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Abstract: Merkel cell polyomavirus (MCV) causes one of the most aggressive human skin cancers,
but laboratory studies on MCV replication have proven technically difficult. We report the first
recombinase-mediated MCV minicircle (MCVmc) system that generates high levels of circularized
virus, allowing facile MCV genetic manipulation and characterization of viral gene expression
kinetics during replication. Mutations to Fbw7, Skp2, β-TrCP and hVam6p interaction sites, or to
the stem loop sequence for the MCV-encoded miRNA precursor, markedly increase viral replication,
whereas point mutation to an origin-binding site eliminates active virus replication. To further
increase the utility of this system, an mScarlet fusion protein was inserted into the VP1 c-terminus
to generate a non-infectious reporter virus for studies on virus kinetics. When this reporter virus
genome is heterologously expressed together with MCV VP1 and VP2, virus-like particles are
generated. The reporter virus genome is encapsidated and can be used at lower biosafety levels for
one-round infection studies. Our findings reveal that MCV has multiple, self-encoded viral restriction
mechanisms to promote viral latency over lytic replication, and these mechanisms are now amenable
to examination using a recombinase technology.

Keywords: Merkel cell polyomavirus; minicircle; replication

1. Introduction

Merkel cell polyomavirus (MCV) causes most cases of Merkel cell carcinoma (MCC),
an uncommon human skin cancer associated with immunosuppression [1] and aging [2].
MCC is highly aggressive with a 54% 5-year survival rate [3]. MCV is a near-ubiquitous
component of viral skin flora; it causes MCC if the viral genome becomes integrated into
the host genome and acquires mutations ablating replication functions [4,5]. Unlike virus-
positive MCC, virus-negative MCC shows high levels of UV-induced somatic mutagenesis
that phenocopy MCV oncoprotein functions [6–10].

MCV is a nonenveloped, double-stranded DNA virus with a 5.4 kb genome partitioned
into early (ER) and late regions (LR) by a non-coding control region (NCCR) [4,11]. In
addition to the replication origin, the NCCR contains promoter elements regulating early
and late gene expression [12]. The ER encodes several proteins designated tumor antigens
(T-Ags), such as large T-Ag (LT), small T-Ag (sT), 57kT [5] and alternative LT open reading
frame (ALTO) [13]. The ER also expresses an auto-repressive miRNA [14,15] as well as
circular RNAs that antagonize miRNA activity [16] and may also express alternative T
peptides through cap-independent translation [17]. The LR expresses at least two viral
structure proteins, VP1 and VP2, which comprise the viral capsid [18]. Despite the simplicity
of its two-gene genome (ER and LR), actual MCV gene expression and replication is
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complex due to alternative splicing, alternative translation initiation, promoter regulation,
proteostatic regulation and miRNA–circRNA feedback loops [5,12,13,16].

MCV is widely detected by PCR on skin and by serologic assays in the blood of indi-
viduals world-wide, providing evidence for persistent life-long infection [19–22]. Despite
this, direct visualization of the virus or viral molecules in non-neoplastic human skin has
not been achieved, presumably due to low copy number and viral latency. Furthermore,
studies on the MCV life cycle have been hampered by an inability to achieve permissive
replication and infection in tissue culture [18,23–26]. Recombinant MCV genomes can be
circularized and transfected into producer cells to harvest viruses for infection studies in
human dermal fibroblasts [27], but this approach is technically complex.

The replication lifecycle of MCV is similar, but not identical to replication in other
polyomaviruses [23,24,28]. Based on in vitro virus generation and virus-like particle (VLP)
studies, MCV capsids bind to heparin sulfate moieties on host cell surfaces followed by
secondary interaction with sialylated glycans [25,29]. MCV utilizes caveolin/lipid raft-
mediated endocytosis to transit the host cell plasma membrane but only minor populations
of the internalized MCV virions are able to reach the endoplasmic reticulum, which has
been suggested to be a bottleneck step during MCV infection [30,31]. It is not clear how
MCV traffics from the endoplasmic reticulum to the nucleus.

After the MCV virion unpacks its genome in the nucleus, T-Ags are expressed that
facilitate genome replication. LT is the only viral protein essential for MCV DNA repli-
cation [11,23]. It binds as a multimeric complex, presumably in a head-to-head double
hexameric configuration, to GAGGC-like pentanucleotide sequences in the NCCR at the
origin of replication (MCVori) and serves as an ATP-dependent DNA helicase [11]. Similar
to SV40, formation of the replication initiation complex is presumed to involve the co-
operative interaction of MCVori-bound LT, cellular DNA polymerase alpha/primase and
replication protein A (RPA) [32–35]. While LT is absolutely required for replication, MCV sT
is not, but it nevertheless serves as an accessory protein to enhance MCV replication [11,23].
By interacting with the SCF E3 ligase Fbw7 complex via its LT stabilization domain (LSD),
sT inhibits Fbw7-related ubiquitin-mediated degradation of LT to markedly increase LT
protein and MCV replication [36]. The contributions of 57kT and ALTO to MCV replication
remain unknown.

Similar to other polyomaviruses [37,38], MCV LT appears to also exhibits transcrip-
tional activity to auto-repress early gene transcription possibly by binding to as yet un-
mapped regions in the NCCR [12]. This places a natural transcriptional brake on MCV
replication to inhibit the full lytic viral lifecycle. Multiple cellular factors are also known
to interact with LT to restrict MCV genome replication. E3 ligases Skp2, β-TrCP and
Fbw7 interact with specific phosphorylated residues to promote LT ubiquitylation and
proteasomal degradation [12]. The evolutionarily conserved inhibition of MCV replica-
tion by degradation of preformed MCV LT is described as proteostatic viral latency [39].
Other restriction factors that affect LT’s replication activity include interaction with the
deubiquitnase ubiquitin-specific protein 7 (Usp7) [40] and the vacuolar sorting protein
hVam6p (Vps39) [23,41]. While Skp2-LT interactions may be shared with other poly-
omaviruses [39], it is largely unknown whether MCV LT-specific restriction factors are
applicable to other polyomaviruses.

In addition to protein restriction pathways, MCV also encodes its own microRNA
(miR-M1) from the negative strand of its ER [14,15,42]. MCV miR-M1 restrains MCV
genomic replication by degrading LT antigen mRNA. A positive-strand circular RNA
produced by backsplicing from exon 2 of the LT transcript antagonizes miR-M1, to en-
hance MCV replication [16]. The finely tuned choreography and interplay of these cellular
and viral repression/amplification factors is likely to determine whether the virus en-
ters into lytic virion production or remains as a latent episome in cells. Although this
repertoire of replication control circuits is likely to provide a sophisticated cell type- and
cell environment-specific mechanism for the binary decision to replicate or remain la-
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tent, the actual measurement of this interplay is limited by the absence of a permissive
replication model.

