
RESEARCH ARTICLE COMPUTER SCIENCES

Large-scale distributed linear algebra with tensor
processing units
Adam G. M. Lewisa,b,1 , Jackson Bealla,b, Martin Ganahla,b, Markus Haurub , Shrestha Basu Mallickb, and Guifre Vidalb,c

Edited by David Weitz, Harvard University, Cambridge, MA; received December 16, 2021; accepted June 29, 2022

We have repurposed Google tensor processing units (TPUs), application-specific chips
developed for machine learning, into large-scale dense linear algebra supercomputers.
The TPUs’ fast intercore interconnects (ICIs), physically two-dimensional network
topology, and high-bandwidth memory (HBM) permit distributed matrix multiplica-
tion algorithms to rapidly become computationally bound. In this regime, the matrix-
multiply units (MXUs) dominate the runtime, yielding impressive scaling, performance,
and raw size: Operating in float32 precision, a full 2,048-core pod of third-generation
TPUs can multiply two matrices with linear size N = 220 = 1,048,576 in about
2 min. Via curated algorithms emphasizing large, single-core matrix multiplications,
other tasks in dense linear algebra can similarly scale. As examples, we present
1) QR decomposition; 2) resolution of linear systems; and 3) the computation of matrix
functions by polynomial iteration, demonstrated by the matrix polar factorization.

TPUs | scientific computation | linear algebra | distributed computing | ASICs

Neural network inference and training requires low-precision multiplication of large
matrices. To service this need, Google has reincarnated the systolic array as the tensor
processing unit (TPU). As is typical of application-specific integrated circuits (ASICs),
compared to CPUs at fixed wattage, TPUs sacrifice flexibility for speed: They, essentially,
only multiply matrices, but are very good at doing so. We have measured distributed,
single-precision (floating point 32 or fp32) matrix multiplication performance of around
21 peta floating-point operations per second (FLOPS)—competitive with an academic
cluster allocation, while much more accessible and carbon friendly—on a third-generation
TPU “pod” of 2,048 cores. But a means to harness such performance for scientific
simulation is presently lacking. We are aware of two approaches to such a harness, which
we view as complementary. The first (1–4) accelerates some CPU-based computation with
some kind of TPU-based machine learning algorithm, for example, by using a neural
network to precondition generalized minimal residual method (GMRES). The second, to
which this paper contributes, curates traditional scientific algorithms to run efficiently on
TPUs directly. Previous work by others in this vein has concerned discrete (5) and fast (6)
distributed Fourier transforms, Monte Carlo simulation (7), and image processing (8).
Our group’s sister papers address quantum circuit simulation (9), many-body quantum
physics (11, 12), electronic structure computation via density functional theory (DFT)
(12), and coupled cluster (CC) methods (13), and tensor network algorithms such as the
density matrix renormalization group (DMRG) (14).

This paper concerns the more foundational tasks of distributed dense linear algebra.
While a single TPU core can already store and operate on large matrices (e.g., of size
16,384, 32,768 in single precision), the main advantage of TPUs is their ability to
scale to full pods, which can handle much larger matrices (e.g., 1,048,576, 1,048,576,
or 2,048× larger size).* Accordingly, our focus is on understanding how to perform
distributed, multicore versions of linear algebra operations whose single-core version is
already provided by the JAX library. Specifically, in this paper, we demonstrate four
distributed dense linear algebra tasks at scale (see Fig. 1 for benchmarks):

1) distributed matrix multiplication, using the scalable universal matrix multiplication
algorithm (SUMMA) (15) algorithm to translate from the TPUs’ efficient single-
core matrix multiplication to comparably-efficient, distributed matrix multiplication
without data replication;

2) distributed QR decomposition, using an adapted communication-avoiding QR
(CAQR) algorithm (16) emphasizing matrix multiplication;

*We consider TPU network topologies with a 2:1 aspect ratio, so that local blocks of square matrices have a corresponding
1:2 aspect ratio.
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Fig. 1. Wall clock time t in seconds vs. linear size N of square input for (Top Left) matrix multiplication, (Top Right) QR decomposition, (Bottom Left) linear
solution, and (Bottom Right) polar decomposition. The notation, e.g., v3-8, refers to a third-generation (v3) TPU network of eight cores (v3-8). The v3-2048 results
are a linear extrapolation (extr.) from v3-512, necessitated by temporary resource constraints. As concrete examples, on a full TPUv3 pod (2,048 cores), working
with dense (N, N) matrices of linear size N = 220 = 1,048,576, a matrix multiplication takes about 2 min, whereas both a QR decomposition and solving a linear
system take about 20 min; similarly, the polar decomposition takes about 20 min for linear size N = 219 = 524,288. These and all experiments were conducted
on TPU v3s accessed via Google Cloud. We used Python version 3.7, and JAX version 0.2.13 with Jaxlib version 0.1.67. None of our timings profile host–device
communications.

3) solution of linear systems, implemented as a distributed QR
decomposition followed by a distributed triangular solve; and

4) distributed computation of matrix functions—as a specific
example, we show the polar decomposition, expressing a
given matrix as the product of one unitary and one positive-
semidefinite factor.

In sister papers, we use some of these tasks to accelerate and
scale up a number of applications. For instance, a variant of
SUMMA is used for CC computations (13); the distributed QR
decomposition is used for DMRG (14); and distributed matrix
functions similar to a polar decomposition, as well as the inverse
square root, are used for the purification step of DFT (12).

