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Abstract

Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal
directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with
performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is
associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes,
whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The
N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given
stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related
ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three
ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing
preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the
literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was
significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was
generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task
lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP
topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered
components.With an evenly distributed set of trials and a split-half reliability for all ERP components =.85 the task is well
suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in

clinical populations.
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Introduction

The monitoring and appropriate adjustment of ongoing
behavior is essential for adaptive organisms. The anterior
midcingulate cortex [1] (aMCC) on the posterior fronto-medial
wall, anatomically almost identical to the rostral cingulate zone [2]
and also sometimes labeled dorsal anterior cingulate cortex [3], is
an important constituent of an executive control network
implicated in goal-directed behavior and the possible avoidance
of maladjustments. These functions depend on the monitoring of
ongoing actions, the processing of performance feedback and the
ability to respond or to suppress an initiated response [2]. Some of
these processes can be mapped to event-related potentials (ERP) of
the electroencephalogram, e.g. the feedback-related negativity
(FRN), the error-related negativity (ERN), and the N2 seen in the
context of stop-signal tasks.

The IFRN follows performance feedback and has its most negative
deflection between 200 and 350 ms after feedback presentation. It
has a fronto-central scalp distribution and its source has been
localized to the aMCC [4,5,6,7]. Initially, the FRN had been
associated with the processing of error feedback [5]. More recently,
however, it has been interpreted as an indicator of reward
prediction and expectancy violations [8,9,10,11].
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The error-related negativity (ERN) is an ERP associated with
error processing after the commission of an incorrect response in
forced choice reaction time tasks, reflecting a mismatch of the
executed and intended responses or response conflict monitoring.
The ERN is a sharp negative deflection starting at the onset of
electromyographic activity preceding the overt erroneous response
and peaking about 30 to 100 ms thereafter with a fronto-central
maximum and also an assumed source in the aMCC [12,13,14].

The ERP components of performance monitoring share some
features (e.g. a fronto-central topography and a putative neural
generator in the aMCC) but the interrelationship between the
components is still unresolved. The relationship between the ERN
and FRN was explored earliest [10,15] with respect to transfer of
learning in a probabilistic learning task. Recently the processing of
information obtained during a flanker task when the subject
realized an erroneous response (internal processing) has been
compared to the processing of feedback information given in the
same task (external processing) [16,17]. When the internal
information was sufficient, an ERN could be obtained, and only
when the external information carried enough additional infor-
mation did performance feedback elicit an FRN. The authors
concluded that ERN and FRN share a functional relationship.
The FRN is supposed to rely on the same processes as the ERN,
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but being expressed only if insufficient internal information is
available. Gentsch et al. [16] went a step beyond and used
independent component analysis (ICA) to compare the two event-
related potentials, suggesting a shared neural network of action
outcome updating processes.

With regard to the N2 several variants have been reported in
the literature (for a review see: [18]). Here, we report on the
negative deflection seen in stop-signal tasks when participants have
to withhold a prepared motor response after receiving a stop-
signal. It reaches its maximal deflection about 200 ms after the
stop-signal and has a larger deflection in trials with successful
inhibitions. Like the FRN and ERN the N2 has a fronto-central
scalp topography and is also thought to be generated in the aMCC
[19,20,21]. The N2 might represent the inhibition process or
might even index inhibition success [22,23] but some data suggests
that the driving force of the N2 might not be the inhibitory process
per se, but predominantly the processing of response conflict.
Following this argument, a dissociation between a conflict-driven
N2 component and a P3 component more strongly linked to
inhibition-related processes has been found [24,25].

The N2 shares the time-course, morphology and scalp
distribution of the aforementioned ERPs. Holroyd et al. [26]
compared the FRN elicited in a time-estimation task to the N2
obtained in a separately recorded oddball task and concluded that
the FRN is a variant of the N2 and further stipulated that
modulations in FRN amplitude result from a positive voltage
deflection superpositioned on correct trials. Following this
argument Baker and Holroyd [11] demonstrated in a series of
carefully designed experiments, that the N2 and the FRN are
indeed distinguishable ERP components but may co-occur. In
these experiments the N2 was again linked to conflict processing
whereas the FRN indexed the processing of rewards. In
accordance with the aforementioned notions Yeung and col-
leagues [27,28] proposed a common underlying mechanism for
the ERN and the N2 in terms of response-conflict, assuming that
the monitoring of such conflicts provides a simple way to detect
errors as well.

Because the ERN is time-locked to a response it seemed
plausible that it is merely affected by response-related processes.
However, Dehaene et al. [13] examined erroneous responses
committed with either the right or the left hand and did not find
conclusive topographical differences. This led the authors to
suggest, that the error-monitoring system is independent of exact
motor effectors and does rather work on a more abstract level. The
assumption is supported by the fact that the ERN is independent
of response modality and can be elicited by eye-movement
[29,30], hand or foot responses [31], as well as vocalizations. [32].