To overcome these challenges, we adapted a recombinase-mediated minicircle sys-
tem [43] to produce an MCV minicircle (MCVmc), which dramatically increases total
circularized genomic DNA yield (from micrograms to milligrams) on a bacterial culture per
volume basis. We show that mutagenesis of specific LT and miR-M1 sites robustly increases
virus production, including support of the Fbw7-affected residue at LT serine 293 that has
been confirmed [44] but challenged as a functional site [45]. By introducing a fluorescent tag
fused to the c-terminus of VP1, we can track MCV replication after transfection using flow
cytometry and can generate a biosafe, one-round infection/replication model to measure
viral replication kinetics.

2. Materials and Methods
2.1. Cells

BJ-hTert cells were established by retroviral transduction of Babe hTert-puro (pBabe-
hTert-puro: a gift from Roderick J. O’Sullivan, Hillman Cancer Center, University of
Pittsburgh, Pittsburgh, PA, USA) into primary BJ foreskin fibroblast (ATCC CRL-2522) and
selected with 2 µg/mL puromycin. To establish 293 TRE-sTco cells, 293 (ATCC CLR-1573)
were transduced with pLenti TRE MCV sT [46] and selected with 2 µg/mL puromycin.
The 293, 293 TRE-sTco, BJ and BJ-hTert cells were maintained in Dulbecco’s Modified
Eagle Medium (DMEM; Corning, Manassas, VA, USA) supplemented with 10% FBS, while
HFF-1 (ATCC SCRC-1041) cells were maintained in DMEM supplemented with 15% FBS.
Human primary bone marrow or adipose tissue-derived mesenchymal stem cells (MSC-bm
and MSC-a) [47], kindly provided by Shou-Jiang Gao (Hillman Cancer Center, University
of Pittsburgh, PA, USA), were maintained in MSC medium (MSCM; ScienCell Research
Laboratories, Carlsbad, CA, USA).

2.2. Plasmids and Constructs

The construction of pJ-MCV-HF, pMC-MCV and pMC-MCV-hpko plasmids have
been previously described [16,23]. The MCV minicircle plasmids generated by restriction
enzyme digestion cloning are listed in Table 1. To generate pMC-MCV-VP1-mS, a fragment
containing the c-terminus of VP1 fused to mScarlet and part of the pMC backbone was
produced by overlapping PCR using primers VP1 (2440-2466) F, VP1-mScarlet R, VP1-
mScarlet F and mScarlet-attBVec R and was subsequently cloned into the pMC-MCV
plasmid using PacI and XmaI restriction sites. pMC-MCV-VP1-P2A-mS was produced by
restriction digestion of a fragment containing the c-terminus of VP1 fused to P2A-mScarlet
and part of the pMC backbone generated with a GeneArt™ Seamless Cloning and Assembly
Kit (cat. no. A13288, Thermo Fisher, Carlsbad, CA, USA) using primers VP1-P2A_FW,
VP1-P2A_RV, P2A-mScarlet_FW and P2A-mScarlet_RV and subsequent cloning into the
pMC-MCV backbone using PacI and XmaI restriction sites. The list and sources of all
constructs are shown in Table S1. Primers used for plasmid construction are shown in
Table 2.

Table 1. Construction summary of pMC(minicircle)-MCV (Merkel cell polyomavirus) harboring
mutations.

Final Constructs Mutation Sites Insert Source Restriction Enzymes

pMC-MCV-Rep– C44A pJ-MCV-HF-Rep– AvrII, SacI

pMC-MCV-hVam6p– T1251G, G1252C pJ-MCV-HF-hVam6p– BamHI, EcoRI

pMC-MCV-β-TrCP– T1065G pJ-MCV-HF-β-TrCP– AvrII, BamHI

pMC-MCV-Skp2– T1284G pJ-MCV-HF-Skp2– BamHI, EcoRI

pMC-MCV-Fbw7– T1341G pJ-MCV-HF-Fbw7– BamHI, EcoRI
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Table 2. List of primers used for overlapping PCR and Gibson assembly.

VP1 (2440-2466) F TGACACATTGCAGATGTGGGAGGCAAT

VP1-mScarlet R GCCTCGCCCTTGCTCACCATTAATTCTTGTGTTTGGCTTT

VP1-mScarlet F AAAGCCAAACACAAGAATTAATGGTGAGCAAGGGCGAGGC

mScarlet-attBVec R TCCCCGGGCGCGACAAATAATTCTCACTTGTACAGCTCGT

VP1-P2A R GTCTCCAGCCTGCTTCAGCAGGCTGAAGTTAGTAGCTCCGCTTCCTAATTCTTGTG-
TTTGGCTTTCTTTTTGAGAGGCC

P2A-mScarlet F AGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGGTGAGCAAGGGCGAGGCA

VP1-P2A_FW GCCAAGCTTGCATGCCGTTCTTTAATTAATGTTCATTATT

VP1-P2A_RV CCAGCCTGCTTCAGCAGGCTGAAGTTAGTAGC

P2A-mScarlet_FW TGCTGAAGCAGGCTGGAGACGTGGAGGAGAAC

P2A-mScarlet_RV AATTCGAGCTCGGTACTCCCCGGGCGCGACAAATAATTCT

2.3. Recircularization of MCV Genome by In Vitro Ligation and Mini-Circle System

Recircularization of MCV-HF genome (GenBank accession number: JF813003) by
in vitro ligation was previously described [23]. To produce the recombinant MCV clone,
the MCV-HF genome was cloned into the pSMART-LC-Amp vector (cat. no. 400300-2,
Lucigen) using an EcoRI site present only once in the MCV genome. Since the resulting
clone pSMART MCV-HF has two EcoRV blunt cutter enzyme sites immediately outside the
EcoRI sites, a double digest using EcoRI and EcoRV results in a blunt-end vector fragment
and an MCV-HF fragment with EcoRI cohesive ends for self-recircularization. pSMART-
MCV-HF digested with EcoRI and EcoRV was recircularized by T4 DNA ligase at a low
concentration (2.5 ng/µL) to reduce the formation of MCV concatemers.

Recombinase-mediated MCV recircularization was recently reported [16]. In brief,
MCV-HF sequences with or without mutations (see plasmids and constructs, Table S1)
were cloned into the pMC.BESPX plasmid which contains AttB and AttP sites. Constructs
were transformed into ZYCY10P3S2T (cat. no. MN900A-1; System Biosciences, Palo Alto,
CA, USA) competent cells, a kind gift from Mart Ustav (University of Tartu, Tartu, Estonia)
and Alison McBride (National Institute of Allergy and Infectious Diseases, Bethesda, MD,
USA). Transformed bacteria were cultured overnight in Terrific Broth (cat. no. T0918,
Sigma-Aldrich, St. Louis, MO, USA) to an OD600 of 4–6 and induced by using an equal
volume of buffer (0.04% L-arabinose and 40 mM NaOH in LB). After 6 h of induction,
bacteria were harvested and MCVmc DNA genomes were purified using a Maxi prep kit
(cat. no. 740416, Macherey-Nagel, Düren, Germany).