Two remarks are in order. The results of this paper refer
exclusively to single precision. However, TPUs can also perform
linear algebra in (emulated) double precision, as needed, for ex-
ample, in some quantum chemistry applications (12). For matrix
multiplications, this incurs a roughly 11× increase in computa-
tional cost. Moreover, we also note that, while the benchmark
results presented here were obtained with third-generation TPUs
(denoted TPUv3), fourth generation TPUs (denoted TPUv4) are
already available. A TPUv4 pod (8,192 cores) can handle matrices
with linear size 2× larger than a TPUv3 pod.

The remainder of the paper is structured as follows. Section 1
briefly explicates the TPU architecture. Section 2 explains our

approach to the four tasks listed above and presents benchmarks.
Section 3 gives a closing discussion.

1. TPUs

Each TPUv3 chip has two cores, each equipped with two “matrix
multiply units” (MXUs)—systolic arrays capable of multiplying
two (128, 128) matrices in 128 cycles. The chips are connected to
one another via relatively fast interconnects, in a two-dimensional
(2D) toroidal network ranging from 4 chips (8 cores) to 1,024
chips (2,048 cores) total, with each group of 4 chips (8 cores)
controlled by a separate host CPU. See ref. 17 for many more
details on the TPU architecture.

TPUs natively perform bf16-precision matrix multiplication
with fp32 accumulation. That is, the TPU stores and sums data as
fp32, but each individual matrix multiplication of a floating-point
number is done in a specialized low-precision format called “brain
float 16” or bf16, comparable to fp16 but with slightly more
range and slightly less precision. The TPU can still operate in fp32
precision, however, via an internal mixed-precision algorithm
which incurs a roughly 6× penalty in compute time.

One generally programs for the TPU using XLA (Accelerated
Linear Algebra) (18), an optimized graph compiler proprietary
to Google. XLA translates from roughly C-like commands called
High Level Operations (HLOs) to roughly assembly-like equiva-
lents called Low Level Operations (LLOs). The HLOs themselves
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may be written directly, but are usually instead “traced” from any
of several higher-level languages. We used JAX (19), a NumPy-like
interface to XLA.

The TPU architecture and its access via XLA introduces several
constraints:

• Since XLA requires prior knowledge of memory boundaries,
there is limited support for dynamical array shapes. All shapes
must be computable from “static” data available at compile
time, with changes to static data incurring an expensive re-
compilation. This can complicate algorithms involving, for
example, a shrinking block size.

• TPUs are optimized to perform large matrix multiplications.
Thus, a relatively straightforward path to their efficient use is to
find algorithms which also involve large matrix multiplications.

• TPUs store data in physically 2D memory, with each “row” able
to store an 8 by 128 matrix panel. Matrices whose dimensions
are not divisible by 8 or 128, respectively, are, in effect, zero-
padded up to the next-largest sizes which are.

The subsequent discussion showcases a selection of distributed
dense linear algebra algorithms that function well despite these
constraints. We have chosen these specific algorithms because of
their widespread use in scientific computing and/or their pivotal
role in several applications in refs. 10–14 that were mentioned in
the Introduction.

2. Distributed Linear Algebra Benchmarks

We target three “core” tasks representing essential computations
of, for example, LAPACK:

• matrix multiplication: computation of C in AB=C given
matrices A and B;

• QR factorization: computation of Q with orthonormal
columns and upper-triangular R in A=QR given A; and

• linear solution: computation of x in Ax= b given A and b.

We also illustrate another task, for which TPUs turn out to be
especially suitable:

• matrix functions: computation of f (A), given a matrix A and
a function f (x ), where f (A) is a matrix obtained from A by
transforming by f (depending on context) either its singular
values or its eigenvalues.

We will illustrate matrix functions explicitly with the polar
factorization, which can be construed as the case where f is the
signum function acting on singular values, and thus mapping
positive singular values to +1, and with matrix inversion.

A. Distributed Matrix Multiplication. The first step is to build
large-scale matrix multiplication from fast local matrix multi-
plication and fast interchip communications over a 2D toroidal
topology. This can be achieved using any of a variety of distributed
matrix multiplication algorithms. We use SUMMA (15), whose
memory footprint is tunable, and which straightforwardly handles
transposed matrix multiplication.

SUMMA requires matrices be distributed across processors
as 2D blocks. A group of p TPU cores is first divided into a
(pr , pc) processor grid. An (M ,N ) matrix is then divided into
(m =M /pr ,n = N /pc) blocks, and each block assigned to
exactly one processor. The assignment must be “adapted” to the
matrix, meaning:

• traversing through pr or m with n and pc fixed, also traverses
through M with N fixed (row adapted), and

• traversing through pc or n with m and pr fixed, also traverses
along N with M fixed (column adapted).

Though SUMMA does not require it, for simplicity, we
furthermore adopt the checkerboard distribution illustrated in
Fig. 2:

• m and pr are contiguous in M , and
• n and pc are contiguous in N .

We zero-pad as required when pr does not evenly divide M ,
or pc does not evenly divide N . Heuristically, the checkerboard
distribution assigns matrix blocks to processors by overlaying the
TPU grid (“checkerboard”) atop the mathematical matrix.