Despite the wealth of research on cognitive equivalents of these
performance-monitoring ERPs, studies addressing aspects of
hemispheric specialization in this domain are rather sparse. An
independent functioning of hemispheres as separate cognitive units
[33] in contrast to a load-dependent hemispheric division between
primary task performance and the implementation of adjustments
(e. g. error-correction), has been discussed in the literature [34,33].
For example, error corrective behavior is impaired when
distracting stimuli are presented contralateral to the target [35]
suggesting that the task load may mediate the partitioning of task-
performance and error-monitoring across the hemispheres. Using
two tasks probing known hemispheric specialization (a bargraph
judgment and a lexical decision paradigm) and a flanker task with
unknown hemispheric preference, eleven participants were tested
revealing that across all tasks corrected errors elicited a larger
ERN amplitude with right visual field stimulation which was
interpreted as predominant processing in the left hemisphere [36].
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Unfortunately, however, subjects were asked to give right hand
responses only thus compromising hemispheric processing by
exclusively invoking the left motor cortex.

In motor-inhibition a network has been implied including the
right hemispheric preSMA, the inferior frontal cortex and the
subthalamic nucleus in the basal ganglia [37,38,39,40]. Activation
in this network has also been linked to reaction-time slowing
following stop-signal trials [41]. When comparing ERPs following
successful and failed inhibitions in a stop-signal paradigm a right
frontal lateralized N2 was obtained in children [42] and young
adults [22]. Additionally, higher amplitudes for successful
compared to failed inhibitions seemed to index the activation
and eflicient implementation of the inhibitory process [22]. In
accordance with these observations, a recent study using
simultaneous EEG/fMRI found that the above described network
was associated with both stop- and error-related ERPs in a tactile
stop-signal task [43].

Using a Go/Nogo task adapted to fMRI Liitcke and Frahm
[44] reported bilateral activations in the aMCC in response to
errors (in this case: false alarms, i.e., a motor response after a Nogo
cue), whereas correct inhibition was associated with the right
aMCC. Hence, the right aMCC was activated for both successful
and unsuccessful inhibition, whereas the left aMCC responded
solely to false alarms, when the subject committed an error such
that its engagement can be attributed to error-processing.

Furthermore, it has been shown that variations in left aMCC
morphology are associated with performance differences related to
conflict-related processing [45,46]. Huster et al. [45] found a left-
hemispheric dominance (inferred from N2 amplitude differences)
in males engaged in a tactile stop-signal task. Using verbal stimuli
and visual half-field stimulation with a Go/Nogo task [47] a
behavioral advantage of right visual field stimulation compared to
left visual field stimulation was observed while the N2 amplitude
after Nogo stimuli was attenuated when the stimuli were presented
in the right visual field compared to the left visual field. Here,
however, the known lateralization of verbal stimuli could have
interfered with a thorough analysis of the inhibition process
[48,49].

To our knowledge no attempt to test the functional lateraliza-
tion of the feedback-driven FRN has been reported yet.

Here, we aim to reliably elicit the three performance monitoring
related ERPs (with an aMCC generator, a fronto-central
topography and a latency and time-course matching the above
given description of the components) in the same session within the
same task. We combined the time-estimation task utilized in
Holroyd and Krigolson [8] and a stop-signal task and modified
them for use in the tactile domain for optimal hemispheric
separation. The FRN is to be elicited after the presentation of
unexpected feedback. The time-estimation task was designed to
include a condition with infrequent — thus unexpected - errors
(easy condition) and a second condition with frequent and
expected errors (hard condition) allowing us to dissociate the
valence of the given performance feedback (correct vs. error) and
the expectancy (expected vs. unexpected). Expectations of the
participants are violated more by rare errors in the easy condition
compared to the frequently occurring errors in the hard condition,
and by rare correct responses in the hard condition compared to
the more frequent correct responses in the easy condition. Here, in
accordance with Holroyd and Krigolson [8], we expect the
difference wave isolating effects of unexpected performance
feedback to exhibit a more pronounced modulation than the
one for expected feedback. The N2 will be elicited in trials with
successful inhibitions after the reception of a stop-signal. A failure
to inhibit the prepared motor response (i.e. an action slip) will elicit
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an ERN. The interrelationship between these components will be
assessed using bivariate regression analyses.

Recent reports suggest a large overlap and similarity between
these performance monitoring ERPs [16,17,20] as well as
concerning their neural generators [2,16,50]. However, according
to the abovementioned studies a differential lateralization of these
ERPs might be expected, especially with respect to the N2
component. The evidence for a hemispheric processing of error-
related signals is much weaker [13,36,44]. If at all we expect
slightly left hemispheric advantages for the ERN. No differences in
hemispheric processing for the FRN are expected. Since we are
using non-verbal stimuli we expect to find advantages of the right
hemisphere for behavioral indices of inhibitory processing.

Materials and Methods

Participants

24 right-handed, healthy young adults (16 female; 26.13£4.64
years old), recruited from the institute’s pool of regular
participants, participated in the study. All participants volunteered
and provided written informed consent. They were paid 15 Euro
for participation. The study was conducted in accordance with the
ethical standards described in the declaration of Helsinki and was
approved by the ethics committee of the University Hospital
Miinster.

