production of RvD5n-3 DPA during 

experimental sepsis [168]. RvD5n-3 DPA is also suggested to mediate the pro-resolving 

activities of the anticoagulant dabigatran [169].

Assessment of mechanisms that become activated early on during self-limited inflammation 

to fine tune phagocyte responses uncovered a novel family of autacoids produced in the 

circulation during interaction between vascular endothelial cells and neutrophils [163]. 

These mediators, termed 13-series resolvins, limit neutrophil trafficking to the site of 

infection, promote the uptake and killing of bacteria by phagocytes and the uptake of 

apoptotic cells by macrophages. These autacoids also counter regulate the production 

of pro-inflammatory eicosanoids, including leukotriene B4 and prostaglandins. They also 

downregulate the expression of caspase-1 and its pro-inflammatory product interleukin-1b 

in macrophages. Intriguingly the production of these immunomodulatory autacoids is 

upregulated by statins, with atorvastatin and pravastatin displaying the greatest propensity to 

increase the production of these mediators via the nitrosylation of COX2, which increases 

the catalytic activity of this enzyme [163,170]. This mechanism was found to be relevant 

in reducing inflammation during both infectious and sterile inflammation, suggesting that 

13-series resolvins may be useful predictive functional biomarkers in evaluating the efficacy 

of statins at limiting inflammation [163,170].

Inflammation is now recognized to play a role in the pathophysiology of epilepsy. Lipid 

mediator profiling analysis of murine hippo-campi obtained from mice during experimental 

epilepsy identified a role for the n-3 protectin D1 (PD1n-3 DPA) in limiting disease severity 

[171]. Indeed, this mediator was found to be upregulated in epileptic mice. When mice 

were treated with PD1n-3 DPA using a therapeutic paradigm, disease severity, including 

the expression of pro-inflammatory cytokines and the frequency and duration of epileptic 

seizures, was significantly reduced [171]. Furthermore, recent studies demonstrate that 

PD1n-3 DPA is also able to increase the inhibitory drive onto the perisomatic region of the 

pyramidal neurons thereby limiting neuronal excitability [172].

4.3.2. DPAn-3-derived SPM orchestrate leukocyte differentiation—In addition, 

to orchestrating host immune responses, DPAn-3 derived SPMs play a role in leukocyte 

differentiation. RvD5n-3 DPA was recently found to contribute to Treg differentiation 

from naive CD4+ T-cells. Temporal evaluation of lipid mediator profiles produced by 

differentiating T-cells revealed that this autacoid was upregulated during the early stages 

of Treg differentiation. Furthermore, incubation of naive T-cells with RvD5n-3 DPA rescued 

the functional responses of Tregs differentiated in the presence of an ALOX15 inhibitor 

[173]. The DPAn-3-derived protectins (PDn-3 DPA), namely PD1n-3 DPA and PD2n-3 DPA, 

were recently observed to coordinate monocyte-to-macrophage differentiation. Whereby, 

incubation of monocytes deficient in ALOX15 activity, the initiating enzyme in the 

PDn-3 DPA biosynthetic pathway, with PD1n-3 DPA or the PDn-3 DPA biosynthetic intermediate 

16S, 17S-epoxy-PDn-3 DPA rectified monocyte-derived macrophage phenotype and their 

ability to uptake apoptotic cells [174].
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4.3.3. Upregulation of DPAn-3-derived SPM using dietary supplementation 
in humans—Studies evaluating approaches to upregulate endogenous SPM production 

demonstrate that the endogenous production of DPAn-3 derived SPM can be modulated 

following essential fatty acid supplementation. For example, Markworth and colleagues 

found that supplementation of healthy volunteers with DPAn-3 significantly increases 

RvD5n-3 DPA [175]. This modulation of DPAn-3 derived SPM was also observed when 

healthy volunteers and patients with peripheral artery disease were administered an enriched 

marine oil supplement [176,177]. Intriguingly these changes, together with the upregulation 

of SPM from the DHA and EPA metabolomes, were linked with a regulation of peripheral 

blood phagocyte function [176,177]. Thus, results from these studies suggest that functional 

modulation of SPM via essential fatty acid supplementation may be linked with decreased 

circulating phagocyte activation and potentially a downregulation of inflammation.

4.4. Elovanoids

In the following section N.G. Bazan details the discovery of the elovanoids (ELVs) and 

identification of their mechanisms of action.

The significance of polyunsaturated fatty acids (PUFAs) has evolved from the broad 

concepts of providing membrane structural plasticity and fluidity for proteins diffusion 

and rotation to a diverse universe of functions. For example, DHA is necessary for sight, 

and when administered, is beneficial in x-linked retinitis pigmentosa and other neurode-

generative diseases [178]. DHA from the diet is packaged by the liver and targeted to the 

central nervous system (CNS), where it achieves the highest concentration in photoreceptors 

and synaptic membranes [179].

PUFAs, precursors of lipid mediators and components of membrane lipids, comprise a 

new multidisciplinary field at the boundary of biophysics, chemical biology, and molecular 

physiology. Thus, at least two important issues have emerged: the gene that encodes the 

enzyme that elongates PUFAs to chain length ≥ 28 carbons (ELOVL4) is critically important 

for cell function, and their products are precursors of the new family of lipid mediators, the 

elovanoids (ELVs).

4.4.1. ELOVL4—ELOVL4 catalyzes the rate-limiting condensation reaction for the 

synthesis of very long chain -saturated fatty acids (VLC-SFAs) and VLCPUFAs (chain 

length ≥ 28 carbons) [180]. This enzyme is expressed in brain neurons, photoreceptor 

cells, skin, testes, and meibomian glands [180]. In the skin, VLC-SFAs are components 

of sphingolipids, and these VLC-SFAs are necessary as a skin-permeability barrier [181]. 

ELOVL4 is selectively expressed in neurons and is evolutionarily conserved [182]. In 

photoreceptor cells, VLC-PUFAs are in phosphatidylcholines (PC) of the outer segment 

membranes, tightly bound to rhodopsin [183].