Distributed linear algebra packages more commonly adopt a
block cyclic distribution, in which adjacent matrix blocks are
assigned cyclically to adjacent processors, rather than contiguously
in local memory as in the checkerboard distribution. This allows
slices of the distributed matrix to be taken without affecting load
balance. Sections 2B and 2C will demonstrate algorithms which,
indeed, suffer from the poor load balance of the checkerboard
distribution. However, we will also show (see Fig. 4) that each
TPU core must be fed a matrix of about 25% of the maximum
available linear size to begin saturating the serial throughput of the
MXUs. In practice, this need for very large block sizes makes the
block cyclic distribution impractical.

Now let us discuss the SUMMA algorithm. We will rehearse
the untransposed case, and thus seek

Cij =

K∑
k

AikBkj [1]

for an (M ,N ) matrix C, and (M ,K ) matrix A, and a (K ,N )
matrix B. It is convenient to also write the above equation as

C=AB. [2]

SUMMA works by dividing the K values of index k into Nb

“panels” of kb entries each. We will use Greek letters to enumerate

A00 A10

A01 A11

A02 A12

A03 A13

A00 A10

A01

A02

A03

A11

A12

A13

A

Fig. 2. The matrix A is “checkerboard” distributed onto a (4, 2) “v3-8” TPU
grid, by partition into a corresponding (4, 2) grid of contiguous matrix blocks
(red rectangles). The TPU cores are depicted as light blue squares, each
separate chip is depicted as a pair of two adjacent such squares, and the 2D
toroidal network connectivity between chips is depicted as black lines.

PNAS 2022 Vol. 119 No. 33 e2122762119 https://doi.org/10.1073/pnas.2122762119 3 of 10

https://doi.org/10.1073/pnas.2122762119


such panels, for example, κ. Let us define corresponding matrix
panels A(κ) and B(κ) by

A(κ) ≡ A0:M−1 k ′:k ′′ , B(κ) ≡ Bk ′:k ′′ 0:N−1, [3]

where k ′ = κkb and k ′′ = (κ+ 1)kb − 1. Expressed in this no-
tation, Eq. 1 becomes

C=

Nb∑
κ

A(κ)B(κ). [4]

Notice that each term in the summand of Eq. 4 is a matrix
product,C(κ) =A(κ)B(κ). SUMMA works by parallelizing each
individual such matrix product.

Given that A and B are already checkerboard distributed, the
block column panel A(κ) must therefore be broadcast to all other
processor columns within processor rows, and the block row panel
B(κ) must be broadcast to all other processor rows within proces-
sor columns. Performing these broadcasts simultaneously exploits
all four channels of each TPU chip in a pipelined fashion, with a
maximum broadcasted distance of max(pr , pc)//2 (whether and
how to pipeline, in practice, is decided automatically by the XLA
compiler). The resulting matrix C inherits the same checkerboard
distribution as the inputs, as illustrated in Fig. 3.

By choosing kb to be small relative to m and n but large
enough to yield good single-core throughput (larger than about
512, in practice), this algorithm makes near-optimal use of TPU
resources, while consuming negligible memory apart from that
needed to store A, B, and C. This is evinced in Fig. 1, Top
Left, which shows the wall clock time required to multiply
square fp32 matrices of size N distributed across various TPU v3
configurations.

A B C

Fig. 3. Matrix distributions before and after SUMMA matrix multiplication,
AB = C. (Left) The matrix factors A (red) and B (orange) are checkerboard
distributed onto a v3-8 TPU grid. During multiplication, A will be communi-
cated across processor columns (along the red-colored interconnects), and
B will be communicated across processor rows (along the orange-colored
interconnects). (Right) Distribution of the result matrix C.

Fig. 4. Weak scaling data for distributed TPU matrix multiplication. Each
curve holds local matrix sizes, fixed by the number of rows m per core,
constant. The x axis shows the number of TPU cores p. (Top) The TFLOPS
Eq. 5 per core. (Bottom) What percentage of the corresponding p = 1 value
is attained by each point on the top three curves.

The maximum value of N is determined, by the necessity, to
fit A, B, and C in memory, demonstrating SUMMA’s negligible
need for additional memory. For instance, on a full TPU pod
(2,048 cores), we can fit two (N ,N ) matrices of linear size N =
220 = 1,048,576, which can then be multiplied in about 2 min.
For large enough N , the straight lines on the log–log plot indicate
runtime is dominated by O(N 3) operations.

The excellent scaling with increasing number of TPU cores
p can be seen by, in turn, consulting the two graphs in Fig. 4;
p here is the x axis, while each line holds the number of matrix
rows per core m = N /

√
2p fixed. Notice that the undistributed

p = 1 case, which does not invoke SUMMA, is also included.
Fig. 4 invokes the throughput speed of the operations in tera

FLOPS (TFLOPS),

TFLOPS≡ 2N 3

t · 1012 , [5]

where t is the measured wall clock time in seconds. Very heuristi-
cally, Eq. 5 measures the number of multiplications and additions
implicitly performed by the TPUs per second. Fig. 4, Top plots
the TFLOPS per core (TFLOPS/p) against p. We see that the
p = 1 performance only begins to saturate (to a bit more than 10
TFLOPS) around m = 4,096, which is an appreciable fraction of
the memory available per core. As alluded to earlier, this motivates
our choice of a checkerboard rather than a block-cyclic distribu-
tion, since the latter would necessitate smaller local blocks and
thus significantly degrade performance in all but the largest cases.