Apparatus and Procedure

A task similar to that proposed by Miltner et al. [5] and Holroyd
et al. [8,26] was employed in which participants were required to
press a button after they felt one second had elapsed (set up in
Presentation v10.3, Neurobehavioral Systems Inc., Albany,
U.S.A)). Participants were comfortably seated in a chair placed
in a sound attenuated and shielded room. Tactile stimuli were
applied by means of a device that translates air pressure,
transferred via plastic tubes and acting at a membrane, to tactile
stimulations. This stimulation device has already successfully been
applied in different studies (e.g. [43]. Clamps hold the membranes
attached to a subject’s fingertip. Here, these clamps and
membranes were used to stimulate the index, middle and ring
fingers of the left and the right hands. The strength of the
stimulation was adapted as to cause clearly suprathreshold but not
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painful sensations. Each trial commenced with a tactile cue to the
index finger that lasted for 50 ms indicating the beginning of the
estimation period. When participants believed that one second had
elapsed they were instructed to register this by pressing a button
with the index finger. Participants received feedback indicating the
accuracy of their estimation 600 ms following the response. A
response was considered on time if it occurred within an adaptive
response time window (RTW) centered around 1000 ms (see
below), and was considered not on time otherwise. Feedback
stimuli consisted of tactile cues applied to the middle- or ring finger
of either the left or the right hand for a given block of trials. The
offset of the feedback was followed by a resting period with a
variable duration ranging from 200 to 900 ms (see Figure 1). One
block consisted of 30 consecutive trials during which responses
were to be given with the very same hand that also received the
tactile stimuli. The mapping of positive or negative feedback to the
middle or ring finger was counterbalanced across subjects.

The RTW was initialized at 1000 ms*100 ms. If participants
responded on time, they received correct feedback in the first trial.
In the following trials the size of the RTW decreased, if the
response was made within the borders of the RTW and increased
otherwise. The amount of this adaptation varied in correspon-
dence with the experimental conditions: control, easy, and hard
[8,26]. In the control condition the window size increased or
decreased symmetrically by 10 ms. The RTW grew faster than it
narrowed during the easy condition, where it increased by 12 ms
on erroneous trials and decreased by 4 ms on correct trials. In the
hard condition the window size increased by 4 ms on error trials
and decreased by 12 ms on correct trials.

The time-estimation task was interspersed with 20% stop-signal
trials. The stop-signal stimulus consisted of a tactile cue to the
index finger. The stop-signal was initialized based on the average
response time of the last 8 responses minus 150 ms. Following
each stop-signal trial, the stop-signal onset asynchrony was
decreased by 7 ms following correct inhibition and increased by
the same amount after failed inhibitions.

Participants began the experiment by completing two blocks of
30 practice trials of the control condition also interspersed with
20% stop-signal trials. During practice trials visual feedback was
provided (correct: green smiley; error: red frowny) in addition to
the tactile feedback to accustom participants with the tactile

N2 N2
== ==
576
trials (80%) Estlmatlon mtervall Jitter
Tactile Cue Response Tactile Feedback
\\II/
144
stop-signal __1000ms 200 - 900 ms
trials (20%) Estlmatlon Jitter
Tactile Cue Stop Signal

Figure 1. Time-estimation task with interspersed stop-signal trials. The tactile time-estimation task included three conditions (control, easy,
hard) with different response-window adaptations leading to different error-rates (see text for details). In the randomly assigned stop-signal trials
prior to response execution a stop-signal indicated the need to inhibit the response. Hand symbols from ITT Bombay (www.designofsignage.com).

doi:10.1371/journal.pone.0025591.g001
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Figure 2. Electrode Array. 72 of the 80 EEG-electrodes used are
depicted. The 15 central electrodes were used to compare the peak-
amplitudes and topographies of the ERPs. For the Global Map
Dissimilarity measure all 80 electrodes were included in the analyses.
doi:10.1371/journal.pone.0025591.g002

feedback mapping. After this short practice session participants
completed eight blocks of the control condition (240 trials in total).
The control condition was followed by eight consecutive blocks in
each the easy and hard condition, the order of which (control —
easy — hard or control — hard — easy) was counterbalanced across
participants. Thus, across the three experimental conditions there
were 720 trials in total: 576 time-estimation trials, and 144 stop-
signal trials. The use of the right- and left hand was consistent in
each block but alternated between blocks (every 30 trials).

Participants were informed that some blocks would be more
difficult than others, but were not specifically told which blocks
were hard or easy. To avoid unnecessary initial adjustments at the
beginning of each condition, the RTW established at the end of
the control condition served as starting point for both the hard and
easy condition. Participants were given self-paced resting periods
after every 4™ block (120 trials).

Data Acquisition and ERP parameterization

Response time (in milliseconds) and accuracy (percentage of on
time, not on time, and failed inhibition trials) were computed.

Scalp voltage fluctuations were collected using 80 Ag/AgCl
scalp electrodes arranged in accordance with the extended 10-20
system (see Figure 2) and recorded using a CTF System (VSM
MedTech Ltd., Coquitlam, Canada) with impedances kept under
5 kQ. The EEG electrodes were referenced online to electrode
FCz. Electrodes placed at the infra- and supra-orbital ridges of the
right eye monitored vertical eye movements and electrodes placed
on the outer canthi of the eyes recorded the horizontal
electrooculogram. EEG data were sampled at 600 Hz, and low-
pass filtered at 200 Hz.

Offline, the data was filtered between 0.5 Hz and 40 Hz and re-
referenced to the common average of all electrodes. After the
removal of major artifacts by means of visual inspection and
replacement of bad channel data through spherical splines
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interpolation [51,52] the continuous datastream was submitted
to a temporal extended infomax independent component analysis
(ICA) using EEGLAB [53] and custom Matlab 2009b routines
(The MathWorks Inc., Natick, U.S.A)). A spatial principal
component analysis was used to reduce the dimensionality of the
EEG from 80 channels to 30 principal components prior to
performing ICA. Independent components representing eye-
movement, pulse-, and muscular artifacts were discarded (mean
discarded number of components: 9.75+2.5, range 5-16).