Mutation, loss, or downregulation of ELOVL4 is linked to retinal degeneration. Studies of 

a large familial group with retinal degeneration revealed an autosomal dominant macular 

dystrophy phenotype which results from a 5-bp deletion, causing Stargardt-like macular 

dystrophy [184,185], and an STGD3 mouse Elovl4 mutation produces a C32-C36 PC 

deficiency [186], leading to the suggestion that loss or reduced VLC-PUFAs may cause 
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loss of photoreceptors or functional perturbations [187], highlighting the importance of these 

molecules in the retina. Therefore, because of the inability to take up and incorporate DHA 

and the absence of VLC-PUFAs in the degenerating adiponectin receptor 1 (AdipoR1)−/− 

mouse retina, the synthesis of these molecules must rely on the presence of DHA. The 

occurrence of central geographic atrophy (CGA) and neovascular age-related macular 

degeneration (AMD) was found to be 30% less likely with high omega-3 LC-PUFA (e.g., 

DHA) intake [188], emphasizing the importance of maintaining adequate dietary amounts of 

DHA for retinal homeostasis.

Neuron-specific ELOVL4 is expressed in the CNS, including in hippocampal neurons of the 

dentate gyrus (DG) subgranular layer, a locus for medial temporal lobe epilepsy. Mutations 

in ELOVL4 lead to impaired neural development, mental retardation, neuronal dysfunction, 

hyperexcitability, and seizures [189].

4.4.2. Elovanoids are a new class of bioactive lipids synthesized from C32 
or C34 FA precursors—In 2017, elovanoids (ELVs) were discovered and named [190–

192]. This new class of endogenous lipid mediators is distinct from the widely known lipid 

mediators produced from PUFAs with C20 and C22, such as the classical eicosanoids and 

SPMs. ELV-N32 and ELV-N34 are stereo-specific di-hydroxylated derivatives of 32:6n-3 or 

34:6n-3 (Fig. 5), respectively, made by the elongase ELOVL4 (elongation of VLC-FAs-4), 

which converts C26-derived FAs from EPA or DHA to VLC-PUFAs, ≥C28. These PUFAs 

are mainly esterified at the C1 (sn-1) position of PC that has DHA in the C2 (sn-2) position, 

and upon the appropriate stimulus (e. g., uncompensated oxidative stress), are released 

by phospholipase A1 (PLA1) and/or PLA2 for the formation of ELVs, NPD1, or other 

docosanoids (Fig. 6). Here, I describe key events in the discovery of ELVs and highlight 

some of their functions.

4.4.3. The discovery of Elovanoids—In short, the discovery of ELVs was the product 

of curiosity, resulting in a driven jump of knowledge, not an incremental finding. In 

2015, we reported that AdipoR1 genetic deletion leads to a shutting off of the uptake 

and retention of DHA that produced a cell-selective DHA lipidome-specific impairment in 

retinal pigment epithelium (RPE) cells and PRC function followed by PRC degeneration 

[193]. Unexpectedly, a molecular species of PC containing both VLC-PUFAs and DHA was 

depleted in the knockouts (KOs). Since this PC molecular species closely interacts with 

rhodopsin [194], one possibility for the PRC degeneration phenotype of the AdipoR1 KO 

was that its absence triggered PRC demise. An alternative hypothesis was that there was a 

shortage of some biologically active mediator derived from VLC-PUFAs.

To begin testing this hypothesis, we explored and found that the free VLC-PUFAs pool 

size was depleted in the RPE of the AdipoR1 KOs. Initially, our thinking was that 

this observation was expected because, as our lab had defined earlier, the recycling of 

DHA between these two cells takes place to retain/conserve DHA; we had called this 

the “short loop of recycling” [195–197]. Thus, the idea came from a separate, very 

different, biologically active derivative formed in the RPE cells from VLC-PUFA precursors. 

LC-MS/MS of wildtype (WT) and not in KO revealed in the RPE peaks that were not 

free VLC-PUFAs. Our initial marker was the absence of those peaks in our KO. When 
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we collected them from extracts of several WT RPEs, we found initial UV evidence 

of hydroxylated VLC-PUFAs, and when we added them to RPE cells challenged by 

uncompensated oxidative stress (H2O2 plus TNF-α), cell survival was elicited. Since this 

happened preceding retinal degeneration, we speculated that they might play a role in the 

survival of RPE and PRC, therefore sustaining sight.

We fully characterized these novel lipids and defined the complete structures and 

stereochemistry of the novel elovanoids, ELV-N32 (derived from 32:6n3) and ELV-N34 

(derived from 34:6n3), the complete R/S configuration, and the Z/E geometry of the double 

bonds as generated in retinal cells and neurons (Fig. 6) [190,191]. In 2019, we disclosed that 

ELVs sustain RPE and PRC integrity when confronted by injury via arresting the expression 

of senescence programs and other genes [198].

These findings are different from other endogenous prohomeostatic and neuroprotective 

mechanisms because they involve a phospholipid molecular species that is endowed with 

acyl chains with two different PUFA precursors of bioactive lipids. This unusual signaling 

encodes two PUFA-derived lipid mediators, the precursors of which are stored in specific 

PC molecular species. Whereas DHA, which is the first-described PUFA precursor of NPD1 

[130,133,199], is located at the sn-2 position of the phospholipids, the VLC-PUFAs are 

located at the sn-1 position and are subject to alternatively or concomitantly regulated 

pathways (Fig. 6). Therefore, the findings revealed here feature a different signal bifurcation 

prohomeostatic and neuroprotective mechanism that aims to sustain neural cell integrity. 

Because there are fatty acids longer than 34:6n-3 and products of other ELOVL enzymes, 

we anticipate that other ELVs might also be endogenously made to regulate cell function.

4.4.4. Elovanoids are neuroprotective in experimental ischemic stroke—We 

demonstrated that ELV-N32 or ELV-N34, when applied to cerebral-cortical mixed neuronal 

cells or hippocampal mixed neuronal cells in culture, can overcome the damaging effects 

of uncompensated oxidative stress or NMDA-induced neuronal excitotoxicity. Most of the 

strokes are ischemic in nature [200], and deprivation of oxygen and glucose leads to a 

cascade of events involving mitochondrial damage, which ultimately leads to neuronal death. 