Optimal scaling would be indicated by flat horizontal lines.
For large m , we quite nearly reach this optimum, as depicted
quantitatively in Fig. 4, Bottom, which shows the percentage of
the corresponding p = 1 value attained by each point of the
top three curves. For m = 16,384, this is quite nearly 95%.
The nonmonotonicity of the bottom two curves is presumably
a consequence of the operation not being fully computationally
bound here.

In this study, we are primarily concerned with the large N
regime. Scaling is less favorable for small N , both within and
between TPU configurations. Two problems occur when N is
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small: The block outer products in Eq. 4 become too small to
obtain good serial throughput from the TPU cores, and the
constant overhead cost to initiate a communication becomes
important relative to the cost of communication itself. Smaller N
performance could be improved, if needed, by exploiting the extra
available memory. By copying A, B, and C between some or all
processors rather than distributing among them, the individual
summands in Eq. 4 can be evaluated in parallel; this strategy is
sometimes known as a “2.5D algorithm.” Similar considerations
could be applied to the QR and matrix function algorithms.

As visible from the bottom two (m = 1,024, blue; and m =
2,048, yellow) curves in Fig. 4, Top, performance also becomes
less predictable and more implementation dependent in the small
N regime, since the MXU is not fully utilized in this case. For
example, with m = 1,024, p = 1 actually performs much worse
than p = 8, since the local matrices involved are twice as large in
the latter case, due to the now-rectangular computational grid.
Subsequent values of p begin to perform worse, presumably due
to additional communication costs as more hosts are deployed.
The suddenly improved performance at the largest value of p is
somewhat surprising; we note, however, that the effect disappears
at large N .

B. QR Factorization. The QR factorization rewrites an (M ,N )
matrix A with M ≥N as the product of a “Q factor” with
orthonormal columns and an upper-triangular “R factor,”
A=QR. Two closely related factorizations can be distinguished:
the “full” factorization, with Q (M ,M ) and R (M ,N ); and
the “reduced” factorization, with Q (M ,N ) and R (N ,N ).
Both cases serve as a primitive in many applications, since, for
example, the reduced Q factor orthonormally spans the column
space of A.

JAX via XLA provides an efficient and stable single-core QR
factorization algorithm based on blocked Householder transfor-
mations as described in ref. 20. We focus here on distributing the
computation over TPU grids, using a suitably adjusted version
of the CAQR algorithm of ref. 16. In brief, our approach is as
follows:

1) A panel of b columns of A is selected, labeled Al in Fig. 5.
2) Column factorization: The full QR decomposition of that

panel is implicitly computed, Al =QfRf . Al is replaced
with Rf .

3) Panel update: The remaining columns Ar are replaced by
QH

f Ar .

RArAl

b M - b

A’
l A’

r

R
b M - 2b

Fig. 5. Depiction of the CAQR algorithm (16) used to factor matrices dis-
tributed across 2D processor grids. Each iteration uses TSQR to factor the
column panel Al, first into its reduced Q factor, and then into an implicit WY
representation of its full Q factor. The latter is then applied to the panel Ar,
replacing a new strip of A with data from its R factor. The process is then
repeated with new Al and Ar (labeled A′

l and A′
r, right of the arrow in the

figure) until R has fully replaced A.

A0 R0

R1 R0
A1

A2

A3

R2

R3

R1

R

Group 0

Group 1

Group 0
Result

Fig. 6. Depiction of the TSQR algorithm (16) used to factor “tall skinny” matri-
ces distributed across columns of processors. Each processor first computes
a local QR decomposition of its matrix panel Aj. The resulting R are gathered
between processor pairs and then stacked. The process is iterated until
each processor contains the same R factor, which is that of the full A. Only
the computation of R is illustrated; the local Q factors can be accumulated
by having each processor multiply each “reduced” Q factor obtained by its
successor during each step.

The above basic procedure is known as “right-looking block
QR.” Typically, the column factorization step would be handed by
computing “Householder” representations of individual columns
of Qf one by one, but this involves too many scalar operations on
TPUs.

Instead, we use the so-called “TSQR” algorithm (16), which
computes the reduced QR factorization of a tall and skinny matrix
Al . Tall and skinny means that the matrix can be divided into row
panels of size mr such that mr ≥ N . Since our Al is a slice of b
columns from a checkerboard-distributed A, for our purposes,
this means M //pr ≥ b, where pr is the number of processor
rows.

The TSQR algorithm performs the factorization of Al via the
binary reduction depicted in Fig. 6, with pseudocode given as
Algorithm 1. Each processor in a column computes a local QR
decomposition of Al , yielding a local R factor. The processors are
arranged into groups of two, and the local R factors are gathered
within these groups. Pairs of groups are successively combined,
and the process is repeated until only a single R factor remains,
which is that of Al .

This procedure yields the reduced factors Qr and Rr of Al .
The full Rf factor is straightforwardly obtained by appending
rows of zeros to Rr . We get the full Qf factor implicitly as its
so-called WY representation (20), Qf = I−WYH , where W
and Y are both (M , b).

To compute W and Y, we use a slight modification of the
“Yamamoto” procedure outlined in ref. 21. The Yamamoto pro-
cedure has us form

Qf = I−WTWH [6a]
W =Qr − I [6b]

T−1 = I−Q1, [6c]

where T−1 is (b, b) and Q1 is the first b rows of Qr . T−1 rather
than T is stored, and multiplications by T are handled via linear
solution. This representation is simple to compute, and it saves
memory compared to the WY form, since T is smaller than Y.
Nevertheless, we prefer to form Y explicitly via YH =TWH , so
that only one, trivially parallel, linear solve need be performed—
compared to one per each multiplication by Qf .