To compare the analysis of the FRN to previous reports we
followed the steps suggested in Holroyd and Krigolson [8] and
created difference waves for each participant: a) one difference
wave of the control condition by subtracting the correct ERP from
the error ERP, b) a difference wave for the unexpected feedback
by subtracting the correct ERP of the hard condition from the
error ERP in the easy condition (i.e., infrequent error — infrequent
correct), and c) a difference wave for expected feedback by
subtracting the correct ERP of the easy condition from the error
ERP of the hard condition (i.e., frequent error — frequent correct).
The epochs for the FRN spanned from 200 ms prior to 600 ms
following the feedback, and were baseline corrected with respect to
the 200 ms prior to feedback presentation. The magnitude of the
FRN in the described difference waves was defined as the most
negative deflection in the 600 ms following the stimulus.

Stop-related epochs (from 200 ms prior to 600 ms post stop
stimulus) were extracted and baseline corrected with the mean of
the 200 ms pre-stimulus interval. The amplitude of the N2 was
then quantified for each participant and channel as the difference
between the most negative deflection between 120 ms and 280 ms
following the stop-signal and the preceding positive deflection in
trials with successful inhibitions.

In order to analyze the ERN, response-related epochs (200 ms
pre- to 600 ms post-response) were extracted. The epochs were
baseline corrected with the mean of the 200 ms previous to the
preceding stop-signal. The amplitude of the ERN was measured
for each participant and electrode as the difference between the
most negative deflection in the first 120 ms following the
erroneous response, failing the signaled inhibition, and the
preceding positive deflection. The trough-to-peak measurement
utilized here has been suggested as baseline independent
quantification for the N2 and ERN [54,55]. The number of
obtained trials for ERP analysis can be seen in Table 1.

To trace their main generators inverse calculations for the three
ERPs of interest (FRN, N2, ERN), averaged across hands and
subjects, were computed. Anatomical landmarks (nasion, left and
right preauricular points) were used to coregister the electrode
positions of one elected subject to its structural MRI. A three-
compartment boundary element model was computed for this
participant. The resolution of the meshes was set to 9, 8 and 6 mm

Table 1. Number of trials for ERP analysis.

Left Hand Right Hand

28.3%3.6 (22-35)
Incorrect response easy condition ~ 27.0+4.1 (20-35)
N2 40.5%3.6 (34-50)
ERN 25.7+4.4 (16-32)

26.8+4.8 (19-40)
27.5+4.6 (17-40)
36.414.2 (29-44)
28.8%5.4 (17-36)

Correct response hard condition

Mean, standard deviation and range of trials used for ERP analyses. For the
analysis of the FRN the difference between the average of the correct responses
in the hard condition and the incorrect responses in the easy condition had
been calculated.

doi:10.1371/journal.pone.0025591.t001
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for skin, skull and brain, respectively. Standard conductivity values
for the three compartments were set to: skin=0.33 S/m,
skull =0.0042 S/m, brain = 0.33 S/m. After gray matter segmen-
tation of the brain, a representation of the cortex excluding the
brainstem and cerebellum was computed to limit the source space
for the inverse solution. Current density reconstructions (CDR)
were calculated using the SWARM method [56], which belongs to
the family of weighted minimum norm solutions with its weights
being based on a previously computed sLORETA outcome.
Figures 3, 4, and 5 exhibit the solutions averaged across data
points of 20 ms intervals around the peak alongside the ERPs.

Statistical Analyses

Erroneous estimations in time-estimation trials, successful
mnhibitions and errors of commission after stop-signals were
calculated as percentages for the whole experiment and for each
condition. Differences between CONDITIONS (control, easy,
hard), HANDS (left, right), EXPECTANCY (expected, unexpect-
ed) and VALENCE (correct, error) of the feedback were calculated
using a repeated measure ANOVA. Changes in reaction
(estimation) time were calculated as absolute change after
erroneous responses compared to response times after correct
responses within the RTW. The stop-signal asynchrony was
defined as the delay of the stop signal following the estimation cue.
A stop-signal reaction time (SSRT) could not be calculated given
the characteristics of the underlying time-estimation task. An
estimate of a plausible reaction time for each stop-signal trial was
derived by calculating the mean of the last 8 estimation trials
preceding the stop-signal trial. Possible transfer effects across tasks,
especially on the estimation trial following a stop-signal trial will be
defined as changes in error rates as well as changes in estimation
accuracy in the estimation trial following the stop-signal trial.

ERPs were analyzed by considering the electrodes depicted in
Figure 2, covering the midline electrodes Fz, FCz, Cz, CPz, Pz and
two-electrode rows lateral to midline. Separate repeated measure
ANOVAs were calculated for each ERP with the factors: HAND
(left, right), anterior to posterior vector (A-P: Frontal, Fronto-
Central, Central, Central-Parietal, Parictal) and LATERALITY
(electrode rows left (3 & 1), central, right (2 & 4)).

After the aforementioned ANOVAs revealed electrode FCz as
site. with the maximal deflection for all considered ERPs we
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performed the following reliability analyzes: the within-session
reliability for the ERPs was calculated by forming separate average
ERPs for even and odd trials for the FRN, N2, and ERN. Pearson
correlations are reported for the peak measurements of the
difference based FRN, and the through-to-peak measurement of
the N2 and ERN. Because split-half reliability metrics are based
on only half of the trials (odd or even trial number), these measures
were corrected using the Spearman and Brown prophecy formula
[57]. To assess the interrelationship between the ERPs bivariate
regressions were calculated between the FRN and N2, FRN and
ERN, and N2 and ERN for the z-normalized peaks (FRN) or
through-to-peak (N2, ERN) measurements at electrode FCz.