Therefore, the in vitro oxygen-glucose deprivation (OGD) model provides an opportunity 

for teasing out the cellular events and putative underlying neuroprotective signaling 

pathways in which ELVs participate. We showed that both ELV-N32 and ELV-N34 elicit 

neuroprotection and overcome neuronal cytotoxicity. We also showed that the 34C omega-3 

VLC-PUFA (C34:6n-3) precursor of ELVs, when applied at a dose of 250 nM after 2 h 

of reoxygenation phase following 90 min of OGD insult, could provide neuroprotection to 

cerebral-cortical neurons. In conclusion, the endogenously generated ELVs (ELV-N32 or 

ELV-N34) ameliorated neuronal injury induced by several stressors, such as NMDA receptor 

activation, uncompensated oxidative stress, or OGD in cerebral-cortical mixed neuronal and 

hippocampal mixed neuronal cultures.

Next, we showed that ELV treatments delivered at 1 h after 2 h of experimental ischemic 

stroke improved neurological recovery throughout the 7-day survival period. We also used 

magnetic resonance imaging (MRI), a highly sensitive tool for the detection of changes in 

water content and diffusion, both of which characterize acute ischemic stroke [201]. The 

Dyall et al. Page 17

Prog Lipid Res. Author manuscript; available in PMC 2022 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rapid induction of brain edema following focal ischemia is the leading cause of morbidity 

and death after stroke [202]. Maximum protection was detected in the cortex (the penumbral 

area) and also in the subcortical area. Histopathology revealed smaller infarcts in cortical 

and subcortical areas with less pancellular damage, denser eosinophilic areas, and shrunken 

neurons along the infarct margin, all of which were detected in ELV-treated rats.

Cerebral ischemia initiates a complex cascade of cellular, molecular, and metabolic events 

that lead to irreversible brain damage [203]. Dead neurons and injured tissue are scavenged 

by activated resident microglia and/or macrophages that invade the injured tissue from the 

bloodstream. Surviving astrocytes and activated microglia in the penumbra may facilitate 

restoration of neuronal integrity by producing growth factors, cytokines, and extracellular 

matrix molecules involved in repair mechanisms [204]. Our results demonstrated that 

ELV treatment increased the number of NeuN-positive neurons and GFAP-positive reactive 

astrocytes and the SMI-71-positive blood vessel density in the cortex [191]. Blood vessel 

integrity facilitates neurogenesis and synaptogenesis, which, in turn, contribute to improved 

functional recovery. We showed here that the newly identified ELVs protected neurons 

undergoing OGD or NMDA receptor-mediated excitotoxicity. Moreover, ELVs attenuated 

infarct volumes, rescued the ischemic core and penumbra, diminished NVU damage, and 

promoted cell survival accompanied by neurological/behavioral recovery. It is reasonable to 

propose that novel ELV therapies have the potential to treat focal ischemic stroke and other 

conditions that engage inflammatory/homeostatic disruptions.

4.4.5. Mechanism of action of Elovanoids—In so far as the mechanism of action, 

ELVs target the expression of protective proteins and behaves as senolytic (Fig. 7). ELVs 

counteracted the cytotoxicity of OAβ subretinally administered in WT mice leading to RPE 

tight junction disruptions followed by PRC cell death. Our data show that OAβ activates 

a senescence program reflected by enhanced gene expression of Cdkn2a, Mmp1a, Trp53, 

Cdkn1a, Cdkn1b, Il-6, and senescence-associated secretory phenotype (SASP) secretome, 

followed by RPE and PRC demise (Fig. 7), and that ELV-N32 and ELV-N34 blunt these 

events and elicit protection to both cells. P16INK4a protein abundance is also targeted. 

The RPE cell is terminally differentiated and originated from the neuroepithelium. In this 

connection, senescent neurons in aged mice and models of Alzheimer’s disease [205] 

and astrocytes [206] also express senescence and develop secretory SASP that fuels 

neuroinflammation in nearby cells [207]. This is likely the case in our study reported in 

2019 [198], where neighboring cells may be targeted by SASP neurotoxic actions, inducing 

photoreceptor paracrine senescence. Therefore, SASP from RPE cells may be autocrine and 

paracrine, altering the homeostasis of the interphotoreceptor matrix microenvironment (Fig. 

7), as a consequence and creating an inflammatory milieu that contributes to loss of function 

associated with aging, age-related pathologies [208], Alzheimer’s disease, and likely AMD. 

Furthermore, ELVs restore expression of ECM remodeling matrix metalloproteinases altered 

by OAβ treatment, pointing to an additional disturbance in the interphotoreceptor matrix. 

The inflammation set in motion may be a low-grade, sterile, chronic proinflammatory 

condition similar to inflammaging that is also linked to senescence of the immune system 

[208,209]. In addition, ELVs counteracted OAβ-induced expression of genes engaged in 

AMD and autophagy. It remains to be defined whether the ELVs targeted events on 
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gene transcription (Fig. 7) to inform novel unifying regulatory mechanisms to sustain 

health span during aging and neurodegenerative diseases [208,210]. Several forms of 

retinal degenerative diseases, including retinitis pigmentosa and other inherited retinal 

degenerations, may underlie these mechanisms, and ELVs might halt the onset or slow 

down disease progression. Although further research is needed, our results, overall, show 

the potential of ELVs as a possible therapeutic avenue of exploration for neurodegenerative 

diseases.

5. Non-enzymatically oxidised-PUFAs (NEO-PUFAs)

In the following section T. Durand and J.-M. Galano describe the biosynthesis, structures 

and activities of nonenzymatically derived PUFAs (NEO-PUFAs).

5.1. Lipid peroxidation

Lipid peroxidation (LPO) is a degenerative process implicated in the pathogenesis of 

diseases and/or involved in the resolving process of diseases by the production of signaling 

molecules or lipid mediators. It is also a very common process in the plant kingdom and 

invertebrates, which is outside of the scope of this review, and interested readers should refer 

to the following recent review [211].

The process of nonenzymatic peroxidation of PUFAs, which is exacerbated under oxidative 

stress (OS) conditions, produces a myriad of oxidized compounds, some structurally similar 

to the oxylipins (racemic PGF2α) or structurally unique (as not represented in the enzymatic 

process; i.e., isofurans or isomeric series of prostaglandins, the isoprostanes). We have 

recently tentatively abbreviated them as NEO-PUFAs, i.e., nonenzymatic oxygenated PUFAs 

to differentiate them from the enzymatically-derived oxylipins [212]. The NEO-PUFAs are 

part of the redox-lipidome, and while they have been investigated as biomarkers of diseases 

(the most frequently investigated are the isoprostanoids) [213], they are however rarely 

considered biologically relevant molecules [214].