Note that Eq. 6 breaks down if T−1 is ill conditioned, which
can occur, for example, ifQ1 is, itself, very near to the identity. The
said difficulty can be alleviated by a slight generalization described
in ref. 21, replacing each I in Eq. 6 with a diagonal matrix of
signs chosen to improve T−1’s conditioning. However, neither
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ref. 21 nor the references it cites specifies how, precisely, to choose
these. Generalizing from heuristics like “flip the sign wherever
T−1 would otherwise have a row or column of zeros” proves
not entirely trivial. Having yet to encounter a practical case of
breakdown, we have not implemented the full generalization.

With W and Y in hand, we can now straightforwardly per-
form the panel update step, yielding the full CAQR algorithm. It
is depicted in Fig. 5 and given as pseudocode in Algorithm 2.

Performance is depicted in Fig. 1, Top Right. For instance, on a
full TPU pod (2,048 cores), we obtain the QR decomposition of
an (N ,N ) matrix of linear size N = 220 = 1,048,576 in about
20 min. Excellent scaling is seen with large N , showing that
the task is dominated by the matrix multiplication update steps.
However, our choice of a checkerboard rather than a block-cyclic
distribution pattern for the matrix A can result in poor load
balancing, since, in effect, we treat an equally sized matrix at each
iteration.

More quantitatively, let us consider the case that Q is not
computed, so that the dominant expense of the algorithm is the
update ofA (line 7 in Algorithm 2). Let M̃ and Ñ be the respective
dimensions of the matrix block being updated. The total cost c of
the updates is then

c =

i=N
b −1∑

i=0

4bM̃ Ñ . [7]

Suppose one could correctly reduce the size of the updated
block during the computation, as would be made possible by a
block-cyclic data distribution. At iteration i , we have M̃ =M −
(i + 1)b and Ñ = N − (i + 1)b, and thus a block-cyclic expense
cbc of

cbc = 2MN 2 − 2

3
N 3. [8]

However, using our checkerboard distribution, processors must
work as if the block does not reduce in size. We then have
M̃ =M , Ñ = N , and thus a checkerboard-distributed expense
cchk of

cchk = 4MN 2. [9]

The ratio of these factors, which is three in the N =M case
(decreasing to 2.4 if Q is also computed), is the unrealized opti-
mization offered by a block-cyclic distribution. The optimization
could be realized fairly straightforwardly—although with some
risk of losing single-core throughput speed due to the smaller
local matrix sizes—but we leave doing so to future studies. Note
also that the penalty is at least partially compensated for by the
improved single-core throughput in the checkerboard-distributed
case, achieved by the larger individual blocks fed to the MXUs.

Algorithm 1 TSQR

Require: (M ,N )matrixA distributed among pr processor rows
such that N >M //pr .

1: group size ← 1.
2: R,Q← qr(A).
3: while group size < pr do
4: Double the group size.
5: Broadcast both unique R factors within each group.
6: Vertically stack the newly broadcast R.
7: Q,R← qr(R).
8: Q←QQl (optional)
9: return Q, R

Algorithm 2 Right-looking CAQR

Require: Checkerboard-distributed (M ,N ) matrix A.
1: Divide A into Nb column panels of size b, b =M //Nb .
2: Q← I.
3: for j ∈ [0,Nb), do
4: Al ← (M − jNb ,Nb) panel of A from AjNb ,jNb

.
5: Ar ← all entries in A right of Al .
6: Qr ,Rr ← TSQR(Al) (reduced Q factor)
7: Replace Al in A with [Rr ,0]

T .
8: Compute W,Y such that (s.t.) Qf = I−WYH (see

text)
9: Replace Ar in A with QH

f Ar .
10: Q←Q:,M−jNb :Qf (optional).
11: return Q, R←A.

C. Linear Solution. By “linear solution,” we mean the determina-
tion of x in

Ax= b, [10]

where A and b are given, with A an (N ,N ) matrix, and x and
b both (N , k). We consider the case of A given as a dense, full-
rank matrix, in which case Eq. 10 is typically solved in O(N 3)
operations via an initial LU decomposition.

Unfortunately, an efficient distributed-TPU LU factorization
is not yet available. Instead, we use the QR factorization (as
described above), which is more stable and only marginally less
efficient. Writing A=QR, we have

Rx= b′, [11]

where b′ ≡QHb. That is, we have mapped the general linear
system in Eq. 10 to the upper triangular one in Eq. 11. In a
scalar implementation, such upper triangular systems are trivially
soluble by repeated substitution. The row containing a single
nonzero element, for example, corresponds to the scalar equation
yN = xN , which is substituted into the row containing two
nonzero elements, and so on.

