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ABSTRACT

Background and purpose: Glycated hemoglobin (HbA1c) reflects the cumulative glucose exposure of 

erythrocytes over a preceding time frame proportional to erythrocyte survival. HbA1c is thus an areal 

function of the glucose-time curve, an educationally useful concept to aid teaching and clinical judg-

ment. Methods: An ordinary differential equation is formulated as a parsimonious model of HbA1c. 

The integrated form yields HbA1c as an area-under-the-curve (AUC) of a glucose-time profile. The 

rate constant of the HbA1c model is then derived using the validated regression equation in the ADAG 

study that links mean blood glucose and HbA1c with a very high degree of goodness-of-fit. Results: 

This model has didactic utility to enable patients, biomedical students and clinicians to appreciate 

how HbA1c may be conceptually inferred from discrete blood glucose values using continuous glucose 

monitoring system (CGMS) or self-monitored blood glucose (SMBG) glucometer readings as shown in 

the examples. It can be appreciated how hypoglycemia can occur with rapid HbA1c decline despite 

poor glycemic control. Conclusions: Being independent of laboratory assay pitfalls, computed ‘virtual’ 

HbA1c serves as an invaluable internal consistency cross-check against laboratory-measured HbA1c 

discordant with SMBG readings suggestive of inaccurate/fraudulent glucometer records or hemato-

logic disorders including thalassemia and hemoglobinopathy. This model could be implemented within 

portable glucometers, CGMS devices and even smartphone apps for deriving tentative ‘virtual’ HbA1c 

from serial glucose readings as an adjunct to measured HbA1c. Such predicted ‘virtual’ HbA1c readily 

accessible via glucometers may serve as feedback to modify behavior and empower diabetic patients 

to achieve better glycemic control.

Key words: glycated hemoglobin (HbA1c), mathematical model, area under the curve, diabetes mellitus, 

self-monitoring of blood glucose (SMBG), glycemic control.

1. BACKGROUND
The glycated hemoglobin (HbA1c) 

has been established as a time-hon-
ored gold standard yardstick of long-
term glycemic control. Highly precise 
state-of-the-art biochemical HbA1c as-
says in the era of the National Glyco-
hemoglobin Standardization Program 
(NGSP) certification as a standard of 
care allow clinicians to judge glycemic 
control, make treatment decisions and 
compare outcomes. While this present 
day practice is highly successful in 
managing diabetes patients, much ad-
ditional clinically relevant value stands 
to be gained from ‘virtual’ HbA1c 
computed from discrete blood glucose 
data, an endeavor seemingly trivialized 
and eclipsed by modern technology. 
Yet, a brief revisit of the biochemistry 
of HbA1c formation will show that a 

simple computational approach based 
on serial blood glucose data can allow 
its reasonable preliminary estimation. 
The primary motivation for such a 
mathematical model arises from both 
its didactic merits as well as its poten-
tial clinical utility deserving of further 
exploration.

Non-enzymatic covalent binding of 
glucose to hemoglobin begins with an 
Amadori molecular rearrangement re-
action through Schiff base aldimine in-
termediates resulting in the formation 
of various glycated hemoglobins (1), of 
which HbA1c is a ketoamine species 
specifically derived from the nearly ir-
reversible glycosylation of the N-ter-
minal valine residue of a beta globin 
chain (2), though some HbA1c mole-
cules are glycated at the N-terminal 
valine residues of two beta chains (3, 
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4). The turnover of HbA1c is dependent on the erythrocyte 
(RBC) lifespan and therefore correlates with the glucose ex-
posure of the blood over a period of the last 90-120 days (5). 
Due to attainment of a dynamic equilibrium of the forma-
tion, decomposition and destruction of RBC together with 
their HbA1c molecules as the aged RBC cohort leaves the cir-
culation, the HbA1c is more greatly weighted towards plasma 
glucose concentrations of the past 4 weeks, with only about 
25% of HbA1c contributed by glycemia 60-120 days prior to 
the measurement (6, 7). HbA1c typically ranges between 4.6-
6.4% of the total hemoglobin in non-diabetic people or pa-
tients with diabetes having excellent glycemic control. This 
implies conceptually that HbA1c must be a function of the ar-
ea-under-the-curve (AUC) of the blood glucose-time profile 
as can be proven mathematically.