Lower order effects will only be reported when the nature of
higher order effects allow for their interpretation. Greenhouse-
Geisser epsilon corrections were computed where appropriate.
The software package PASW Statistic 18 (IBM Corporation, New
York, USA) was used for statistical evaluations.

In addition to statistical significance testing, effect size estimates
were computed using procedures described in [58,59]. Here,
partial eta squared (np2) was computed for statistical comparisons.
To avoid reporting large amounts of statistical results not relevant
to our investigation, only relevant main effects and interactions of
post-hoc tests are described.

To compare the whole head scalp topographies the Global Map
Differences, as suggested in [60], were calculated (for reviews see:
[61,62]) between the topographies of the potentials -elicited
through the use of the right or left hand respectively and also
between the potentials. In short, this parameter equals the square
root of the mean of the squared differences between the
normalized potentials measured at each electrode. The resulting
Global Map Dissimilarity Index can range from 0 (topographic
homogeneity) to 2 (topographic inversion). We used a permutation
approach to estimate the probability of our results (sometimes
refered to as TANOVA; see [61] for further details). For this
approach the single subject maps a) are reassigned to different
hand or component condition at a within subject level (permu-
tation of the data), b) the group average ERPs are recalculated,
and c¢) the GMD for this “new” ERP is derived. Based on n
participants, in principle 2" permutations are possible but it has
been suggested, that about 1,000-5,000 permutations are
sufficient [63]. Here we used 100,000 permutations for all tests.

A Unexpected ~ Global Map Difference Unexpected C
left hand feedback

right hand feedback

GMD =.113 -3

2]

= unexpected feedbacko the left Hand
== unexpected feedback to the right Hand 4
=== expected feedback to the left Hand

=== expected feedback to the right Hand

-100 0

100 200 300 400 500 600

Figure 3. ERP data associated with performance-feedback in the time-estimation task (FRN). A: Scalp topographies for the left and right
hand unexpected difference wave FRN peaks and histogram of the Global Map Dissimilarity permutation test between these two topographies. B;

SWARM solution for the FRN revealing an aMCC source. C: Difference

wave for expected and unexpected outcomes as observed at channel FCz.

Tactile performance feedback was received at 0 on the abscissa. Note that negative voltages are plotted upwards by convention.

doi:10.1371/journal.pone.0025591.g003
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A Global Map Difference
left hand inhibition

right hand inhibition
8

%

Stop Signal

== inhibition of the left Hand ]
2 - — inhibition of, the right Hand|
-100 O 100 200 300 400 500 600

Figure 4. ERP data associated with successful inhibition after a stop-signal cue (N2). A: Scalp topographies for the left and right hand N2
peaks and histogram of the Global Map Dissimilarity permutation test between these two topographies. B: SWARM solution for the N2 revealing the
aMCC as well the right inferior frontal cortex as source. C: ERPs recorded at channel FCz. Tactile stop-signal cue given at 0 on the abscissa.
doi:10.1371/journal.pone.0025591.g004

Results 50.2%), in the hard condition in about "3 of the trials (LH: 29.9%;
RH: 28.3%), and in % of the easy trials (LH: 71.8%; RH: 70.9%).

Behavioral Data No differences between LH and RH stimulations were seen (F<1).
Time-estimation. The behavioral data indicate a successful Consistent with the error rate, the median size of the response
manipulation of time-estimation success (Fo 46 = 2083.48, p<<.001, window was smaller in the hard condition (LH: 112 ms *+39; RH:
np2 =.99): in the control condition participants were correct on 108 ms *=39) than in the easy condition (LH: 316 ms *89; RH:

about Y2 of the trials (left hand (LH): 48.5%; right hand (RH): 321 ms *103)( F) 23 =206.50, p<<.001, np2= .90). Again no effect

Global Map Difference

left hand response right hand response

Response

o @ b

IJ"‘

10 FCz = erronous response of the left hand
= erronous response of the right hand

msec

s

7100 0 100 200 300 400 500 600

Figure 5. ERP data associated with the action-slip following a stop-signal cue (ERN). A: Scalp topographies for the left and right hand ERN
peaks and histogram of the Global Map Dissimilarity permutation test between these two topograhies. B: SWARM solution for the ERN showing the
aMCC as source. C: ERPs recorded at channel FCz. Responses were recorded at 0 on the abscissa.

doi:10.1371/journal.pone.0025591.g005
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of hand or interaction of hand and condition were observed. The
absolute change in reaction time was larger on trials that
immediately followed error trials than on trials that immediately
followed correct trials in all conditions (/% 3= 268.36, p<<.001,
T’po =.92), with the smallest adaptation after correct responses in
the hard condition (Fy 46 = 3.95, p=.026, np2 =.15)(see Figure 6).