2.4. MCVmc Transfection and Replication Assay

In 6-well plates, 293 cells were plated and transfected with 1 µg of MCV-ligated,
MCVmc, MCVmc-hpko, MCVmc-Rep–, MCVmc-Skp2–, MCVmc-Fbw7– using FuGENE
(cat. no. E2311, Promega, Madison, WI, USA), following the manufacture’s protocol. After
2 or 4 days post transfection, cells were collected for protein and DNA extraction.

Total genomic DNA was isolated using DNAzol reagent (cat. no. 10503027; Thermo
Fisher, Warrington, UK), according to the manufacturer’s instructions, and resuspended in
0.1× TE buffer (1 mM Tris·HCl pH 8.0, 0.01 mM EDTA pH 8.0). Then, 5 µg of total genomic
DNA was digested overnight using DpnI and BamHI restriction enzymes to remove
transfected DNA produced in bacteria and linearize the MCV genome consecutively, after
which 5 ng of MCV or 50 ng of GAPDH-digested DNA was used for quantification by qPCR.

2.5. Quantitation of MCV Genome Copy by Real-Time PCR

Quantitative PCR (qPCR) was performed using PowerUp™ SYBR™ Green master
mix (A25778, Thermo Fisher, Vilnius, Lithuania) together with primers MCV DNA Fw: 5′-
AAAACACCCAAAAGGCAATG-3′ and MCV DNA Rev: 5′-GCAGAGACACTCTTGCCACA-
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3′ to quantify MCV genome copy numbers and GAPDH DNA Fw: 5′-TGTGTCCCTCAATAT-
GGTCCTGTC-3′ and GAPDH Rev: 5′-ATGGTGGTGAAGACGCCAGT-3′ to amplify en-
dogenous control GAPDH DNA. Thermal cycling was performed on a QuantStudio™ 3
Real-Time PCR machine. Threshold cycle (CT) values were used to calculate DNA replica-
tion levels and were normalized to GAPDH. MCV genomic DNA replication levels were
calculated according to the ∆∆CT method.

2.6. Immunoblotting

Total protein was extracted by lysing cells in 1% SDS buffer (1% SDS, 10 mM Tris-HCl,
pH 8.0, 1 mM EDTA, pH 8.0) and subsequent sonication at 20% Amp for 5 s four times
on ice. Protein concentration was then quantified using the DC Protein Assay Kit (cat.
no. 5000116, Bio-Rad, Hercules, CA, USA). Then, 100 µg of total protein was separated
by SDS-PAGE and transferred onto a nitrocellulose membrane. Membranes were then
incubated with primary mouse monoclonal antibody to MCV LT and 57 kT (CM2B4),
MCV VP1 (CM9B2), MCV ALTO (CM7B1), MCV sT (CM5E1) or mScarlet (cat. no. 6g6-
100; Chromotek, Planegg-Martinsried, Germany) followed by 1:10,000 dilution of IRD800
conjugated goat anti-mouse secondary antibody (cat. no. 926-32210; LI-COR Biotechnology,
Lincoln, NE, USA) in combination with a 1:20,000 dilution of Rhodamine conjugated anti-
Tubulin antibody (cat. no. 12004163; Bio-Rad, Hercules, CA, USA). Signals were detected
on a ChemiDoc imaging system (Bio-Rad, Hercules, CA, USA).

2.7. Immunofluorescence Assay (IFA)

Five days after transfection, U2OS or 293 cells grown on coverslips were fixed with 4%
paraformaldehyde in PBS for 15 min at room temperature (RT), permeabilized with 0.1%
Triton X-100 in PBS for 15 min at RT and incubated in blocking solution (5% normal Goat
serum: cat. no. 9023, Sigma-Aldrich, St. Louis, MO, USA) for 1 h at RT. Coverslips were
then incubated with primary mouse antibody to MCV LT (CM2B4) or MCV VP1 (CM9B2)
for 1 h at 37 ◦C in a humidified chamber and washed three times in 1× PBS for 5 min at RT
followed by incubation with AF-488 conjugated goat anti-mouse secondary antibody (cat.
no. 11006, Invitrogen) for 30 min at 37 ◦C. For LT-VP1 co-staining in infected cells, CM2B4
antibody was conjugated with AF-488 using Alexa Fluor 488 antibody labeling kit (cat. no.
A20181, Invitrogen, Eugene, OR, USA) and coverslips were sequentially stained first with
CM9B2 primary antibody for 1 h at 37 ◦C followed by AF-568 conjugated goat anti-mouse
secondary antibody (cat. no. 11004, Invitrogen, Eugene, OR, USA) for 30 min at 37 ◦C and
then with AF-488 conjugated CM2B4 primary antibody to LT for 1 h at 37 ◦C. All antibody
incubations were performed in a humidified chamber in the dark, with three washes in
between each incubation period. After the final wash, cells were stained with 300 nM of
DAPI in 1× PBS for 5 min, washed three times and coverslips were mounted on a glass
slide. Images were acquired using an Olympus AX70 microscope with a QImaging QIClick
charge-coupled device (CCD) camera and Q-Capture Pro 7 software for qualitative anlysis
or a Cytation5 Imaging reader and Gen5 image analysis software (BioTek, Santa Clara, CA,
USA) for quantitative analysis.

2.8. Virion Production

All wild-type MCV genomes used in this study conform to the HF strain (GenBank
accession no. JF813003) [23]. The following day, 293 TRE-sTco cells were seeded at a density
of 5 × 106 cells per 100 mm dish and transfected with 10 µg of MCVmc or MCV-ligated
DNA using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). One day after transfection,
cells were passaged to two T75 flasks and treated with 500 ng/mL Dox on day 3 to induce
sTco expression. Transfected cells were expanded from two T75 flasks to two or three T175
flasks in the presence of Dox treatment and harvested 10 days after transfection for MCV
virion isolation. Cells were collected in PBS containing 9.5 mM MgCl2, 25 mM ammonium
sulfate, 0.5% TritonX, 0.1% Benzonase, 1 mM ATP and 0.1% ATP-dependent DNase and
incubated overnight at 37 ◦C to degrade unpackaged virus genomes. Nuclear fraction was
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then isolated by the addition of 720 mM of NaCl into the lysate. To purify MCV virion,
supernatant from the lysate was overlayed on a 2.1 mL discontinuous Opti-Prep (iodixanol)
(cat. no. D1556, Sigma-Aldrich, St. Louis, MO, USA) gradient (0.7 mL of 27%, 0.7 mL of
33% and 0.7 mL of 39%) and subjected to ultracentrifuge at 226,354× g for 2.5 h at 16 ◦C in
an AH-650 swing rotor (Sorvall). Thirteen fractions (~400 µL) were collected from the top
of the ultracentrifuge tube using a pipette and the fractions were used for immunoblotting,
qPCR and infection assay.