5.2. Mechanisms of formation of cyclic NEO-PUFAs

The free radical nonenzymatic oxidation of PUFAs has been studied for more than 70 

years in biology and medicine, in parallel with the study of oxidative stress. At the 

beginning of the 1990s it became evident that limitations were inherent in the exploration 

of OS and LPO in vivo [215]; however, a seminal paper appeared with the potential of 

solving these limitations. Morrow and co-workers showed that mass spectrometry could 

detect and quantify prostaglandin-like compounds in vivo in plasma and tissues, and these 

compounds were named Isoprostanes (IsoP) [216]. They pinpointed that a nonenzymatically 

driven biosynthetic process led to the generation of compounds structurally similar to the 

enzymatically-derived prostaglandins, but with a much greater diversity of isomers, for 

example, compared to the single enzymaticaly derived prostaglandin (PGF2α) from ARA, 

there are four different types of IsoPs. Not long afterwards, the isoprostanes were shown 

to be ubiquitous in human fluids and tissues and fairly easy to quantify, which led to them 

becoming the long-sought after gold standard biomarker of oxidative status of free radical 

injuries in humans [217].
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Many other NEO-PUFAs have subsequently been identified, some similar to their enzymatic 

version (albeit racemic and with the full set of potential isomers), like the isolevuglandin, 

isotromboxane, but also a novel structure was discovered which is unique to nonenzymatic 

biosynthesis, the isofuranes.

Fig. 8 shows the formation of IsoPs from ARA (for simplicity only one the four possible 

series of IsoPs is shown), which starts with H-atom abstraction at the 13th position of 

the ARA ester. Unlike the enzymatic process of oxylipin formation, the free radical 

chain process occurs to membrane-bounded PUFAs. All that is required to make cyclic 

NEOPUFAs is a PUFA with at least three double-bonds separated by a methylene group.

The initial step in the free radical chain peroxidation process starts by an initiation step, 

that is the initial formation of a free radical (like the hydroxyl radical (HO●) one of the 

oxygen center radicals overproduced under oxidative stress conditions), which will abstract 

a H atom from a PUFA at the origin of the pentadienyl radical A (Fig. 8) [218]. Then 

only, the radical chain process can produce hydroperoxides (hydro-peroxyeicosatetraenoic 

acids; HPETEs) via O2 addition and hydro-peroxyl radicals and (B). The propagation can 

be maintained indefinitely in theory until termination step mechanisms. However, other 

propagation mechanisms are also in competition, like a peroxyl radical cyclisation (via a 

5-exo trig process) to give 1,2-dioxolanylalkyl radicals (C), which has several subsequent 

mechanistic fates, and two of them lead to cyclic NEO-PUFAs [219], which are detailed 

below.

The first one starts with a second 5-exo trig cyclization onto the conjugate diene leading 

after oxygen trapping and H atom abstraction to IsoP substructure G2t-IsoP. Of particular 

interest here are the production of epimers of prostaglandins, as the lipid lateral chains 

generated can be of 1,2-cis configuration or 1,2-trans configuration (only the 1,2-cis 
configuration is represented in Fig. 8), and the cis or trans configuration can be anti or syn to 

the always fixed 1,3-cis diol (because of endoper-oxide production)). A perfect match with 

PGF2α is also produced via this mechanism (albeit racemic), and Morrow and co-workers 

highlighted the issues with PGF2α quantification in urine [220]. This makes four different 

isomers for the four consecutive centers, plus the epimeric center at the allylic position, so 

a total of eight possible stereoisomers for one single series (hence the sheer complexity of 

NEO-PUFAs compared to enzymatically derived oxylipins). Another fate of C (Fig. 8) is by 

1,3 SHi followed by a 3-exo trig cyclization to give rise to diepoxy hydro-peroxides after O2 

trapping and H atom abstraction [221].

G2-IsoP is partially reduced into H2-IsoP and its complete reduction affords the F-type of 

isoprostane [216]. Partial reductions depending on the tissues and/or pathophysiological 

conditions can make ketohydroxy IsoPs (Fig. 8, blue structures) E2-IsoP or D2-IsoP 

[222] (it has been showed that E and D-IsoP can be epimerized into their corresponding 

prostaglandins under physiological conditions) [223]. Dehydration of membrane bound E2- 

and D2-IsoPs is also feasible in physiological conditions and cyclopentenone A2 and J2 were 

described as very reactive intermediates [224]. They also tend to deoxygenate further into 

deoxy-J2-IsoP to even more reactive biomolecules [225]. Interestingly deoxy-A2-IsoP has 
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not thus far been reported in the literature; however, based on the mechanism identified all 

the series of J2-IsoP it suggests deoxy-A2-IsoPs must exist.

Another partial reduction can lead to a thromboxane substructure, and while A2-IsoTX 

could not be detected; B2-IsoTx was found in CCl4 induced injury of rats. In vitro 
oxidation of ARA initiated by Fe/ADP/ascorbate also led to B2-IsoTx [226]. The epoxy-

IsoPs can only be explained by the unique rearrangement-elimination sequence of 15-

D2-hydroperoxides or 15-E2-hydroperoxides (not represented here), which originate from 

endoperoxide G2-IsoPs [227]. Such 14,15-epoxy-15-D2-IsoP as described can also further 

dehydrate to 14,15-epoxy-15-J2-IsoP [228]. Another cyclic NEO-PUFAs unique from the 

nonenzymatic autooxidation of lipids are the isofuranes (IsoF) [229], which are best 

described biosynthetically from diepoxy hydroperoxides [219]. Such bisepoxides can react 

with water to ring open one of the epoxides, and the resulting hydroxyl group will then 

attack the remaining epoxide to form the furan cycle. Two types of IsoF were named as 

alkenyl-IsoF and enediol-IsoF depending of the nature of the side chains. The final stage of 

biosynthesis is the release of the oxidized PUFAs from the membrane, which occurs via the 

action of phospholipase A2.

5.3. Biological relevance of cyclic NEO-PUFAs

Since the 1990’s 15-F2t-IsoP and other derivatives have been commonly used as the best 

available standard for measuring the extent of lipid peroxidation in most tissue fluids. 

However, these cyclic NEO-PUFAs are also relevant to human pathologies, due to their 

harmful or beneficial actions produced via their activities at prostanoid and ryanodine 

receptors.