Since we were also interested in putative effects due to
differences of the valence of the feedback or the expectancy, we
subjected the absolute change in response time on the following
trial to a repeated measure ANOVA including the factors hand,
expectancy and valence. This revealed a main effect of valence
(I 23=161.69, p<<.001, N> =.88), a main effect of expectancy
(F1,93=28.99, p<.006, np‘ =.28), and an interaction between
expectancy and valence (F 93 =10.86, p=.003, nPQ =.32) leading
to greater change in reaction time especially following unexpected
error feedback. No main effect of or interaction with hand was
observed (F<1).

Stop-signal trials. In about half of the stop-trials participants
successfully inhibited their responses. Interestingly, the percentage
of successful stops-trials was larger with left- as compared to right-
hand stimulations (LH: 56.6% =*5.1; RH: 50.7% *5.1;
F195=9.17, p=.006, 1’]},2 =.29). An approximation of the
SSRT, the distance between the stop-signal and the mean
reaction time of the preceding eight reactions, was 192 ms *26
for the left hand and 193 ms =28 for the right hand (no significant
difference, F<<1). Possible conflicts in information processing,
which could arise from inhibitory mechanisms, did not seem to
spread to the following estimation trial: neither did error rates nor
the estimation accuracy after stop-signal trials change between the
estimation-trials preceding the stop-signal trial and the estimation-
trial following the stop-signal trial (F<<1).

No behavioral differences in inhibition performance or
erroneously committed responses after stop signals were found
between the three difficulty conditions of the time-estimation task.
During the control condition the stop signal was presented earlier
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Figure 6. Performance data in the time-estimation task.
Absolute changes in response time following expected (correct easy
trials and erroneous hard trials) and unexpected outcomes (correct hard
trials and erroneous easy trials).
doi:10.1371/journal.pone.0025591.9g006
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Table 2. ERP amplitudes at electrode FCz.

Left Hand Right Hand
FRN expected feedback —3.78 uWW=+2.46 —4.05 uV=2.01
FRN unexpected feedback —5.62 uvV=+2.98 —6.13 nW=*3.44
N2 —6.14 uV+2.94 —6.81 uV*+3.94
ERN —5.69 pV=2.97 —5.77 pV=2.82

doi:10.1371/journal.pone.0025591.t002

in comparison to both other stages (Control: 1212 ms *50, Easy:
1162 ms *£67, Hard: 1161 ms *=79; F g5 3559 =6.65, p=.005,
T]p2 =.22) with no differences between the easy and hard
conditions. This might be due to a learning effect and consequent
adjustment of inhibition performance since the control condition
was always presented first.

Electrophysiological Data

FRN. Difference waves for expected and unexpected
outcomes and for the control condition exhibited a fronto-
central scalp distribution with a maximal deflection at electrode
FCz without significant differences due to hand.

The peak amplitude of the difference wave for unexpected
outcomes was larger than the peak amplitude of the difference
wave for expected outcomes (Table 2 & Table 3) yielding a
significant difference between conditions but not between hands
(F1,93=16.90; p<<.001; 1’]p2 =.424, and p>.2 for the factor hand).
The scalp topography for unexpected outcomes appeared wider
and more frontal as compared to the scalp topography for
expected outcomes (Figure 3). No effect of hand, used to receive
feedback, was observed in either condition.

The GMD index for comparing the difference waves for
receiving unexpected feedback on the left and right hand did not
reveal differences of the scalp distribution (GMD=.113, p>.1).
Source localization suggests a generator in the posterior medial
frontal wall including aMCC (Figure 3B).

N2. Following the stop-signals with a successful response
inhibition, a negative deflection was present in the ERPs. The
peak amplitude across all conditions of the time-estimation task
was maximal at FCz. No influences of the conditions’ difficulty of
the time-estimation task on the N2 component regarding its peak
amplitude or topography were observed. Through all conditions a
fronto-central scalp distribution was present with a central-right
maximum for both hands. The topography was shifted to the
ipsilateral side of the stop-stimulus receiving hand as indicated by
the significant interaction of HAND and topographical factors
(Table 2 & Table 4) and the GMD permutation (GMD=.068,
p=.006). The main effect of LATERALITY confirms the visual
impression of a general rightward shift of the N2 independent of

Table 3. FRN-related ANOVA with factors Expectancy
(Expected, Unexpected), Hand (left, right), A-P, and Laterality.

Factor df F p np2
Expectancy 1 23.18 <.001 .502
Laterality 1.86 12.62 <.001 354
Expectancy * AP 1.55 4.00 .037 .148
A-P* Laterality 4.23 459 .002 .166

doi:10.1371/journal.pone.0025591.t003
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Table 4. N2-related ANOVA with factors Hand, A-P, and
Laterality.

Factor df F p N>
AP 1.72 4.25 .02 156
Laterality 2.10 2.88 .06 AN
Hand * Laterality 1.88 19.99 <.001 465
AP * Laterality 3.95 273 .034 .106
Hand * AP * Laterality 437 4.82 .001 173

doi:10.1371/journal.pone.0025591.t004

response hand (Figure 4). Source localization suggests generators
in the posterior medial frontal wall including aMCC and in the
right inferior frontal cortex (Figure 4B).

ERN. Errors of commission after the stop-signal elicited an
ERN that reached its maximum at electrode FCz (Figure 5). The
amplitude peaked about 60 ms after the response with no
significant differences between hands or conditions of the time-
estimation task (Table 2 & Table 5).

Overall, the scalp distribution of the ERN was fronto-central
and leaned to the hemisphere contralateral to the response hand
within the electrode array analyzed with the ANOVA. However,
this topography shift did not reach significance, which is also
supported by the GMD permutation comparing left and right
hand errors (GMD=.160, p>.1). Source localization suggests a
generator in posterior medial frontal cortex including aMCC
(Figure 5B).