2.9. Electron Microscopy

Suspensions of viruses were adhered to glow-discharged (Cressington 108Auto)
Formvar-coated copper grids for 10 min. Extra solution was wicked away, then the samples
were negatively stained with 1% aqueous uranyl acetate and solution was immediately
wicked away. Samples were imaged on a JEOL JEM 1400 Flash transmission electron
microscope (JEOL, Peabody, MA, USA) fitted with a BIOSPR12 bottom mount AMT camera
(Advanced Micrscopy Techniques, Danvers, MA, USA). Images were taken at 80 kV.

2.10. MCV Infection Assay

Fibroblast cells (BJ, BJ.hTert, HFF-1) and MSC cells (MSC-bm, MSC-a) at a density of
2 × 105 cells per well of a 6-well plate were infected with 4× 105 genome copy equivalent of
MCV-ligated or MCVmc virion per cell in infection media, F12/DMEM medium containing
20 ng/mL EGF (cat. no. 78006, Stem Cell Technologies, Vancouver, BC, Canada), 20 ng/mL
bFGF (cat. no. 78003, Stem Cell Technologies, Vancouver, BC, Canada), 3 µM CHIR9901
(cat. no. S2924, Sellechem, Houston, TX, USA) and 0.025 mg/mL collagenase IV (cat.
no. 17104019, Thermo Fisher, Waltham, MA, USA), and seeded in a 6-well plate. After
3 days of incubation with the infection media, FCS was added at a final concentration
(volume/volume) of 20% and cells were incubated for another 2 days. After 5 days of
infection, cells were seeded in a 48-well plate, fixed and processed for the following day, as
described in the previous section. The remaining cells were passaged to 6-well plates and
harvested after 10 days of infection for southern hybridization.

For single round infection with VLP-packaged reporter viruses, 293 TRE-sTco cells
were seeded at a density of at 2.5 × 105 cells per well in 12-well plates and infected
with 2 × 103 genome copy equivalent of VLP-packaged MCV virions per cell in DMEM
with no FBS. After 24 h, FBS was added at a concentration of 10% (volume/volume) and
500 ng/mL Dox was added to the medium after 3 days of infection. Starting at day 4 post
infection, medium with Dox was replenished every day and imaging was performed at
day 10 post infection.

2.11. Southern Blot

MCV-ligated or MCVmc-infected cells harvested after 10 days of infection were sus-
pended in genomic DNA lysis buffer (10 mM Tris, 25 mM EDTA, 0.5% SDS, 100 mM NaCl)
containing 0.1 mg/mL proteinase K and incubated overnight at 37 ◦C. The lysate was
treated with 0.1 mg/mL RNase A for 1 h at 37 ◦C and genomic DNA was extracted by
phenol-chloroform and ethanol precipitation. Genomic DNA (3 µg) was then digested with
DpnI and EcoRI overnight and subsequently electrophoresed in a 0.8% agarose TAE gel.
The DNA in the agarose gel was depurinated in 0.25 N HCl, treated with denaturation
buffer (0.5 M NaOH, 1.5 M NaCl) and capillary-transferred onto a Hybond-N+ Nylon Mem-
brane (cat. no. RPN303B, GE Healthcare, Chicago, IL, USA) overnight with 10× SSC (1.5 M
NaCl, 150 mM Sodium Citrate, pH 7.0). After UV crosslinking (Stratalinker, Stratagene,
San Diego, CA, USA), the membrane was treated with prehybridization buffer (5× SSPE
(diluted from 20× solution containing 3 M NaCl, 0.2 M sodium phosphate monobasic
monohydrate, 0.2 M EDTA), 2% SDS, 1× Denhardts (diluted from 50× Denhardts, cat.
no. 750018, Thermofisher, Waltham, MA, USA), 10% dextran sulfate, sonicated salmon
sperm 10 µg/mL) for 4 h at 65 ◦C. A denatured, biotin-11dUTP-labeled MCV DNA probe
generated with the Bio-prime Array CGH kit (cat. no. 45-0048, Invitrogen, Waltham, MA,
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USA) using a full-length MCV genome as template was then added to the prehybridization
buffer and incubated overnight at 65 ◦C. After washing twice with 2× SSPE and once with
0.1× SSPE at 60 ◦C, membranes were incubated for 1 h with IR800 Dye-conjugated strepta-
vidin (cat. no. 926-32230, Li-COR, Lincoln, NE, USA), and the hybridization signal was
detected with a Li-COR Odyssey Infrared Imaging System (Li-COR, Lincoln, NE, USA).

2.12. MCV Kinetics Assay

For the MCV kinetics assay, 293 cells were plated and transfected with MCVmc,
MCVmc, VP1-mS or MCVmc. VP1-P2A-mS with FuGENE was as described before. The
medium was refreshed each day for 2 days and cells were collected from day 0 through day
10 post transfection for analysis by immunoblotting (see previous section) or flowcytometry.

2.13. Flow Cytometry

Harvested cells were fixed in 4% PFA on ice for 15 min, stored in PBS with 0.02% NaN3
at 4 ◦C protected from light and were directly used to quantitate mScarlet-positive cells by
flow cytometry on a BD LSR Fortessa cell analyzer (BD Biosciences, San Jose, CA, USA).

2.14. MCV Packaging Assay

To assay for the packaging efficiency of MCV fluorescent reporter viruses, cell lysate
from 293 TRE-sTco cells that were transfected and harvested as described in virion produc-
tion were overlayed on 9 mL discontinuous gradient (3 mL of 27%, 3 mL of 33%, 2 mL of
39% and 1 mL of 60% iodixanol) and subjected to ultracentrifuge at 41,000 rpm for 6 h at
16 ◦C in SW 41 Ti swing-bucket rotor (Beckman, Indianapolis, IN, USA). Twelve fractions
(1 mL each) were collected from the top of the tube using a pipette. Fractions were used to
perform immunoblotting, qPCR (in the presence or absence of Benzonase treatment) and
an infection assay.

To assay for the packaging efficiency of the pseudovirus system, 293 TRE-sTco cells were
co-transfected with 18 µg MCV genome DNA or reporter plasmid pEGFP-N1, 15 µg pWM
plasmid (expressing VP1) and 5 µg ph2m plasmid (expressing VP2) in T75 flasks. Three days
after transfection, cells were harvested and virions were purified as described above.