The initial report by Morrow and co-workers identified levels of 15-F2t-IsoP in plasma 

were one or two orders of magnitude higher than PGF2, and 15-F2t-IsoP was an extremely 

potent renal vasoconstrictor in the low nM range [216]. Since then, investigations have 

revealed its vasoconstrictive effects in many vascular beds (heart, liver, lung, kidney, 

smooth muscle, retina) via the thromboxane receptor (TP) [230]. 15-F2t-IsoP can also 

modulate platelet activity via the same receptor [231]. 15-E2t-IsoP is also a vasoconstrictor 

via the TP and the dichotomy of PGF2α vs PGE2 (vasoconstrictor vs. vasodilator) was 

not observed [232]. 15-E2t-IsoP is also a ligand of E-series of prostaglandin receptors 

(EP) [233], and bronchoconstrictor in lung. Bendorf and co-workers further showed that 

15-F2t-IsoP, 15-E2t-IsoP and 15-A2t-IsoP inhibited the VEGF-induced migration and tube 

formation of endothelial cells, and that altogether inhibit angiogenesis via activation of 

the TBXA2R [234]. 15-J2-IsoP was found to have inflammatory response by inhibiting 

via the peroxisome proliferator-activated receptor gamma (PPARγ) activation and induce 

RAW264.7 cell apoptosis in a PPARγ-independent manner [235]. 15-A2-IsoP another 

cyclopentenone ARA derivative displays anti-inflammatory effects by the inhibition of 

NF-κB pathway in lipopolysaccharide (LPS)-induced macrophages and human gestational 

tissues [236]. The overall picture of these cyclopentenone metabolites is currently unclear, as 

recently highlighted for their prostaglandin equivalents, and is probably much dependent on 

their structures [237]. For example, 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-

phosphocholine, (PEIPC) in OxPAC (oxidized 1-palmitoyl-2-arachidonoyl-syn-glycero-3-
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phosphocholine) was shown to regulate over 80% of the 1000 genes regulated by OxPAC in 

human aortic endothelial cells (HAEC), and their non-esterified epoxy-IsoPs possess similar 

functions on genes showing a dual and opposing bioactivity in inflammation, depending on 

their concentration or their substructures [237,238].

There is little information available for EPA cyclic NEO-PUFAs in the literature, partially 

due to a lack of commercial standards. Synthetically available 5-F3t-IsoP was found to 

behave in a similar manner to other F2-IsoPs in modulating the release of neurotransmitters 

in isolated bovine retina via prostanoid receptors [239], while cyclopentenone 15-A3t-IsoP 

had anti-inflammatory effects on LPS-stimulated macrophages, via the inhibition of NF-

κB pathways, and inhibitory effect on the formation of foam cells, a major step in the 

pathogenesis of atherosclerosis [240].

DHA cyclic NEO-PUFAs have been investigated to a greater extent than the EPA 

derivatives, as there has been a greater focus on neuroprostane synthesis. 14-A4-NeuroP 

is a potent anti-inflammatory mediator, inhibiting NF-κB activation in LPS-induced 

macrophages [241], Majkova et al., showed that A4/J4-NeuroPs down-regulated PCB77-

induced monocyte chemo-attractant protein-1 expression and nuclear factor erythroid 2-

related factor 2 (Nrf2) activation in primary pulmonary endothelial cells [242], and Gladine 

and co-workers showed that both 4-(RS)-4-F4t-NeuroP and 14-A4t-NeuroP displayed anti-

inflammatory activities, similar to the protectins in human macrophages. These results 

can parallel the study that F4-Neuroprostanes as the best oxylipin-NEO PUFA predictor 

of atherosclerosis in atherosclerosis prone mice, which received increasing doses of DHA 

[243]. One particular focus of our group is the biological relevance of 4-(RS)-4-F4t-NeuroP 

and its unique ability to protect the ryanodine receptors in vitro and in vivo, where potent 

antiarrhythmic properties have been shown via this mechanism of action [244]. Recently, F4-

NeuroPs showed a biological activity in sperm function and was able to induce capacitation 

via increasing AMPK phosphorylation, and its role at ryanodine receptors is currently being 

explored [245]. Finally, Lee and co-workers showed that 4-(RS)-4-F4t-NeuroP can cross 

the blood brain barrier into rat brain tissue and alter brain omega-3 and omega-6 PUFA 

profiles, where anti-inflammatory and pro-resolvin lipid biomarkers were significantly 

elevated [246]. Furthermore, 4-F4t-NeuroP treatment to human neuroblastoma cells and rat 

primary neuronal cells consistently elevated HO-1 mRNA expression, suggesting that native 

4-F4t-NeuroP has a regulatory role in neurons for cell survival [247].

Cyclic NEO-PUFAs and particularly the IsoPs have been detected and quantified from 

the most important PUFAs. Their biosynthesis is well known, their quantification is 

straightforward, and their biological relevance should grant them a place next to the well-

known mediators of diseases. However, it took three decades for the field of classical 

eicosanoids and other oxylipins to begin to be recognized clinically. A recent paper provides 

the way forward to raise awareness of the oxylipins and NEO-PUFAs in clinical settings 

[246].
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6. Fatty acid esters of hydroxy fatty acids

In the following section L. Balas presents and overview of the recently identified family of 

branched fatty acids, the fatty acid esters of hydroxy fatty acids (FAHFAs).

In contrast to PUFAs, saturated fatty acids are generally thought to be deleterious to health, 

promoting cardiovascular diseases, obesity, and type 2 diabetes. Thus, the paradoxical and 

striking discovery of endogenous saturated anti-diabetic acyloxy fatty acids, called fatty acid 

esters of hydroxy fatty acids (FAHFAs) [248] triggered a strong revival of interest in these 

lipids. Structurally, these lipokines are characterized by a branched ester linkage between 

a fatty acid (FA) and a hydroxy-fatty acid (HFA). Nowadays, the term “branched” is often 

omitted, although it is an important aspect. A brief overview is presented below, including 

non-branched isomers and functionalized polar head derivatives.

6.1. Branched FAHFAs

Hundreds of structures with saturated, monounsaturated, or PUFA chains, including regio-

isomers with the ester linkage at position C5 or C7 to C13 and their (R)- and (S)-epimers 

have been identified [248,249]. Although present in some natural products (see below), the 

3-series does appear to be part of this anti-diabetic lipid family.