Presently, many existing HbA1c equations linking it to 
plasma glucose such as various linear regression equations (8, 
9) or curvilinear equation (10) are empirical formulas that do 
not provide mechanistic insight into the HbA1c-glucose rela-
tionship. A mathematical model based on first principles by 
solving the associated linear ordinary differential equation 
however reduces the computational algorithm of HbA1c to 
a calculation of the AUC of a glucose-time profile which can 
hypothetically be inferred from discrete finger-sticks capil-
lary glucoses performed in the course of self-monitoring of 
blood glucose (SMBG) or a glucose-time tracing plotted out 
by a continuous blood glucose monitoring system (CGMS) 
using numerical methods (11).

2. METHODS
The work described below is the theoretical derivation of 

a fundamental model of glycated hemoglobin. The data used 
to evaluate the model are based on normative values of any 
standard laboratory-quoted reference ranges of blood glucose 
and the associated HbA1c encountered in human populations 
that can be found in the published literature. Only an anony-
mous case example based on data from a previously published 
paper (16) was used as an illustration of how the model can be 
applied in clinical scenarios. As such, this work is exempted 
from the requirement for ethical approval from the local in-
stitutional review boards.

2.1. Construction of the mathematical model
The following two assumptions are made in the modeling 

process. Firstly, we assume that the majority of ambient glu-
cose predominantly reacts with hemoglobin in the circula-
tion to form HbA1c in an approximate 1:1 stoichiometric 
ratio. This is reasonable if the reaction kinetics and binding 
affinity does not alter with glycosylation status of each beta 
chain terminal valine residue. Thus,

Hb + glu → HbA1c [1]
“Hb” represents hemoglobin and “glu” represents glucose. 

Next, we assume the rate of HbA1c synthesis is directly pro-
portional to the ambient blood glucose concentration. Not-
withstanding the skewed temporal density distribution of 
HbA1c, it is still reasonably valid as an approximation to 
model HbA1c as an evenly weighted function of time purely 
dependent on prevailing glucose concentration and set up a 
first-order differential equation as follows:

 [2]
“k” is a rate constant and square parentheses represent 

plasma concentrations. This equation can then be integrated 
to give the mathematical expression of HbA1c that is ex-
pressed as an ‘areal’ function under the glucose-time curve 
(AUC) between two time points, t1 and t2 (Figure 1). When 
the AUC is then multiplied by the rate constant (k), it becomes 
converted into actual HbA1c in percentage units. Thus:

 [3]
2.2. Estimation of rate constant ‘k’
The value of the rate constant, ‘k’, can be theoretically 

estimated by dividing HbA1c by an idealized rectangular 
AUC formed by a constant blood sugar over 120 days using 
one of the better-established regression equations (Table 1). 
Such equations are based on the observation that any level 
of HbA1c reflects the intensity of exposure of hemoglobin to 
a level of mean blood glucose (MBG) over a period of time. 
Validated formula exist, such as MBG (mmol/L) = {[HbA1c 
x 35.6] – 77.3}/18, based on the linear regression equation 
from over 26,000 data points in the epic DCCT study (9), and 
MBG (mmol/L) = {[HbA1c x 36] – 100}/18, from the clas-
sical UKPDS trial (12). Nathan’s formula, MBG (mmol/L) = 
{[HbA1c x 33.3] – 86}/18, is yet another example of a regres-
sion equation linking HbA1c to MBG (13). Probably the most 
famous study among these which links MBG with HbA1c 
with a very high degree of goodness-of-fit is the ADAG study 
(14). As these linear regression equations are for all intents and 
purposes nearly identical, any of these may be used to gen-
erate a corresponding MBG for each level of HbA1c (Table 
1). For the sake of illustration, the formula from the ADAG 
study that is widely recognized as the best study of the re-
lationship between HbA1c and MBG to date is chosen here. 
Hence, by transposing the two variables,

MBG 
(mmol/L)

AUC = MBG (mmol/L) x 
120 days

HbA1c
(%)

k
(% per mmol/
L-day)