This scalar algorithm is, however, quite TPU unfriendly. In-
stead, we first note that a reasonably performant single-TPU
upper triangular solver, which uses the TPU vector processor
and blocking to achieve acceptable performance, ships with JAX.
We can leverage this into a naive, but acceptably performant,
distributed triangular solver as depicted in Fig. 7. The coefficient
matrix R is first divided into square blocks such that each is local

R10

R01R00

R11

R20

R12

R22

R02

R21
Solve b2 = R22 x2

Subtract R12 x2

Subtract R02 x2b0

b1

b2

b’0

b’1

x2

Fig. 7. Depiction of our somewhat naive approach to solving upper triangu-
lar systems. We divide the upper triangular matrix R into square blocks such
that each is local to a core, and those on the main block diagonal are them-
selves locally upper triangular. The solution is then found by moving upward
along the main block diagonal from the bottom right—the figure depicts the
first such step. At each step, the relevant panel, in this case, x2, of the solution
x is first found by solving the corresponding local triangular system, in this
case, R22x2 = b2. The result is broadcast upward along its column panel, and
used to update the coefficients b as depicted. The procedure then iterates to
the upper left.
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to a given processor (a processor may, however, contain more than
one block). The submatrices on the block main diagonal are then
themselves upper triangular.

Algorithm 3 Distributed triangular solver.

Require: Checkerboard-distributed (N ,N ) upper-triangular co-
efficient matrix R, (N , ) right-hand side vector b copied
between columns.

1: Divide R into Nb square blocks of linear size N //Nb ,
indexed with Greek letters.

2: Divide b into Nb row panels also of size N //Nb , indexed
with Greek letters.

3: for κ ∈ (Nb , 0], do
4: Solve Rκκ xκ = bκ.
5: Broadcast xκ upward along its processor column.
6: bκ ← xκ

7: for γ ∈ [0,κ), do � Do this in parallel.
8: bγ ← bγ −Aγκxκ.
9: Copy the updated b to the other processor columns.

10: return b

From here, we perform a direct blocked analogy of the scalar
elimination procedure described above, with each column panel of
R treated in serial. First, the triangular system at the bottom of the
panel is solved (e.g.,R22x2 = b2 in Fig. 7). The resultingxi is the
panel of the full solution overlapping its corresponding bi , and, if
desired, bi may be overwritten by it in place. The corresponding
substitution is achieved by broadcasting xi to the blocks above
it, and subtracting Rxi from each b panel above. Pseudocode is
given as Algorithm 3.

After the initial QR factorization, this algorithm is poorly load
balanced. The cores storing zeroes of R are left completely idle;
only the update step runs in parallel; and, during it, only the
cores above the current main block diagonal do work. Much
better load balancing could be achieved by adopting a block-cyclic
data distribution, so that the processor grid was not so tightly
coupled to the matrix block locations. The algorithm is, however,
sufficiently efficient to represent a small expense compared to the
QR step, as can be seen in Fig. 1, Bottom Left. As an example, for
an (N ,N ) matrix A of linear size N = 220 = 1,048,576, we can
solve a linear system on a full TPU pod (2,048 cores), again, in
about 20 min.

D. Matrix Functions. Above, we considered application of TPU
slices toward bread-and-butter tasks in scientific computing. Since
TPUs are natively optimized for matrix multiplication, it is most
natural to consider also tasks based on matrix multiplication,
such as matrix functions (implemented approximately as matrix
polynomials, thus requiring matrix multiplications and addi-
tions). Next, we briefly review two types of matrix functions that
transform, respectively, the singular values and the eigenvalues of
a matrix.

Recall first that every matrix has a singular value decomposition
(SVD),

A=Us ΣVH
s , [12]

with Σ a diagonal matrix of real singular values and Us and
VH

s , the left and right singular vectors, both unitary. Given any
polynomial f (x ) = a1x + a3x

3 + a5x
5 + · · · made only of odd

powers of x , we can define the matrix function f (A) acting on the
singular values of A,

f (A)≡Us f (Σ)V
H
s (singular values), [13]

where f (Σ) is a diagonal matrix where each diagonal entry
contains the result of applying f to the corresponding singular
value inΣ. Notice thatA andA(A†A)n share the same structure
of singular vectors for any integer n = 0, 1, 2, · · · ; that is,

A(A†A)n =Us Σ
2n+1 VH

s . [14]

It then follows that we can compute f (A) by means of the matrix
polynomial expansion

a1A+ a3AAHA+ a5A
(
AHA

)2
+ . . . [15]

=Us

(
a1Σ+ a3Σ

3 + a5Σ
5 + · · ·

)
VH

s [16]

=Us f (Σ)V
H
s = f (A). [17]

Recall now that every diagonalizable square matrix also has an
eigenvalue decomposition,

A=Pe ΩP−1
e , [18]

with Ω as a diagonal matrix of (possibly complex) eigenvalues
and Pe as an invertible matrix whose columns encode the right
eigenvectors of A. Given an arbitrary polynomial g(x ) = a0 +
a1x + a2x

2 + · · · , we can define the matrix function g(A) for a
diagonalizable square matrix A by acting on its eigenvalues,

g(A)≡Pe g(Ω)P
−1
e (eigenvalues), [19]

with g(Ω) as a diagonal matrix where each diagonal entry contains
the result of applying g to the corresponding eigenvalue in Ω.
We emphasize that this definition of matrix function, based on
transforming the eigenvalues while preserving the structure of
eigenvectors, is not equivalent to that in Eq. 13, which trans-
formed the singular values while preserving the singular vectors.
We observe that the matrices An for n = 0, 1, 2, · · · share the
same structure of eigenvectors; that is,

An =Pe Ω
n P−1

e . [20]

It then follows that we can compute g(A) by means of the matrix
polynomial expansion

a0I+ a1A+ a2A
2 + · · · [21]

=Pe

(
a0I+ a1Ω+ a2Ω

2 + · · ·
)
P−1

e [22]

=Peg(Ω)P
−1
e = g(A). [23]

Various matrix functions of interest, such as matrix sign func-
tion and matrix inverse (see below), but also matrix principal
square root, matrix inverse principal square root, matrix expo-
nential, matrix logarithm, etc., can be accurately approximated
by polynomials (or polynomial iterations) of one of the two forms
above, and thus efficiently computed and scaled on TPUs. Here
we illustrate this with the so-called polar decomposition, which is
obtained through applying the sign function to the singular values,
where the sign function is approximated by means of a polynomial
iteration made of small polynomials of the type in Eq. 15.