Branched FAHFAs are endogenously produced in insects [250], and mammals, such as 

rodents [248,251], caribou and moose [252], and humans [251,253]. In humans, white 

adipose tissue (WAT) represents the major site of FAHFA synthesis [248,253–255], although 

they are also found in blood [256,257] and other tissues, such as the liver [248,258], kidneys 

[248,258,259], large intestine [260], pancreas [248], lungs [258], thymus [258], and heart 

[258], albeit to a lesser extent. Branched FAHFAs are also naturally occurring substances 

found in microalgae [261], breast milk [262] and foods, such as cereals, fruits, vegetables, 

oils, eggs and meat [251,263–265]. Quantities are rather low, ranging from 45 to 320 

ng/g of fresh food. To date, no information has been reported about their absorption and 

bioavailability.

Since their discovery, only a few research groups have begun to investigate their biosynthetic 

pathways, and roles in health and diseases, and of the hundreds of possible FAHFA 

structures very few have been studied thus far. For example, little is known about the 

biosynthesis of saturated hydroxylated fatty acids [249], although Kuda and co-workers 

reported in 2018 that 9-hydroxylated stearic acid is produced from (per) oxidized membrane 

phospholipids [266]; however, the regioselectivity of hydroxylation/peroxidation on some 

carbon atoms of the fatty acid chain (positions 5,7, 9, 10, 11, 12, 13 mainly) has yet to be 

explained. The advent of synthetic standards should facilitate research, and their preparation 

has been summarized in a recent comprehensive review [267].

It is possible that FAHFAs do not all have the same properties nor the same intensities 

in their effects. The palmitic acid hydroxy stearic acid (PAHSA) family is currently the 

most studied, showing significant enhancement of glucose tolerance, glucagon-like peptide 

1 secretion and insulin sensitivity in obese insulin-resistant mice with reduction of the 

adipose tissue inflammation [248,249,268,269]. PAHSA concentrations inversely correlate 
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with insulin resistance and the propensity to develop diabetes. 9-PAHPA (palmitic acid 

esterified to 9-hydroxy palmitic acid) and 9-OAHPA (oleic acid esterified to 9-hydroxy 

palmitic acid) increase insulin sensitivity in obese and healthy mice and they both increase 

basal metabolism [270,271]. Effects of human blood 9-PAHSA and 9-OAHSA suggest a 

protection against cardiovascular diseases [256]. In both mice [251,272] and humans [257], 

polyunsaturated FAHFAs exert powerful anti-inflammatory properties, stronger than the 

fully saturated compounds. The beneficial effects of branched FAHFAs, namely involvement 

in metabolic disorders and diabetes, inflammation, browning of WAT, potential antioxidant 

and anti-cancer properties and the current knowledge on their biosynthesis and metabolism 

are summarized in recent reviews [249,273]. In addition, recent investigations have shown 

noticeable decreases in FAHFA levels in plasma of patients suffering from acute coronary 

syndrome or acute ischemic stroke [257], and increasing levels with the severity of lupus 

nephritis [270] in murine models.

6.2. The 2-FAHFA series

Levels of anti-inflammatory 2-FAHFAs with very short FA chains (C2-C5) increase in the 

colon of influenza infected mice compared to healthy controls [274].

6.3. Non-branched FAHFAs (omega-FAHFAs)

Mainly studied in meibonian glands and tear film of human and mice eyes [275,276], 

these omega-FAHFAs are also present in equine amniotic fluid [277], mice skin [278], 

vernix caseosa [279], and equine sperm [280]. With their long or very-long (C16 to C38 

atoms) chains and their carboxylated acid group, these amphiphilic lipids (ca. 4% total 

lipid) promote tear film stability and prevent drying of the ocular surface [276,281,282]. 

Cholesteryl esters of omega-FAHFAs have also been reported [279].

6.4. Functionalized polar head FAHFA derivatives

6.4.1. Triacylglycerol-estolides (TAG-Est)—In vivo esterification of FAHFAs with 

diacylglycerol produces TAG-Est that serves as reservoirs of FAHFAs. In mice, the fine-

tuned TAG-Est metabolism (liberating free FAs or free FAHFAs) regulates the anti-diabetic 

signaling lipid profiles [254,283,284]. In oat, a digalactosyldiacylglycerol containing 15-

LAHLA in place of a FA chain has been reported [285].

6.4.2. Amino acid-containing FAHFAs—Several amino acid-containing acyloxyacyl 

lipids have been reported. Structurally (Fig. 9), they are composed of a 3-FAHFA bound to 

the amine group of an amino acid(lysine [286], glycine [287], ornithine [288,289], di- and 

tri-methylated ornithine [290]) or dipeptide such as in flavolipin (a serine-glycine polar head 

and a omega-1 methyl group on both fatty chains)[267] or cerilipin [286,291].

They are essentially found in the outer membranes of Gram-negative bacteria and also 

in some Gram-positive bacteria. In 2010, Geiger published a review dedicated to these 

amino-acid lipids [292]. More recently, an anti-bacterial activity against Streptococcus 
agalactiae and a cytotoxic effect against the A2058 human melanoma cell lines were 

observed with flavolipin [293]. In addition, serine dipeptide lipids produced by oral and 

intestinal Bacteroidetes bacteria are consistently recovered in lipid extracts of carotid 
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arteries, suggesting their implication in the pathogenesis of TLR2-dependent atherosclerosis 

through flavolipin deposition and metabolism in artery walls [294]. Interestingly, flavolipin 

may be a potential biomarker of multiple sclerosis (MS), as it is expressed at significantly 

lower levels in the serum of MS patients compared with both healthy individuals and 

Alzheimer’s disease patients [295].

7. General conclusions

Enzymatic and nonenzymatic oxidation of PUFAs produces vast repertoires of PUFA-

specific oxylipins with widespread cellular and physiological functions. In this 

review researchers at the forefront of their respective fields have provided overviews 

of the biosynthesis, structures and functions of the main classes of nonclassical 

oxylipins, including the recently identified FAHFAs, which are derived from saturated, 

monounsaturated and PUFAs. Due to the central role of PUFAs as precursors to many of 

these lipid mediators, recent advances in our understanding of the role of FADS in PUFA 

biosynthesis have also been discussed.