4 480 4.1 0.0086

5 600 4.8 0.0080

6 720 5.4 0.0075

7 840 6.0 0.0072

8 960 6.7 0.0069

9 1080 7.3 0.0067

10 1200 7.9 0.0066

11 1320 8.5 0.0064

12 1440 9.2 0.0064

13 1560 9.8 0.0063

14 1680 10.4 0.0062

15 1800 11.1 0.0061

Table 1. Rate constant (k) as estimated from the use of an idealized 
situation of a fixed, constant blood glucose concentration maintained 
throughout a span of 4 months (120 days), thereby implying that 
the mean blood glucose is identically equal to the blood glucose 
level at any point in time. Simulated HbA1c across the entire range 
encountered in clinical practice is then calculated according to the 
formula from the ADAG study for a corresponding range of values of 
MBG (4-15 mmol/L), following which the value of ‘k’ is computed by 
dividing the predicted HbA1c to the AUC (ie. AUC = MBG x 120; k = 
HbA1c / AUC). This gives an average ‘k’ of ~ 0.007 % per mmol/L-day 
over the range of MBG and HbA1c commonly encountered in clinical 
practice.
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HbA1c (by ADAG study formula) = (MBG + 2.59) /1.59 
[4]

The value of the rate constant is thereby estimated to be 
approximately equal to 0.007 % per mmol/L-day (Table 1). 
Notably, MBG as computed from patients’ SMBG records 
may vary slightly from the MBG estimated from HbA1c 
derived from a population regression equation (otherwise 
termed estimated average glucose (eAG) or A1c-derived av-
erage glucose (ADAG)). This meant that the value of ‘k’ elu-
cidated from actual patients’ MBG may differ slightly from 
the theoretical value of 0.007 (15). But deriving a highly pre-
cise ‘k’ is beyond the scope of this discussion which only aims 
to impress upon readers the feasibility and pragmatic appli-
cations of calculated HbA1c based on an AUC methodology 
emerging from a simple mathematical model.

3. RESULTS
3.1. Differences in glycemia status despite similar HbA1c 
values

A special note is made of the situation in which the HbA1c 
can be identical despite major differences in the blood glucose 
variability. Using graphical representations of AUC, it can 
be clearly seen that identical HbA1c values between different 
patients can occur despite extensive differences in their glu-
cose-time profiles (Figure 2). This AUC model makes it much 
easier for students to visualize how different glucose-time 
curves can lead to numerically equal HbA1c. However, those 
with profound degrees of glucose variability are more likely 
to be at risk of complications including serious hypoglycemic 
hazards as opposed to others with more stable glucose levels.

3.2. Application of the mathematical model of HbA1c to hy-
poglycemia risk analysis

An analysis using this AUC approach can show how the 
potential risks of hypoglycemia can be appreciated by sim-
ulation of anti-diabetic therapy leading to a sharp decline 
in HbA1c. For instance, a drop in HbA1c from 18% to 10% 
as opposed to a gentle decline from 12% to 10% within 4 
months carries significantly different clinical consequences 
even though both cases share a common final HbA1c of 
10% which correlates to MBG in the hyperglycemic range 
between 15-18 mmol/L. Most physiology and medical stu-
dents may find it counterintuitive how chronic hypergly-
cemia associated with a MBG > 10 mmol/L can have periods 
of profound hypoglycemia (i.e. BG < 4 mmol/L) interspersed 
within. The use of this mathematical model permits an anal-
ysis using simple geometry to illustrate exactly how this phe-
nomenon can occur in a manner that is easy to comprehend as 
described (Figure 3).

For didactic purposes, the examples are deliberately sim-
plified by ignoring uneven weighted distribution of ‘glucose 
contribution’ to HbA1c. The shape of the blood-glucose pro-
file is simplified into a series of contiguous trapeziums to fa-
cilitate computations of AUCs via simple geometry. The like-
lihood of hypoglycemia may then be analyzed easily using 
this technique as we vary the magnitude of DHbA1c from a 
predetermined initial level (Figure 3). This allows both the 
novice and the experienced clinician to quickly understand 
the perils of aggressive glycemic control over a short time 
frame even though the subsequent HbA1c could still remain 
high above the desired therapeutic goal.

In the example shown in Fig. 3, a drop of HbA1c from 
18.5% to 14.7% over an interval of 2 months can result in 
a temporary MBG of 4 mmol/L as the final HbA1c is ap-
proached. The probability of hypoglycemia is high as daily 
glucose variability up to a standard deviation of +/- 2 mmol/L 
can result in a blood glucose range of 2-6 mmol/L. Hence, 
this analysis predicts that hypoglycemia (ie. plasma glucose < 
4 mmol/L) can occur when HbA1c falls precipitously at a rate 
exceeding 3-4% per month.