The polar decomposition of an arbitrary (M ,N ) matrix A
with M ≥N is defined by

A=UH, [24]

where the (M ,N )matrixU hasN orthonormal columns, and the
(N ,N ) matrix H is positive semidefinite. This is a matrix version
of the polar decomposition z = eiφ|z | of a complex number z
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into its complex phase eiφ and its nonnegative norm |z |. In terms
of the SVD Eq. 12, we have

U=UsV
H
s , [25]

that is, that the polar factor U can be obtained by setting all
the singular values of A to one while leaving the singular vectors
untouched.

It is easy to confirm that repeated application of the scalar
polynomial iteration

xi+1 =
1

2
xi(3− x 2

i ) [26]

sends any initial x0 ∈ (0,
√
3)→+1, while sending x0 = 0 to

zero. In other words, this polynomial iteration converges to the
sign function when applied on the interval [0,

√
3). The corre-

sponding matrix polynomial, the Newton–Schulz iteration,

Xi+1 =
1

2
Xi(3I−XH

i Xi), [27]

starting with X0 ≡A, thus has the same effect upon the singular
values of A, and therefore has the unitary polar factor of U in
Eq. 25 as its fixed point. As confirmed in ref. 22, this iteration
is numerically stable for any A with ||A||2 <

√
3, where ||A||2

denotes the spectral two-norm of A, or its largest singular value.
We can ensure this property for general input by an initial
rescaling. We use A→X0 ≡A(

√
3− δ)/||A||F , where ||A||F

denotes the Frobenius norm (which can be computed easily as√
tr(AAH ) and fulfils ||A||F ≥ ||A||2), and δ is an arbitrary,

small positive number.
Once the smallest singular value s0 of A grows to 0.1 or

so, through the Newton–Schulz iterations Eq. 27, it then sub-
sequently enjoys quadratic convergence to one. When working in
single precision, this means that it only requires about 10 further
iterations before it reaches one within that precision. Convergence
before this point can, unfortunately, be rather slow, so that 35 to
50 iterations might be required if s0 is initially very small.

To improve upon this, we choose a desired minimum singular
value s−, and apply a preconditioning polynomial,

a =
3

2

√
3− s− [28a]

xi+1 = axi

(
1− 4

27
(axi)

2

)
[28b]

Xi+1 = aXi

(
I− 4

27
a2XH

i Xi

)
. [28c]

While Eq. 28b does not monotonically drive values toward one
(Fig. 8), it does monotonically drive any beneath s− upward, more
quickly than Eq. 26, while keeping those larger comfortably above
the threshold [s−, 1]. Consequently, Eq. 28c rapidly improves
the conditioning of X without affecting its singular vectors. The
number of applications needed to obtain a spectrum in [s−, 1] can
be tracked by repeatedly feeding an estimated initial minimum
singular value s0 through Eq. 28b until a value greater than s− is
obtained. We typically use s0 = ε, the machine precision—about
10−7 in single precision—which requires about 10 to 15 iterations
for s− = 0.1. Notice that, in order to use Eqs. 28a–28c, we want
to rescale the initial matrixA to have singular values in the interval
[0, 1), which we achieve through A→X0 ≡A(1− δ)/||A||F
for some small δ > 0.

Algorithm 4 summarizes our approach. In total, it then takes
about 25 iterations to obtain the polar factor of an arbitrary

Fig. 8. The Newton–Schulz polynomial Eq. 26, alongside the preconditioning
polynomial Eq. 28b for different choices of s−. No input is mapped by Eq. 28b
beneath s−, but, compared to Eq. 26, the slope of the latter is much larger
near zero.

matrix, which could potentially be reduced to about 10 for well-
conditioned input with s0 = 0.1. Thus, this operation is equiv-
alent to about 50 matrix multiplications. This is demonstrated
in Fig. 1, Bottom Right, essentially a rescaling of Fig. 1, Top Left
by a factor of about 50. Memory footprint, scaling, and use of
hardware resources follow the same reasoning as for SUMMA,
since the algorithm consists simply of repeated calls to SUMMA.
As an example, on a full TPU pod (2,048 cores), we can compute
the polar decomposition of an (N ,N ) matrix of linear size N =
219 = 524,288 in about 20 min.

As alluded to above, various iterations besides that leading
to the polar decomposition can also be efficiently implemented.
For example, for the electronic structure DFT computations
presented in ref. 12, the matrix inverse square root of an overlap
matrix for single-electron basis functions needs to be computed, as
well as a so-called purification of a Hermitian matrix that is similar
to the polar decomposition described above. The Newton–Schulz
procedure may also be used to compute matrix inverses, as detailed
in Algorithm 5.