The overarching aim of this review is to show both the diversity of the most recently 

identified enzymatically and nonenzymatically-derived oxylipins, and also their roles in 

regulating cellular functions in health and disease. This review has provided insights into 

the discoveries of many new oxylipins, which have vastly extended the repertoire of 

fatty acid-derived bioactive lipid mediators beyond the classical eicosanoids. It has also 

highlighted many areas where our increased understanding of their activities may hold 

significant therapeutic potential. For example, in the area of SPMs, the identification of their 

anti-inflammatory, pro-resolving, microbial clearing, anti-thrombotic and organ-protective 

actions may be useful in controlling SARS-CoV-2 infection disease severity, and even 

long-term COVID-19 symptoms.

This review has presented a wide range of oxylipins, and shown there are potential 

overlapping, but also opposing actions between these diverse classes of lipid mediators, 

and a more integrated approach to investigating the oxylipidome and the interplay between 

the different oxylipins in regulating cellular functions may prove important in understanding 

their role in health and disease, and in the development of new therapies. An example of 

this was shown in the eye, where VLC-PUFAs are located at the sn-1 position and DHA the 

sn-2 position of retinal photoreceptor cell PC. Here, alternatively or concomitantly regulated 

pathways may lead to the dual formation of both ELVs and N (PD)1; however, the interplay 

between these oxylipins and how the different regulatory pathways are coordinated remains 

to be fully elucidated.

By far the greatest diversity of oxylipins is produced nonenzymatically, but as 

discussed above, their role and relative importance in regulating cellular functions is not 

well understood. There are however precedents for nonenzymatically-derived oxylipins 

regulating cellular responses, for example, in the activation of detoxification systems in 

plants [296], and ferroptosis, where phospholipid peroxidation products drive non-apoptotic 

cell death via an iron-dependent regulated process [297,298]. Dysregulation of ferroptosis 

has been implicated in a wide range of conditions, including cancer, neurodegeneration, 

Dyall et al. Page 25

Prog Lipid Res. Author manuscript; available in PMC 2022 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tissue injury, inflammation, and infection [299], and as such, a greater understanding of the 

role of NEO-PUFAs in regulating cellular processes, such as ferroptosis, may hold great 

potential for the development of novel treatments.

For these reasons researchers may need to cross traditional research boundaries, and 

consider the wider diversity of classes of oxylipins and their inter-relationships when 

investigating their roles and activities to better understand the therapeutic potential of 

modifying the levels of specific oxylipins. To date few studies have examined the whole 

range of PUFA-derived oxylipins, as this analysis is complicated by a lack of commercial 

standards and the wide range of physiological concentrations of the different oxylipins; 

however, recent developments in lipidomics and mass spectrometry may make this type of 

analysis more feasible in the future.

There are however a number of important aspects of oxylipin metabolism that remain to be 

understood. For example, although the biosynthesis and activities of the different oxylipins 

is beginning to be characterised, there is still much to learn about the kinetics of their 

formation and turnover, which has been called “fluxolipidomics” [300]. There is also still 

much to be learned about more fundamental aspects, such as whether there are differences 

in the levels of the different oxylipins between males and females, and the effects of age are 

also not well characterised.

Further important questions relate to how responsive the different families of oxylipins are 

to dietary modifications. There have been very dramatic changes in both the quality and 

quantity of dietary fat, predominantly driven by the Agricultural and Industrial Revolutions, 

and culminating in the current situation where the Western diet has low levels of omega-3 

PUFAs and high levels of LA, saturated fatty acids, and trans fatty acids, and has seen 

the omega-6 PUFA/omega-3 PUFA ratio change from around 1–2:1 to 10–20:1 [301]. As 

has been seen above, increased dietary LA intake can led to detrimental increases in the 

level of OXLAMs, and although these octadecanoids are found at higher levels in tissues 

and blood than oxylipins derived from any other PUFA [11], they are among the least 

researched and the consequences of these changes on human health need more extensive 

investigation. Similarly, although EPA, DPAn-3 and DHA-derived SPMs have been shown 

to be responsive to omega-3 PUFA supplementation, and these changes may be linked to 

decreases in inflammation, the exact relationship between increased intakes of EPA, DPAn-3 

and DHA and increases in specific SPMs, and also ELVs, requires further research to help us 

progress to more precision medicine [302].

In summary, this review has provided insights into current understanding of the biosynthesis 

of omega-3 and omega-6 PUFAs, and the biosynthesis, structures, and functions of 

nonclassical oxylipins; however, further work will undoubtedly lead to the discovery of 

many new oxylipins, and also increase our understanding of their regulation and actions in 

health and disease. This review has also highlighted some of the challenges that need to be 

overcome in order for this research to produce clinical benefits in the diagnosis, prognosis, 

and treatment of diseases. These challenges include the need for a wider range of analytical 

standards, the lack of understanding of oxylipin kinetics and normal biological variations, 

and the need for greater methodological standardisation between laboratories to increase 
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consistency in analysis of the whole range of oxylipins. These and other challenges to 

clinical translation have been discussed in the insightful review by Gladine and Fedorova 

[246]. This complex field holds significant clinical potential, and in this review we have 

provided an overview of some of the breadth and diversity of the different classes of 

oxylipins, and their importance in health and disease.
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Abbreviations:

ARA Arachidonic acid

COX cyclooxygenase

CYP cytochrome P450 mixed function oxidase

DiHODE dihydroxyoctadecadienoic acid

DiHOME dihydroxyoctadecamonoenoic acid

DHA docosahexaenoic acid

DPA docosapentaenoic acid

EPA eicosapentaenoic acid

ELV elovanoids

eLOX3 epidermis-type lipoxygenase 3

EDP epoxydocosapentaenoic acid

EpETE epoxyeicosatetraenoic acid

EET epoxyeicosatrienoic acid

EpODEs epoxyoctadecadienoic acid
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EpOME epoxyoctadecamonoenoic acid