Comparison and Reliability

For the N2 the ANOVA and the GMD indices suggested a right
lateralized topography with successful inhibition of the right hand,
and a more central topography with successful inhibitions of the
left hand. The ERN and the FRN showed no lateralization.

Utilizing the GMD measure we also compared the normalized
scalp distribution of the same hand between all components. This
analysis revealed GMD distribution means below 0.15 (see
Table 6). Considering the range of the GMD (0-2) this suggests
highly similar scalp topographies with only minor differing
constituents.

Bivariate regression analyses between the z-normalized peak
amplitudes of the three components revealed strong associations
between the FRN, N2, and ERN amplitudes. The relationship
between the amplitudes of the N2 and ERN was strongest
(B=.755; SEM = .140; t=5.407; p>.001; R?=.571), whercas the
relationship between the N2 and FRN was much weaker (f = .426;
SEM =.193; (=2.21; p=.038; R?=.181). The relationship
between ERN and FRN amplitudes was in between (f=.553;

Table 5. ERN-related ANOVA with factors Hand, A-P, and
Laterality.

Factor df F P N2
AP 1.78 12.81 <.001 358
Laterality 1.85 12.15 .001 346
AP * Laterality 5.11 2.49 .034 .098
Hand * AP * Laterality 4.50 3.43 .009 130

doi:10.1371/journal.pone.0025591.t005
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Table 6. Global Map Dissimilarity scores comparing the ERPs.

Comparison left hand right hand

GMDscore P GMDscore P
FRN vs. N2 21 .001 14 .007
FRN vs. ERN .19 2211 24 .007
N2 vs. ERN .26 <.001 .29 <.001

Using 100,000 permutations the Global Map Dissimilarity between two ERP
topographies is estimated. The GMD-score ranges from 0 =identical
topographies to 2 =inverted topographies.
doi:10.1371/journal.pone.0025591.t006

SEM =.178; t=3.111; p=.005; R*=.306). These results are also
depicted in Figure 7.

For all ERPs the calculated split-half reliability was high (FRN:
r=.85, p<<.001; N2: r=.91, p<<.001; ERN: r=.89, p<<.001)
indicating that with the task at hand the ERPs of interest could be
elicited and measured reliably.

Discussion

In the present study we designed a task to elicit three event-
related potentials known to reflect performance-monitoring
processes: the feedback-driven FRN, the stop-related N2, and
the ERN following an action slip. To this end we used a
completely lateralized, tactile time-estimation task interspersed
with infrequent stop-signal trials while recording EEG. We aimed
to reliably measure these ERPs, associated scalp topographies and
also to discern potentially different laterality patterns or hemi-
spheric processing preferences of these components.

The expectancy manipulation proposed in [8] with an
asymmetrical adjustment of the response window for time-
estimations after correct and erroneous estimations lead to error
rates for the easy and hard condition of 1/3 and 2/3, respectively.
Hence, in the easy condition the participants expected to have
estimated the time interval appropriately in the majority of trials,

34

B=.755

z-normalized yVv

z-normalized pV

Figure 7. Regression analyses between FRN, N2, and ERN. Peak
amplitudes of the ERPs were z-normalized. Bivariate regression analyses
between the N2 and ERN revealed a strong relationship (f=.755;
SEM =.140; t=5.407; p<.001) between the N2 and ERN, and much less
shared variance between the N2 and FRN (f=.426; SEM=.193; t=2.21;
p =.038). Coefficents of the bivariate regression between ERN and FRN
are in between the aforementioned ones (f=.553; SEM=.178; t=3.11;
p=.005).

doi:10.1371/journal.pone.0025591.9g007
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whereas in the hard condition an erroneous estimation was
expected to occur more often. In about half of the interspersed
stop-signal trials the participants were able to successfully inhibit
their prepared motor-response, and failed in the remaining trials.

Lateralization

Hemispheric differences were found only for the stopping
condition and the associated N2. Participants were more successful
in inhibiting prepared responses of the left hand as compared to
the right hand, suggesting a right hemispheric inhibition
advantage. Whereas N2 peak amplitudes were not affected by
lateralization of stimuli and responses, a complex topographical
shift was observed: The generally fronto-central N2 scalp
distribution was shifted ipsilateral to the stimulation/response
side, but more so for right-sided than for left-sided stop trials. The
latter finding suggests a general right-shift in the topography,
which is supported by source localization in which in addition to
the aMCC the right inferior frontal cortex seems to contribute to
N2 generation. Both, the topographical right shift and the right
inferior frontal source had been expected based on previous
studies reporting right lateralized N2 topographies [22,42]. Also
fMRI and lesions studies describe a right hemispheric network as
key element in response inhibition [37,38,41] as well as in conflict
monitoring [44]. Our findings contrast a prior finding where at
least male subjects showed a pattern suggestive of left-hemispheric
dominance in N2-related processes [45] with a larger N2
amplitudes evoked by right-hand stimulations. An explorative
analysis of our data, calculated separately according to sex, did not
reveal any behavioral differences or different ERP amplitudes
between the sexes. Given that leftward MCC folding asymmetries,
signifying a larger aMCC in the left hemisphere, has been shown
to be associated with increased performance monitoring capabil-
ities and ERPs [46,64,65], this issue needs further investigation.