Algorithm 4 Preconditioned Newton-Schulz Polar Factorization

Require: (M ,N ) matrix A with M ≥ N , threshold s− ∼ 0.1,
error tolerance ε, estimated smallest singular value s0.

Ensure: Isometric U giving positive semidefinite H≡UHA.
1: U←A/||A||F .
2: s ← s0 � Or ε if unsupplied.
3: a ← 3

2

√
3− s−

4: while s < s− , do � Bounds singular values by [s−, 1].
5: s ← as(1− 4

27a
2s2)

6: U← aU(I− 4
27a

2UHU)

7: while δ >max(M ,N )ε , do
8: U′ ← 1

2U(3I−UHU)
9: δ ← ||U′ −U||F

10: U←U′

11: return U
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Algorithm 5 Newton-Schulz Matrix Inversion

Require: (N ,M ) full-rank matrix A.
Ensure: X s.t. one of XA= I or AX= I.

1: a ← ||AAH ||F .
2: X← 1

aA
H .

3: ε← u � u is unit roundoff.
4: δ ← 2ε � Initial error greater than tolerance.
5: while δ > ε , do
6: if XA= I desired, then
7: X′ ←X(2I−AX)
8: else if AX= I desired, then
9: X′ ← (2I−AX)X

10: δ ← ||X′ −X||F
11: ε← 2ε � Note growing error tolerance.
12: X←X′

13: return return X

We can, in fact, approximate any sufficiently smooth function
with a polynomial expansion. Given a scalar function g , if we
know that the eigenvalues of a square matrix A are within some
interval [a, b], and we have a polynomial pd that approximates
g to a desired accuracy within that interval, we can evaluate
pd(A) as in Eq. 21 to approximate g(A) in the sense of Eq. 19.
Naive polynomial expansions are often oscillatory, but expansions
in terms of Chebyshev polynomials minimize such oscillations,
making them ideal for this use. The accuracy of the approximation
is controlled by the degree d of the polynomial pd , and evaluating
pd(A) requires d matrix products, using the so-called Clenshaw
summation method (23). How large a d is needed for a given
accuracy depends on both the smoothness of g and the spectrum
of A, but the advantage of this method is that it can be easily
applied to any piecewise smooth g .

3. Conclusion

In this paper, we have demonstrated the potential of TPUs to
serve as accelerators for large-scale scientific computation, by
using distributed, matrix multiply–based algorithms for the QR
decomposition, solving a linear system, and matrix functions such
as the polar decomposition. By distributing the matrices over a
full pod of third-generation TPUs (2,048 cores), large matrices
with linear size up to N = 220 = 1,048,576 can be addressed,
with computational times ranging from 2 min (for matrix mul-
tiplication) to 20 min (e.g., for QR decomposition). Moreover, a
full pod of fourth-generation TPUs (8,192 cores) is expected to
address matrices that double the above linear size in comparable
times (work in progress). As shown in subsequent papers (9–
14), the technology demonstrated here is already significant for
a wide range of applications in the context of large-scale simula-
tions and computations of quantum systems, including quantum
computation, quantum many-body physics, quantum chemistry,
and materials science.

Given the TPUs’ role as accelerator, it is natural to wonder
how the present results might compare with those achievable

by, say, graphics processing units (GPUs). The question is actu-
ally a bit slippery. During single-precision matrix multiplication
in the large-N limit, a single TPU-v3 chip (consisting of two
cores) achieves comparable performance to the 19.5 TFLOPS
theoretically obtained by an NVIDIA A100 GPU. For sufficiently
large problems, distributed GPU performance should also be
comparable, but a comparison here is complicated by the highly
variable nature of distributed GPU configurations. In particular,
GPU configurations directly connecting sufficiently many cards
to directly store a dense N ≈ 107 matrix essentially do not exist
except in a very few, for example, academic contexts, inaccessible
to the public.

Machine learning ASICs, on the other hand, are broadly ac-
cessible as a cloud service. For instance, anyone with a Google
Cloud Platform account can have access to a TPU pod. This,
alongside the potential for direct integration with TPU-native
machine learning workloads, constitutes a qualitative advantage
that cannot be addressed by a direct performance comparison. As
a result, a number of large-scale scientific computing tasks such as
the ones demonstrated in this paper and in refs. 10–14 are now
within the reach of any reach group, contributing to democra-
tizing supercomputing throughout the scientific community and
beyond.

It is interesting to briefly detail approaches which have not
been so successful. First, following the ideas in ref. 24, we, at one
point, attempted to use Algorithm 5 to compute a low-precision
inverse with which to precondition a GMRES-based linear solver.
While this does work, in the end, the QR approach is simply
too much more efficient for this to be useful. Second, following a
“spectral divide and conquer” approach described in ref. 25, either
the polar factorization or the above purification routine may be
successively applied to compute progressively smaller submatrices
containing only half of an input matrix’s eigenvalue spectrum,
theoretically leading to an efficient Hermitian eigensolver based
only on matrix multiplication. We have implemented such an
eigensolver, but have found it to be lacking in both stability and
efficiency in practice, due, partly, to XLA’s need to recompile upon
encountering matrices of new size.

3.1. Data Availability. Some study data are available. (At present, we are not
legally able to share the computer code implementing the described functional-
ity. The benchmark data are essentially completely specified in the manuscript,
but could be included in tabulated form if desired.)
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