3. Results
3.1. MCV Genome Recircularization by Site-Specific Recombination

We generated an MCV molecular clone using site-specific recombination, i.e., mini-
circle (mc) technology [43] (Figure 1A-C) that has been used to produce HPV [48,49] and
HBV [50] mc genomes. The MCV-HF genome (GenBank accession no. JF813003) [4] is
linearized at nucleotide position 3146/3147 and cloned between the attB and attP sites in the
pMC.BESPX vector to generate the parental pMC-MCV plasmid (Figure 1B). Transformation
into Escherishia coli strain ZYCY10P3S2T allows arabinose-induction of bacteriophage ΦC31
integrase [43] that mediates recombination between the attB and attP sites, while I-SceI
endonuclease, which is also induced by arabinose, digests the excised bacterial backbone
containing 32 I-SceI recognition sites (Figure 1B). This produces covalently closed circular
MCV minicircle (MCVmc) genomes, each with a 39 bp remnant scar sequence from the
recombination (Figure 1B, C). Comparison of T4 DNA ligase (Figure 1A) and ΦC31 integrase
(Figure 1C) recircularization shows that the minicircle system is not only more efficient
than T4 DNA ligase-mediated re-circularization but also generates a single copy of the
MCV genome, while ligation generates partial and multimeric forms, including forms with
a vector backbone that might interfere with virus replication studies.
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Figure 1. Development of a Merkel cell polyomavirus (MCV) molecular clone using minicircle
(mc) technology. (A) Electrophoresis of MCV molecular clone re-circularized by T-4 DNA-ligase.
DNA size markers are shown at the left of the gel image. (B) Schematic of recombinase-mediated
re-circularization (minicircle technology) of MCV molecular clone (MCVmc). (C) Electrophoresis
of MCV DNA extracted before and after recombination. DNA size markers are indicated at the left
of the gel image. (D) Western blot of MCV-encoded proteins (LT, sT and VP1) from MCV-ligated
and MCVmc-transfected 293 cells 2 and 4 days post transfection. Untransfected 293 cells were used
as a negative control. The LT and VP1 expression constructs transfected in 293 cells were used as a
positive control (indicated as +), while α-tubulin was used as an endogenous protein control. Protein
molecular weight markers are shown on the left. The result is representative of three independent
experiments. (E) Real-time PCR (qPCR) of the DpnI-resistant MCV genome from MCV-ligated or
MCVmc-transfected 293 cells 2 and 4 days post transfection. Untransfected 293 cells were used as
a negative control (indicated as −). The ∆∆CT method was used to determine MCV genome copy
number fold change; GAPDH was used as an endogenous control, while the MCV-ligated 2 days
post transfection group was used as the experimental control. Error bars indicate the ±SD of three
independent experiments. (F,G) Immunofluorescence of LT-AF488 (pseudo color green), VP1-AF488
(pseudo color red) and DAPI (blue) in MCV-ligated and MCVmc-transfected 293 or U2OS cells 5 days
post transfection. The numbers of VP1-positive cells per coverslip were counted with a Cytation
5 cell imaging multi-mode reader and are shown on the right. Images were originally acquired at
40×magnification.

3.2. MCVmc Gene Expression

MCVmc and in vitro ligated MCV clones were compared for viral gene expression and
replication capacity in 293 cells. With equal amounts of transfected genomic DNA, MCVmc
expresses the LT-Ag protein at a comparable level to MCV-ligated DNA (Figure 1D). Ex-
pression of sT-Ag was slightly higher for MCVmc compared to MCV-ligated at two days
post transfection. However, this difference in sT-Ag levels was minimal at 4 days post
transfection (Figure 1D). The VP1 late gene product was detectable only at four days post
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transfection in both MCVmc and MCV-ligated transfected 293 cells. The level of VP1 was
slightly higher in MCVmc transfected cells compared to MCV-ligated transfected cells
(Figure 1D). Consistent with immunoblot results, MCVmc genomic DNA replicated at a
higher rate compared to the MCV-ligated genome, as shown by qPCR of DpnI-resistant
DNA (Figure 1E); comparable or higher expression for MCVmc was confirmed by im-
munofluorescence using antibodies to LT-Ag (Figure 1F) and VP1 (Figure 1G) on trans-
fected 293 or U2OS cells, although transfection efficiency and viral gene expression was
markedly lower for U2OS cells (Figure 1G). Notably, expression of VP1 protein, which
serves as a surrogate marker for the complete cycle progression of DNA replication [51,52]
in the MCVmc system, indicates that the “scar” of 39 additional non-MCV nucleotides
extra sequences at the recombinase site does not interfere with MCV replication.

3.3. MCVmc In Vitro Transmission

sT is an important replication accessory protein that stabilizes and increases LT accu-
mulation. To maximize virion production, we transfected MCVmc or MCV-ligated into
293 TRE-sTco cells with a stably integrated, doxycycline (Dox)-inducible, codon-optimized
MCV sT cassette and purified cell lysates on OptiPrep (iodixanol) gradients (Figure 2A).
VP1-positive fractions 10 through 13 were pooled and 1.0 × 1010 genome copy equivalent
of viral particles were used to infect a panel of primary cell lines (Figures 2B–D and S1).
Human foreskin fibroblast (HFF-1), BJ-hTert, bone marrow-derived human mesenchymal
stem cells (MSC-bm) and adipose-derived MSCs (MSC-a) show infection with both MCV-
ligated and MCVmc. MCVmc virions had reduced infection compared to MCV-ligated as
measured by an IFA of LT and VP1 expression (Figures 2B,C and S1). This may be due
to the incomplete digestion of unpackaged DNA that interferes with accurate MCV copy
quantification or a difference in DNA backbones. This was confirmed by Southern blotting
for MCV genome DNA in BJ-hTert cells (Figure 2D).
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Figure 2. MCVmc is infectious in primary cells. (A) Western blot of MCV-ligated and MCVmc
virions fractions from Opti-Prep (iodixanol) gradient purification. Fractions 1–13 (top to bottom) are
indicated. * Indicates VP1 dimer. Fractions 10 through 13 were mixed and MCV genome copy numbers
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per µL are shown at the bottom of virion-positive fractions. Protein molecular weight markers are
shown on the right. Results are representative of three independent experiments. (B) Quantification
of the number of VP1-positive cells per 4× magnification field in BJ-hTert, HFF-1, MSC-bm and
MSC-a cells infected with MCV-ligated or MCVmc virus from (A), 6 days post infection, by IFA of
VP1. Four fields from one cover slip for each cell line was counted for MCVmc and MCV-ligated.
(C) Representative immunofluorescence images showing LT-AF488 (pseudo color green), VP1-AF568
(pseudo color red), together with DAPI (blue) in MCV-ligated and MCVmc-infected HFF-1 cells
6 days post infection. Images were originally acquired at 40× magnification. Images (C) were
acquired and the number of VP1 positive cells (B) was counted using a Cytation 5 cell imaging
multi-mode reader. Results represent three independent experiments. (D) Southern blot of MCV
genome from BJ-hTert cells infected with MCV-ligated or MCVmc. Mock-infected cells were used as
a negative control. The relative amount of total DNA loaded is shown by EtBr staining and DNA size
markers are shown in the left. Results represent three independent experiments.

3.4. Mutagenesis of the MCVmc Genome and Cell-Specific Effects on Replication

In a proof-of-principle experiment, previously reported mutations known to affect
MCV replication were introduced into the parental pMC-MCV plasmid (Table 1). The
MCVmc mutants generated include MCVmc-Rep– which has a single nucleotide (C44A)
mutation in the NCCR viral origin at a LT-binding pentanucleotide that abrogates viral
genome replication [11,23]. Mutations to eliminate LT binding to hVam6p (MCV-hVam6p–;
LT W209A) [23,41] and interactions with the Skip-Cul-Fbox (SCF) E3 ligases β-TrCp, Fbw7
and Skp2 [12] were also made. Additionally, we generated MCVmc.hpko, a virus with
mutations to the hairpin loop required to produce miR-M1 [15] (Figure 3A).