The additional ipsilateral topographical shift of the N2
depending on stimulus/response side might be explained by
several accounts. Recently, functional suppression of activity in the
contralateral motor cortex during motor inhibition had been
suggested [40,66]. According to this notion, an already prepared
motor-plan has to be suppressed and this inhibition process will
lead to a relative increase of ipsilateral motor cortex activation.
The ipsilateral shift of N2 topographies observed in with our task
might lend further support to this idea. However, the N2 does not
overlap with beta band activity in the motor cortex which has most
consistently been associated with motor inhibition [67]. Alterna-
tively, if the N2 is associated with inhibitory activity or response
conflict on stop trials, its medial frontal source might be dependent
on the side of the prepared motor response or input of the stop
signal.

An ERN topography most pronounced contralateral to the
response hand had been suggested [68] and attributed to motor
processes and an inhibition of the ipsilateral motor cortex through
synchronized theta-band oscillations. However, neither advantag-
es in favor of left-hemispheric processing, nor differences in peak
amplitude which were to be expected with right-handed
participants [36], nor a shift in topographies for the ERN was
observed in this study. Similarly, the FRN did not show any
topographical shifts or amplitude modulations dependent on
response/feedback hand. This seems to suggest that the processes
underlying ERN and FRN do not exhibit a strong hemispheric
asymmetry. For the N2, this seems to be different, suggesting that
it (a) at least partly does reflect different processes, (b) is associated
with the motor system and/or (c) shows a higher degree of
hemisphericity than the other two components. For all three ERPs
a source in the aMCC was obtained and only minor topographical
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differences were present, suggesting a large functional overlap. As
suggested in [16,17] the FRN and ERN reflect closely related
processes and are likely to rely on a shared network for updating
action outcome processes. The topographic differences found
between the components may also reflect the differential
contribution of simultaneously ongoing processes linked to either
the motor response, motor inhibition or sensory (feedback) input,
without being directly associated with performance monitoring per
se. Pair-wise regression analyses also indicated strong similarities
between all three ERPs, suggesting that the ERN shares significant
commonalities with the other two performance monitoring ERPs.
However, it should be noted that the current study, while
suggesting many commonalities between the processes reflected
by N2, ERN and FRN, cannot test or integrate theories of
performance monitoring that, up to now, each can link only two of
the components (e.g., conflict monitoring: N2, ERN [20,69];
mismatch and reinforcement learning theories: ERN, FRIN [10]).

An efficient paradigm for reliable tests of performance
monitoring

Our results suggest that the presented new paradigm combining
adaptive time estimation and a stop signal task is well suited for
efficiently eliciting three robust and reliable ERP correlates of
performance monitoring. The two-fold task-adaptations (a stair-
case procedure for the stop-signal delay and the adaptation of the
response time window for the time-estimation) led to an evenly
distributed number of trials for optimal analyzes of the ERPs,
avoiding frequency effects. We obtained high reliability indices for
all ERPs (>.85) establishing the task as a reliable tool to research
group differences. Only for the ERN similarly high values for split-
half reliabilities for a peak measurement were reported before
[70]. The reliability of the FRN has not been investigated before.
High reliability indices are especially important when these
components or specific differences between these components
are used in clinical settings to establish groups or endophenotypes,
as has been suggested for obsessive-compulsive disorder [71]. No
specific value of reliability can be considered a cutoff’ for
acceptability, but Helmstadter [72] suggested .5 for group studies
and in clinical relevant individual assessments .94, so that ERPs
are rarely used for individual clinical diagnostic assessments but
still prove highly useful for research.

When lateralization is not of interest, the same paradigm could
easily be transferred to the visual domain, and, given the high
reliability of the ERPs, the trial number could be reduced, such
that the duration would become less than 30 min. Indeed, in one
of our pre-studies, conducted to confirm the behavioral adaptation
effects of the task, we already used visual cues with success.

As such, this novel paradigm presented here might be a useful
tool for the study of inter-individual differences or pathological
changes in clinical populations [73]. Considering the different
sources of information processed for effective performance-
monitoring with this paradigm (e.g. internal error monitoring vs.
external task- and feedback-stimuli) and cognitive processes
targeted with this task, it is possible to disentangle whether
pathology affects the performance monitoring system as a whole
[2] or rather its subcomponents.

Patients with Tourette’s Syndrome might serve as an example of
a clinically relevant population as augmented inhibitory control in
patients has been postulated [74,75]. Increased inhibitory control
has been associated with an activation of prefrontal brain regions
during tic suppression [76] and was found during performance of a
demanding cognitive task [77]. On the other hand, performance-
monitoring per se or error-processing behavior was not affected
[78]. Similarly, in obsessive-compulsive disorder (OCD) hyperac-
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tive error processing has consistently been found (e.g. [79,80,81]),
but possible impairments in context of expectancy violations or
inhibition have not yet been explored systematically. Beyond this,
it was suggested that with this population the processing of internal
performance measures in probabilistic learning tasks stands in
contrast to internal performance measures in simple choice
reaction time tasks [82]. Impulse control, especially inhibitory
control, is also studied in the context of attention-deficit/
hyperactivity disorder where the N2 amplitude is reduced in
ADHD children [42]. A reduced ERN amplitude has also been
found in an ADHD group suggesting a global impairment in
cognitive control [83] which could now be tested using one task in
one single short session (~30 min).
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