To reinforce this concept, an example from a previously 
published case report of a 20-year old type 1 diabetic female 
with poorly controlled diabetes is highlighted (16). Her initial 
HbA1c was 13.4%. She deliberately self-escalated her own in-
sulin doses in an attempt to bring her diabetes to better con-
trol upon confirmation of pregnancy. She then developed a 
first trimester miscarriage and needed hospitalization. Her 
HbA1c on admission was 8.2%, which was consistent with 
prevailing poor glycemic control. Despite her elevated MBG 
of 10-12 mmol/L as determined from her SMBG records, this 
was interspersed with frequent profound hypoglycemic epi-
sodes evidenced by finger-stick capillary glucoses as low as 
2-4 mmol/L, values which she had never attained for many 
years prior to her pregnancy. Hence, hypoglycemia can co-
exist with poor glycemic control given that her HbA1c de-
clined sharply by 5.2% (ie. DHbA1c = 13.4%–8.2%) within a 
space of barely 2 months. This paradox can be understood in 
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Hb + glu   HbA1c 
 
 

d (HbA1c)   =  k (glu)                                    (1)      
               dt 
 
 
 HbA1c  =  k          (glu)  dt                                        (2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1   Modeling HbA1c Formation 
The synthesis of HbA1c is represented by the abbreviated reaction between hemoglobin 
(Hb) and glucose (glu) as shown. Using calculus notation to define the rate of formation 
of HbA1c, equation (1) states that this is proportional to the blood glucose concentration 
at any given time, with k as the constant of proportionality. Upon integration, this yields 
equation (2), which is the mathematical expression of the area under the curve (AUC) 
between time points, t1 and t2, of the glucose-time curve as shown in the graph.    
 

 t1 

  t2 

Blood 
Glucose 

(glu) 

Time (t) 
t1 t2 

HbA1c  AUC 

Hb + glu → HbA1c   [1]

   [2]

 [3]

Figure 1. Modeling HbA1c formation. The synthesis of HbA1c is 
represented by the abbreviated reaction between hemoglobin (Hb) 
and glucose (glu) as shown. Using calculus notation to define the rate 
of formation of HbA1c, equation (1) states that this is proportional 
to the blood glucose concentration at any given time, with k as the 
constant of proportionality. Upon integration, this yields equation 
(2), which is the mathematical expression of the area under the curve 
(AUC) between time points, t1 and t2, of the glucose-time curve as 
shown in the graph.
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the context of this mathematical model.
The strength of this simple model of HbA1c lies in its appli-

cability in such analyses. Indeed, a computer program based 
on this model can potentially be developed to analyze hypo-
glycemia risk for any level of HbA1c to be achieved within 
a given time frame for any patient prior to treatment imple-
mentation. This can then guide clinicians on the most appro-
priate rate of achieving patient-specific glycemic targets in 
diabetes management.

3.3. Computed or predicted HbA1c
Working backwards, it can be appreciated that HbA1c may 

thus be computed via AUC calculations as an estimate of the 
actual HbA1c determined by the laboratory. This can be seen 
as a possible step in developing relevant computer software 
that programs point-of-care-testing (POCT) glucometers 
in future to make tentative ‘predicted’ HbA1c computations 
when a minimum threshold number of SMBG measurements 
are taken so as to allow AUC to be calculated with sufficient 
accuracy for comparison to actual HbA1c measured by con-
ventional laboratory techniques. The software itself can in-
clude educational modules and graphical illustrations that 
can readily allow both physiology students, doctors and pa-
tients to rapidly appreciate the concept of HbA1c and how it 
is closely linked to preceding blood glucose levels.

4. DISCUSSION
The primary purpose of this AUC model is three-fold. 

First, it serves as a complementary measure of HbA1c inde-
pendent of laboratory or point-of-care test (POCT)-based 

HbA1c in clinical practice. This aids glycemia assessment and 
trouble-shooting in the face of discrepancies between SMBG 
records and standard HbA1c values. Secondly, it serves as a 
pedagogic tool to analyze glycemia scenarios and provide 
the rationale as to why patients should be routinely evalu-
ated for hypoglycemia whenever sharp declines of HbA1c 
are encountered irrespective of HbA1c. Thirdly, it opens the 
possibility for HbA1c to be calculated based on the SMBG 
data and judiciously used as predictive ‘virtual’ HbA1c that 
provides patients an earlier feedback of their diabetes control 
even before their scheduled doctors’ follow-up visits. ‘Vir-
tual’ HbA1c may in turn motivate patients to alter their life-
style behaviors such that their measured HbA1c may subse-
quently be closer to their targets. This is likely achievable as 
modern glucometers are increasingly interfaced with com-
puters for more precise and effective overall comprehensive 
diabetes management (17).