Transfection of various mutated MCVmcs (Table 1) into either 293 or U2OS cells al-
lowed both qualitative (Figures 3A and S2) and quantitative (Figure 3B,C) assessment of
replication permissivity as compared to wild-type MCVmcs. LT and VP1 positive cells
displayed nuclei that are 2–5-fold larger than uninfected cells with condensed LT nuclear
puncta consistent with viral replication centers, particularly in U2OS cells (Figures 3A and S2).
T4 DNA ligase-treated and MCVmc wild-type genomes showed similar low-level replica-
tion (measured by VP1 expression) that was, nevertheless, significantly greater than the
MCVmc-Rep– mutant. Mutation of the LT β-TrCP phosphodegron site (S147A) required for
replication also did not show VP1 expression, indicative of replication loss, as previously
reported [12]. Elimination of the Fbw7 interaction site markedly increased MCV replication
in 293 cells (Figure 3B) but not U2OS cells, a pattern similar to that seen for the Vam6p
binding site mutant while the Skp2 phosphodegron mutant increased MCV replication in
both cell types. MCVmc carrying mutations in the miR-M1 hairpin markedly enhanced
MCV replication independent of the cell type.

3.5. Generation of Fluorescent MCV Reporter Viruses (MCVmc.VP1-mS and MCVmc.VP1-P2A-mS)

To directly visualize the viral replication process in real time, we fused an mScarlet fluo-
rescent protein coding sequence 3′ to the MCV VP1 protein-coding sequence (MCVmc.VP1-
mS) to generate a VP1-mScarlet fusion protein (Figure 4A). In a second reporter virus
(MCVmc.VP1-P2A-mS), the porcine teschovirus-1 2A peptide sequence (P2A: GSGAT-
NFSLLKQAGDVEENPGP) that initiates ribosome skipping during translation [53] was
engineered between VP1 and mScarlet proteins to minimize functional consequences of
the 232 amino acid fusion tag. Nevertheless, MCVmc.VP1-P2A-mS still carries 21 extra
non-MCV amino acids on the c-terminus of VP1.

293 cells were transfected with these MCVmc reporter genomes and analyzed by
immunoblotting and qPCR. Both MCVmc.VP1-mS and MCVmc.VP1-P2A-mS express LT at
comparable levels to MCVmc at days 2 and 4 post transfection (Figure 4B). As expected,
VP1 (~50 kDa) shifted to higher molecular masses for MCVmc.VP1-mS and MCVmc.VP1-
P2A-mS as a result of the residual fusion peptide/protein. DpnI-resistant DNA detection
(Figure 4C) showed comparable increases in MCV genome copy numbers for MCVmc
and the reporter viruses, although the mScarlet fusion protein virus (MCVmc.VP1-mS)
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had consistently reduced replication. Using a primary mouse anti-VP1 followed by a
AF488-conjugated secondary anti-mouse antibody, dual color IF of transfected cells showed
complete nuclear co-localization of mScarlet (red) with VP1 (green) for the MCVmc.VP1-mS
fusion virus, (left panel, Figure 4D). In contrast, cells transfected with the MCVmc.VP1-
P2A-mS virus showed mScarlet staining also in the cytoplasm, consistent with a cleaved
fluorescent tag. Comparison of LT and mScarlet expression revealed discrete localization of
LT protein at putative nuclear replication puncta (right panel, Figure 4D).
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Figure 3. MCVmc is amenable to viral gene mutational analysis. (A) Left panel shows a table of tested
MCV mutants; nucleotide (nt) and amino acid (aa) changes (based on HF strain: GenBank #JF813003)
are noted for each mutant [11,12,15,23,41]. Right panel shows immunofluorescence of LT-AF488
(pseudo color green) or VP1-AF488 (pseudo color red) and DAPI (blue) in 293 cells transfected with
MCVmc or mutants 5 days post transfection. LT or VP1-expression construct transfected 293 cells were
used as positive controls. Images were originally acquired at 40×magnification. (B,C) Quantification
of the number of VP1 positive cells per 4×magnification field in 293 or U2OS cells transfected with
MCVmc or mutants 5 days post transfection. The number of VP1 positive cell was quantified using a
Cytation 5 cell imaging multi-mode reader.
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Figure 4. Generation of an mScarlet reporter MCVmc. (A) Schematic of VP1 fluorescent fusion
constructs representing VP1 (black) containing mScarlet (red) tag in the presence (cyan) or absence
of a P2A linker. Arrow indicates the P2A ribosome-skipping site and the whole P2A peptide
sequence (cyan) is shown with four flanking amino acids from VP1 (black) and mScarlet (red).
(B) Immunoblot of MCV-encoded proteins (LT and VP1) and mScarlet in 293 cells transfected with
MCVmc, MCVmc.VP1-mS and MCVmc. VP1-P2A-mS after 2 and 4 days post transfection. Un-
transfected 293 cells were used as a negative control (−), while 293 cells transfected with LT or VP1
expression construct were used as a positive control (+). α-tubulin was used as an endogenous
protein-loading control. Protein molecular weight markers are shown on the left. (C) Quantification
of DpnI-resistant replicated MCV DNA in 293 cells transfected with MCVmc, MCVmc.VP1-mS
or MCVmc. VP1-P2A-mS 2 and 4 days post transfection qPCR results. The ∆∆CT method was
used to calculate relative MCV DNA levels; GAPDH was used as the endogenous loading control,
while MCVmc was used as the experimental control. Error bars indicate ± SD of three independent
replicates. (D) Confocal images of mScarlet expression (pseudo color red) and LT-AF488 (pseudo color
green) or VP1-AF488 (pseudo color Green) immunofluorescence in MCVmc, MCVmc.VP1-mS and
MCVmc. VP1-P2A-mS-transfected 293 cells 5 days post transfection. LT, VP1 or mScarlet expression
construct-transfected 293 cells were used as positive controls. Images were originally acquired at
×40 magnification.
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3.6. Replication Kinetics for MCV Reporter Viruses