FAHFA fatty acid ester of hydroxy fatty acid

HpETE hydroperoxyeicosatetraenoic acid

HDoHE hydroxydocosahexaenoic acid

HEPE hydroxyeicosapentaenoic acid

HETE hydroxyeicosatetraenoic acid

HODE hydroxyoctadecadienoic acid

HOTrEs hydroxyoctadecatrienoic acid

LOX lipoxygenase

MaR maresin

NEO-PUFA non-enzymatically oxidized PUFA

(N)PD (neuro)protectin

OXLAM oxidized linoleic acid metabolite

OGD oxygen-glucose deprivation

PUFA polyunsaturated fatty acid

Rv resolvin

SASP senescence-associated secretory phenotype

sEH soluble epoxide hydrolase enzymes

SPM specialized pro-resolving mediator

TAG-Est triacylglycerol-estolides.
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Fig. 1. 
Biosynthesis of omega-3 and omega-6 PUFAs. The biosynthesis of longer-chain omega-3 

and omega-6 PUFAs proceeds via a series of alternating position-specific desaturation 

and elongation steps from ALA and LA, respectively. FADS1 and FADS2 appear 

responsible for all omega-3 and omega-6 PUFA desaturation in mammals, with FADS1 

exhibiting Δ5-desaturase activity, and although FADS2 was originally identified as the 

Δ6-desaturase, it has subsequently been shown to also possess Δ4- and Δ8-desaturase 

activities. Octadecanoids are lipid mediators derived from C18 PUFAs, such as ALA or LA, 

eicosanoids are derived from C20 PUFAs such as DGLA, ARA or EPA, and docosanoids are 

derived from C22 PUFAs such as DPAn-3, and DHA. See text for further details.
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Fig. 2. 
Illustration of resolution metabolome: SPM biosynthesis, receptors and functions.

Precursors EPA and DHA are converted via biosynthetic enzymes to SPMs, which in turn 

activate their specific receptors to stimulate pro-resolving innate immune functions. Each 

SPM demonstrates stereoselective activation of its cognate GPCR on select cell types, 

leading to intracellular signals, pathways and pro-resolving functions The affinities of SPMs 

for their respective recombinant GPCRs (i.e., Kd or EC 50 values) are consistent with their 

bioactive concentration ranges, e.g. macrophage phagocytosis (picomolar to low nanomolar) 

in vitro and dose ranges (picograms to low nanograms) in vivo.The in vivo functions of 

these SPM receptors were demonstrated using transgenic and/or knock-out mice, as well as 

specific blockage of the receptor, e.g., siRNA, antibodies or receptor antagonists (see text 

and recent reviews [98,116] for details).
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Fig. 3. 
SPM actions in viral infections. See text for details.
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Fig. 4. 
Illustration of the omega-3 DPA derived SPM families and the biological activities exerted 

on immune and stromal cells. For details of the stereochemistry of the structures of these 

SPMs please see [162].
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Fig. 5. 
Eicosanoids, docosanoids, and elovanoids. PLAs that release ARA, EPA, DHA, or VLC-

PUFAs are depicted at the top. Synthesis of mediators and receptors involved are illustrated. 

The outcome is modulation of inflammatory responses and homeostasis. AD, Alzheimer’s 

disease; AMD, age-related macular degeneration; VLC-PUFA, very long-chain PUFA. 

Reproduced, with permission from the Journal of Lipid Research [178].
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Fig. 6. 
Genetic ablation of adiponectin receptor 1 leads to depletion of VLC-PUFAs and its 

derivatives in retina. A: Dietary DHA, or DHA derived from dietary 18:3n3, is supplied 

by the liver and taken by the Adiponectin Receptor 1 (AdipoR1), followed by elongation 

in the inner segment of photoreceptor cell (PRC) by Elongation of Very Long chain fatty 

acids-4 (ELOVL4) to VLC-PUFA and incorporation into PC molecular species, which 

contains DHA at sn-2. During daily PRC outer segment renewal, these PC molecular species 

interact with rhodopsin and, after shedding of the PRC tips and phagocytosis, become 

part of retinal pigment epithelium (RPE) cells. Uncompensated oxidative stress (UOS) or 

other disruptors of homeostasis trigger the release of VLC-PUFAs. 32:6n-3 and 34:6n-3 

are depicted generating hydroperoxyl forms, and then elovanoid (ELV)-N32 or ELV-N34, 

respectively. B: The pool size of free 32:6n-3 in retinas of AdipoR1 KO mice (red) is 

decreased as compared with that in wild type (WT) (blue). Insert (1) shows ELV-N32 in 

KO (red) and WT (blue); insert (2) shows monohydroxy 32:6n3, the stable derivative of 

the hydroperoxyl precursor of ELV-N32, in WT (blue) and lack of detectable signal in 

the KO (red). C: Similarly, the pool size of free 34:6n-3 in retinas of AdipoR1 KO mice 

(red) is decreased as compared with that in WT (blue). Insert (1) shows ELV-N32 in KO 

(red) and WT (blue); insert (2) shows mono-hydroxy 34:6n-3, the stable derivative of the 

hydroperoxyl precursor of ELV-N34, in WT (blue) and lack of detectable signal in the KO 
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(red). D: RPE cells sustain PRC functional integrity (left); right, the ablation of AdipoR1 

switches off DHA availability, and PRC degeneration ensues. Reproduced, with permission, 

from Scientific Reports [190]. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 7. 
ELVs effect on oligomeric amyloid-β (OAβ)-induced RPE and PRC damage. A: OAβ 
induces a senescence gene program and disrupts RPE tight junctions. OAβ penetrates 

the retina, causing PRC cell death in our in vivo WT mice study, as reflected in less 

outer nuclear layer (ONL) nuclei (Fig. 5 from [198]). OAβ activates the senescence-

associated secretome (SASP) that contributes to perturbing the interphotoreceptor matrix 

(IPM), triggering inflammaging in PRC and also likely in Mueller glia, which limits 

the IPM. Therefore, senescence paracrine expression takes place. ELVs restore RPE 

morphology and PRC integrity. B: OAβ induces expression of senescence, autophagy, 

matrix metalloproteinases, and age-related macular degeneration (AMD)-related genes in 

the RPE and apoptosis genes in retina in addition to p16INK4a protein abundance. ELVs 

downregulated the OAβ-gene inductions and p16INK4a protein abundance. Pathways for the 

ELV synthesis are outlined. ELV, elovanoid; PRC, photoreceptor cell; RPE, retinal pigment 
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epithelium. Reproduced, with permission, from the Proceedings of the National Academy of 
Sciences of the United States [198].
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Fig. 8. 
Mechanism of the free radical chain process leading to cyclic NEO-PUFAs. (Only one 

H-atom abstraction is shown for clarity, as well as stereoisomers, and ARA was chosen as 

the PUFA). See text for details.
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Fig. 9. 
Examples of Fatty acid esters of hydroxy fatty acids (FAHFAs) and derivatives. See text for 

details.
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