Continuous glucose monitoring system (CGMS) can also 
accurately provide the AUC of the glucose profile and has 
been shown to correlate with HbA1c very well (18,19). In-
sulin pumps are presently being wirelessly linked to CGMS 
as a self-regulating artificial pancreas (20,21). With this ver-
sion of the insulin pump-cum-CGMS, it can be envisaged 
that a relatively complete history of blood glucoses will be 
available for very precise AUC calculations, which in turn 
can be converted to HbA1c values using this mathematical 
model.

A useful aspect of the model’s predicted ‘virtual’ HbA1c is 
that such results, though not robust enough to substitute for 
actual HbA1c measurements, can be useful as a self-checking 

 24 

   
 
 
 
  
   
 

 
  
 
 
 
 
 
 
 
      
 
       
     
 
 
     
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2   Different glycemic profiles despite equal HbA1c levels. 
The above 2 examples illustrate the scenario of markedly different glycemic profile 
between 2 patients with similar HbA1c. Even though their HbA1c are equal, the upper 
graph shows a patient with stable capillary glucoses between 6-10 mmol/L, whereas the 
lower graph shows a patient with erratic capillary glucoses ranging from hypoglycemic 
values below 2 mmol/L to frankly hyperglycemic values above 14 mmol/L. 
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Figure 2. Different glycemic profiles despite equal HbA1c levels. 
The above 2 examples illustrate the scenario of markedly different 
glycemic profile between 2 patients with similar HbA1c. Even 
though their HbA1c are equal, the upper graph shows a patient with 
stable capillary glucoses between 6-10 mmol/L, whereas the lower 
graph shows a patient with erratic capillary glucoses ranging from 
hypoglycemic values below 2 mmol/L to frankly hyperglycemic values 
above 14 mmol/L.
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Let [HbA1c]1, [HbA1c]2, [HbA1c]3 and [HbA1c]4 represent the HbA1c measured at 4, 6, 
8 and 10 months respectively. Assuming the initial plasma glucose concentration at time 
0 is 22 mmol/L (ie. point ‘a’). Note that the average glucose concentration plunges down 
from 22 mmol/L at point ‘c’ to 4 mmol/L at point ‘d’, as HbA1c declines by 3.8% within 
2 months (between 4th to 6th months).  
 
Calculations: 
 
[HbA1c]1  area bounded by ‘04ca’ =  22 x 4 = 88 mths-mmol/L = 2640 days-mmol/L 
 
Taking the value of the proportionality constant, k ~ 0.007, then the approximate 
[HbA1c]1 = 0.007 x 2640 = 18.5%, when measured at the 4th month. 
 
[HbA1c]2  sum of areas bounded by ‘2bc4’ + ‘4cd6’ = (22x2) + 0.5(4+22)2 = 70 mths-
mmol/L = 2100 days-mmol/L. [HbA1c]2 = 0.007 x 2100 = 14.7% at the 6th month. 
 
Similarly, [HbA1c]3  area of ‘4cd6’ + ‘6de8’ = 34 mths-mmol/L = 1020 days-mmol/L. 
Therefore [HbA1c]3 = 0.007 x 1020 = 7.1%, when measured at the 8th month. 
 
[HbA1c]4  area bounded by ‘6df10’ = 16 mths-mmol/L = 480 days-mmol/L. 
Thus, [HbA1c]4 = 0.007 x 480 = 3.4 %, when measured at the 10th month.       
 
Figure 3   Didactic theoretical example of computed HbA1c for analysis of 
hypoglycemic risk during intensive glycemic control.     
Given that the normal erythrocyte lifespan is 120 days (ie. ~ 4 months), the HbA1c 
measured at any time-point ideally represents the glycosylated hemoglobin dating back to 
the past 4 months. Thus, if 2 consecutive measurements of HbA1c were made over a 
period shorter than 4 months in between, the respective AUCs will “overlap” as shown in 
the example above. For the sake of illustration of the concept, the fluctuations of the 
glucose-time curve (A) are approximated by trapezoids with constant width of 2 months 
as shown by B. The above mathematical analysis leads to the conclusion that a rapid 
decline of HbA1c by about 3-4% in 2 months or less is associated with a high risk of 
inducing hypoglycemia, even if the final HbA1c value well exceeds 8%. 