Since sT is involved in MCV replication, MCVmc, MCVmc.VP1-mS or MCVmc.VP1-
P2A-mS were transfected into wild type 293 cells instead of 293 TRE-sT cells and monitored
by flow cytometry and immunoblotting to analyze MCV replication kinetics (Figure 5A,B).
mScarlet expression from both fusion viruses was evident as early as day 2 post transfection
and the number of mScarlet-positive cells increased through 10 days post transfection.
Consistent with data from Figure 4, MCVmc.VP-P2A-mS showed a growth advantage as
measured by the number of positive cells compared to MCVmc.VP1-mS. All three viruses
showed highest LT protein expression at days 3–6 which declined at later time points
(days 8–10). VP1, in contrast, peaked at days 5–6 (Figure 5B).
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Figure 5. MCV replication kinetics analysis using mScarlet reporter. (A) Numbers of mScarlet-
positive cells in 293 cells transfected with MCVmc, MCVmc.VP1-mS, or MCVmc VP1-P2A-mS from
day 1 through day 10 post transfection were quantified by flow cytometry. Data were normalized to
MCVmc.VP1-P2A-mS day 10 post transfection. Error bars indicate ± SD of three independent experi-
ments. (B) Immunoblot of MCV-encoded proteins (LT and VP1) or mScarlet in 293 cells transfected
with MCVmc, MCVmc.VP1-mS, and MCVmc. VP1-P2A-mS from 1 to 10 days post transfection. LT or
VP1 expression construct-transfected 293 cells were used as a positive control (+); while α-tubulin was
used as an endogenous protein-loading control. Protein molecular weight markers are shown on the
left. Results are representative of three independent experiments. *—Indicates non-specific staining.
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3.7. Single-Round Transmission of MCV mScarlet Reporter Viruses

MCVmc.VP1-mS and MCVmc.VP1-P2A-mS DNAs were transfected into 293 cells,
harvested after 10 days, lysed and purified on a 27–60% discontinuous OptiPrep gradient.
Collected fractions were treated with Benzonase or left untreated before MCV DNA quan-
tification by qPCR (Figure 6A). All preparations showed a peak of Benzonase-sensitive
DNA at fractions 3–4, consistent with unencapsidated DNA in protein aggregates [54].
MCVmc.VP1 banding was present in fractions 7–10 that co-migrated with the Benzonase-
protected MCV genome, consistent with full encapsidation. Neither MCVmc.VP1-mS
nor MCVmc.VP1-P2A-mS generated Benzonase-protected MCV DNA. For MCVmc.VP1-
P2A-mS, VP1 was present in dense fractions, consistent with multimerization without
generation of complete capsid.
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Figure 6. Virus production and infection using MCV mScarlet reporter virus. (A) Western blot and
qPCR analysis of fractions from MCVmc, MCVmc.VP1-mS, and MCVmc.VP1-P2A-mS virions puri-
fied over an Opti-Prep gradient (Iodixanol) (concentrations noted on top). In the qPCR quantification,
the blue curve shows total MCV DNA copy number, while the red curve shows Benzonase-protected
MCV DNA copy numbers. Results represent two independent experiments. (B) Image of MCVmc
virions (from (A)) by negative staining electron microscopy. (C) Western blot and qPCR analy-
sis in Opti-Prep fractions from heterologous VP1/VP2 packaged MCVmc, MCVmc.VP1-mS, and
MCVmc.VP1-P2A-mS. Results represent one-time experiments. Iodixanol concentration for each
fraction is noted on top. qPCR quantification: blue curves show total MCV DNA copy number, while
red curves show the number of Benzonase-resistant MCV DNA copies.
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To generate encapsidated MCV mScarlet reporter viruses, q heterologous MCV genome
was co-transfected together with expression plasmids for the native VP1 and VP2 proteins
at a 3:1 ratio and tested for packaging efficiency in parallel with MCVmc.

Complementation of VP1 and VP2 proteins in trans rescued encapsidation of both
MCVmc.VP1-mS and MCVmc.VP1-P2A-mS genomes, as evidenced by the appearance of
MCV genomic DNA in the VP1-enriched heavy fraction corresponding to encapsidated
genomes (Figure 6C). Infection using 5 × 108 genome copies (MOI 2 × 103) in 293 TRE-sTco
cells generated a small number of mScarlet-expressing cells 8–10 days after infection, repre-
senting a single round of infection using the pseudovirus-packaged fluorescent-encoded
MCV genomes (MCVmc.VP1-mS: 57 cells/well; MCVmc.VP1-P2A-mS: 62 cells/well; and
EGFP-N1 (control): 2063 cells/well) (Figure 7 and Figure S3).

Viruses 2022, 14, x  17 of 22 
 

 

and MCVmc.VP1-P2A-mS. Results represent one-time experiments. Iodixanol concentration for 

each fraction is noted on top. qPCR quantification: blue curves show total MCV DNA copy number, 

while red curves show the number of Benzonase-resistant MCV DNA copies. 

To generate encapsidated MCV mScarlet reporter viruses, q heterologous MCV ge-

nome was co-transfected together with expression plasmids for the native VP1 and VP2 

proteins at a 3:1 ratio and tested for packaging efficiency in parallel with MCVmc. 

Complementation of VP1 and VP2 proteins in trans rescued encapsidation of both 

MCVmc.VP1-mS and MCVmc.VP1-P2A-mS genomes, as evidenced by the appearance of 

MCV genomic DNA in the VP1-enriched heavy fraction corresponding to encapsidated 

genomes (Figure 6C). Infection using 5 × 108 genome copies (MOI 2 × 103) in 293 TRE-sTco 

cells generated a small number of mScarlet-expressing cells 8–10 days after infection, rep-

resenting a single round of infection using the pseudovirus-packaged fluorescent-en-

coded MCV genomes (MCVmc.VP1-mS: 57 cells/well; MCVmc.VP1-P2A-mS: 62 

cells/well; and EGFP-N1 (control): 2063 cells/well) (Figures 7 and S3). 

 

Figure 7. Single-round infection by pseudovirus-packaged MCV reporter. Images represent 293 

TRE-sTco cells infected with exogenous VP1/VP2-packaged pEGFP-N1 (pseudo color green), 

MCVmc, MCVmc.VP1-mS (pseudo color red) or MCVmc.VP1-P2A-mS (red) reporter. Images were 

originally acquired at 40× magnification. 

4. Discussion 

To gain a better understanding of MCV biology, we generated an MCVmc that ena-

bled the production of a covalently closed circular genome free of bacterial sequences and 

amenable to genetic manipulation (Figure 1). Use of MCVmc improves experimental re-

producibility due to the presence of only a single copy of the viral genome per minicircle 

in contrast to in vitro ligated MCV genomes (Figure 1A) that can exist as concatenated 

forms produced by in vitro ligation. In addition to the ease of minicircle production, we 

find that MCVmc replication and gene expression is similar to in vitro ligated MCV ge-

nomes, underscoring the validity of this system for studying the MCV lifecycle. 

Minicircle technology has been used for stable gene expression and circularization of 

small DNA virus genomes, such as HBV and HPV free from bacterial sequences [48–50]. 

Limitations in the system described here derives from the fact that MCV is the smallest 

genome generated using this recombination approach. The constraints on placing recom-

bination sites and fluorescent protein insertions into the MCV genome without eliminat-

ing viral viability required multiple trial and error cloning attempts (Figure 8). The recom-

bination site leaves an extra 39 bp sequence and careful selection of its location was re-

quired to retain virus functionality. As shown in Figure 8, introduction of exogenous se-

quences into MCV genes can alter protein expression and genome packaging. While the 

Figure 7. Single-round infection by pseudovirus-packaged MCV reporter. Images represent 293 TRE-
sTco cells infected with exogenous VP1/VP2-packaged pEGFP-N1 (pseudo color green), MCVmc,
MCVmc.VP1-mS (pseudo color red) or MCVmc.VP1-P2A-mS (red) reporter. Images were originally
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4. Discussion

To gain a better understanding of MCV biology, we generated an MCVmc that enabled
the production of a covalently closed circular genome free of bacterial sequences and
amenable to genetic manipulation (Figure 1). Use of MCVmc improves experimental
reproducibility due to the presence of only a single copy of the viral genome per minicircle
in contrast to in vitro ligated MCV genomes (Figure 1A) that can exist as concatenated
forms produced by in vitro ligation. In addition to the ease of minicircle production, we find
that MCVmc replication and gene expression is similar to in vitro ligated MCV genomes,
underscoring the validity of this system for studying the MCV lifecycle.

Minicircle technology has been used for stable gene expression and circularization of
small DNA virus genomes, such as HBV and HPV free from bacterial sequences [48–50].
Limitations in the system described here derives from the fact that MCV is the smallest
genome generated using this recombination approach. The constraints on placing recombi-
nation sites and fluorescent protein insertions into the MCV genome without eliminating
viral viability required multiple trial and error cloning attempts (Figure 8). The recombina-
tion site leaves an extra 39 bp sequence and careful selection of its location was required
to retain virus functionality. As shown in Figure 8, introduction of exogenous sequences
into MCV genes can alter protein expression and genome packaging. While the recom-
binant MCV minicircle is a valuable new technology for defining MCV biology, careful
comparisons are required to assess potential changes to the virus and its lifecycle caused
by exogenous sequences. We do not find evidence that the recombination site we selected
between the c-termini of the VP1 and LT genes and the “scar” of extraneous sequences
affects virus replication or gene expression, but this remains a potential caveat to this
approach. We find that introduction of the MCV350 NCCR mutation (Rep–) [11] eliminates
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late protein VP1 expression, consistent with newly replicated viral DNA being required
for VP1 protein expression. The β-TrCP phosphorylation site at LT aa 149 is similarly re-
quired for replication and late gene, but not early gene, expression (Figure 3A). Conversely,
introduction of mutations that abolished restriction factors for MCV replication, including
LT-binding sites for Vam6p [41], interaction residues to SCF E3-ligases Fbw7 and Skp2 [12]
or the MCV miR-M1 hairpin [15] markedly increase VP1 expression. Of note, some mutants
displayed cell-type dependent effects. Whereas Fbw7 and hVam6p mutants show these
host cell proteins to be replication restriction factors in 293 cells, they are neutral in U2OS
cells (Figure 3). Different cell lines are characterized by different expression programs and
profiles, which can greatly affect many biological processes. Similar to MCCs, 293 cells
are of neuroendocrine origin, expressing neurofilaments and cytokeratin [55,56], whereas
U2OS are of osteosarcoma origin. It is possible that variation in the expression of specific
host cell proteins between these cell lines may contribute to the cell type-specific effects
we observed.
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Figure 8. Kinetics of MCVmc reporter viruses. (A) A model of MCV replication kinetics, early/late
gene expression as well as viral DNA replication is depicted. LT-Ag and VP1 expression kinetics is
based on the Western blots in Figure 5. The MCV genome replication kinetics is hypothetical. (B) A
map of MCVmcs with sites of fluorescent protein cassettes and minicircle vector insertion is indicated.
(C) A detailed schematic of fluorescent-tagged MCV viral proteins that can be expressed from (A).
Arrows in (B) indicate ribosome-skipping sites for F2A and P2A peptide sequences. (D) A table of
tested MCVmc fluorescent reporter genomes. +: detected in transfected cells; −: not detected in
transfected cells.

Addressing practical implementation, introduction of a fluorescently tagged viral
protein facilitates direct visualization of viral gene expression and and the determination
of MCV replication kinetics (Figures 5 and 8). Extensive manipulation shows that the
site of fluorescent reporter placement is critical. While fusion of mScarlet (mS) to the VP1
c-terminus was tolerated for full genome replication and late gene expression, introduction
of fluorescent tags (mS or ZsGreen, ZsG) on either side of the NCCR, in the sense (5′ of LT
coding sequence) or antisense (5′ to VP2 coding sequence) orientation eliminated late gene
expression (Figure 8B–D). This could be due to interference with proper late gene leader-to-
leader splicing [51,52,57] or disruption of transcriptional regulatory elements in the NCCR.
Ribosome-skipping sequences (P2A or foot-and-mouth disease virus ribosome skipping
sequence, F2A: GSGVKQTNLFDLLKLAGDVESNPGP) cloned between VP1, VP2 or LT
and fluorescent reporter peptides may minimize interference to replication when compared
to their bulky fusion counterparts (Figure 4C). However, because the fluorescent reporter
tags are cleaved from their corresponding, co-translated viral protein by ribosome skipping,
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actual fluorescent signals cannot serve as surrogates for localization purposes. Hence,
the increased intensity of the cytoplasmic signal from MCVmc.VP1-P2A-mS compared
with the predominantly nuclear signal in MCVmc.VP1-mS is likely to reflect cytoplasmic
accumulation of cleaved reporter protein rather than VP1 (Figure 4D).

Development of the VP1 reporter virus allows measurement of replication kinetics
after genome transfection by flow cytometry (Figure 5) which can also be applied to
real-time live-cell microscopy. However, neither the VP1-mS nor VP1-P2A-mS minicircle
virus was able to produce Benzonase-protected encapsidated virus genomes and no viral
particles were visualized in heavy gradient fractions by electron microscopy. This is likely
due to extra amino acids at the VP1 C-terminus (the P2A site leaves a c-terminal 21 amino
acid “tag” on VP1) (Figure 4). Previous structure studies of MCV viral particles show that
alterations at the VP1 c-terminus are functionally crucial. Deletions, including a 37 amino
acid sequence unique to MCV, disrupted the ability of VP1 to form VLP [58]. Our studies
clearly show that addition of even 21 aa onto the VP1 c-terminus disrupts virion assembly.

We used a protocol similar to that reported by Liu et al., [27] to infect a panel of
primary cells. Infection with MCV-ligated [27,59] and MCVmc-produced virions that can
in turn infect primary HFF-1 cells, BJ and immortalized BJ-hTert cells, while infection of
human mesenchymal stem cells is minimal (Figure 2). Use of single-round infection with
MCVmc.VP1-mS and MCVmc.VP1-P2A-mS reporter viruses (Figure 7), packaged into VLP
and gradient-purified, can allow the ready manipulation of factors regulating MCV entry,
uncoating and genome replication [18,25,26].

MCVmc provides an easy and efficient tool to assay MCV replication and its interaction
with the host. Our studies confirm the roles of restriction factors in controlling MCV repli-
cation, including the Fbw7 interaction site in the LT protein. Fluorescent gene expression
coupled with late gene expression provides an excellent tool to visualize MCV replication
kinetics in real time and for use in high-throughput screening targeting MCV replication.
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