b    c 

d    e    f 

[glucose] 
(mmol/L) 

[glucose] 
(mmol/L) 
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0    2    4    6    8   10 
t (mths) 
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Figure 3   Didactic theoretical example of computed HbA1c for analysis 
of hypoglycemic risk during intensive glycemic control.    
Given that the normal erythrocyte lifespan is 120 days (ie. ~ 4 
months), the HbA1c measured at any time-point ideally represents 
the glycosylated hemoglobin dating back to the past 4 months. 
Thus, if 2 consecutive measurements of HbA1c were made over a 
period shorter than 4 months in between, the respective AUCs will 
“overlap” as shown in the example above. For the sake of illustration 
of the concept, the fluctuations of the glucose-time curve (A) are 
approximated by trapezoids with constant width of 2 months as shown 
by B. The above mathematical analysis leads to the conclusion that a 
rapid decline of HbA1c by about 3-4% in 2 months or less is associated 
with a high risk of inducing hypoglycemia, even if the final HbA1c value 
well exceeds 8%.
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system for internal consistencies and laboratory errors, par-
ticularly when the laboratory-measured HbA1c appear to be 
discrepantly incongruent with SMBG records. To maximize 
accuracy of AUC calculations, the AUC algorithm might be 
programmed within glucometers to trigger HbA1c compu-
tations only if a threshold minimum number of finger-stick 
glucose measurements within a specified timeframe is avail-
able (22). This obligatory requirement may motivate diabetic 
patients to do SMBG more frequently to be able to generate 
a predicted virtual HbA1c as a “reward”, a behavioral change 
that is desirable especially for type 1 diabetes patients and in-
sulin-treated type 2 diabetes patients. In the future, it may 
be possible to compute more reliable HbA1c using a more so-
phisticated mathematical model that takes into account the 
differential glycosylation of the hemoglobin terminal beta 
chain valines and unequal weighting of contribution of blood 
glucose to HbA1c over the past 3-4 months, together with 
advanced numerical algorithms that calculate AUC with ex-
treme precision. Such a model of HbA1c may find useful ap-
plications in the setting of advanced handheld glucometers, 
CGMS monitors and even smartphone apps programmed 
to calculate HbA1c from SMBG and CGMS data. This re-
mains true even if HbA1c assays can be miniaturized to fit 
into POCT glucometers in future because computed virtual 
HbA1c can always be compared against a reliable assay for 
consistency evaluation.

Lastly, computed HbA1c can also serve as an independent 
glycemic assessment in diabetic patients with abnormal he-
moglobinopathies or thalassemias that invalidate certain 
HbA1c assay methodologies (23) and where alternative sur-
rogate measurements of intermediate-term glycemic control, 
such as serum fructosamine (24) are unavailable.

Limitations
This mathematical model does not take into account of 

variations in HbA1c due to factors apart from blood glucose. 
For instance, it has been found in recent years that HbA1c 
may differ between people of different ethnicity despite the 
same degree of glycemic exposure due to biological vari-
ation though this is still debatable (25-27). This phenom-
enon may be related to factors yet unknown and unrelated 
to certain hemoglobinopathies or thalassemias that are more 
commonly found in certain races which are known to con-
found the laboratory measurement of HbA1c (23). However, 
when measured HbA1c is discordant with SMBG results due 
to abnormal hemoglobins, it is expected that the mathemat-
ical model should perform better if sufficient SMBG results 
are available for computation of HbA1c. Similarly, glucom-
eters utilizing glucose dehydrogenase-pyrroloquinoline qui-
none (GDH-PQ Q) methodology instead of glucose oxidase 
can produce falsely elevated readings as icodextrin can cross-
react with the detection system in renal failure patients on 
icodextrin-containing peritoneal dialysis fluids (28,29). Such 
erroneous SMBG results will obviously invalidate any esti-
mation of HbA1c using the mathematical model.

5. CONCLUSIONS
Mathematical modeling of HbA1c deserves further consid-

erations, given its educational potential and possible applica-
tions to complement existing superior HbA1c assays. Sophis-
ticated numerical techniques could eventually allow highly 

precise and efficient calculations of AUC to make computed 
HbA1c an invaluable addition to the armamentarium of rou-
tine diabetes management in the foreseeable future.
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