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,e detection of significant moments can support the care of individuals with dementia bymaking visible what is most meaningful
to them and maintaining a sense of interpersonal connection. We present a novel intelligent assistive technology (IAT) for the
detection of significant moments based on patterns of physiological signal changes in individuals with dementia and their
caregivers. ,e parameters of the IAT are tailored to each individual’s idiosyncratic physiological response patterns through an
iterative process of incorporating subjective feedback on videos extracted from candidate significant moments identified through
the IAT algorithm. ,e IAT was tested on three dyads (individual with dementia and their primary caregiver) during an eight-
week movement program. Upon completion of the program, the IAT identified distinct, personal characteristics of physiological
responsiveness in each participant. Tailored algorithms could detect moments of significance experienced by either member of the
dyad with an agreement with subjective reports of 70%. ,ese moments were constituted by both physical and emotional
significances (e.g., experiences of pain or anxiety) and interpersonal significance (e.g., moments of heighted connection). We
provide a freely available MATLAB toolbox with the IAT software in hopes that the assistive technology community can benefit
from and contribute to these tools for understanding the subjective experiences of individuals with dementia.

1. Introduction

,e prevalence of dementia is expected to dramatically
increase in the coming decades: in Canada, it is anticipated
that the number of individuals over the age of 65 living with
dementia will double within the next 20 years [1]. Dementia
is a set of symptoms caused by disorders and diseases af-
fecting the brain, including Alzheimer’s disease and vascular
dementia. Individuals with dementia typically experience
memory loss, difficulties with problem-solving, language
and orientation, and altered mood and behavior. ,ese
symptoms diminish the individual’s ability to perform ac-
tivities of daily living and disrupt their relationships, often
reducing their ability to participate in society and requiring
significant support in their daily lives. At present, hospitals
in Canada already provide full-time care to approximately

51,000 individuals with dementia [1], and almost half a
millionmore are cared for by family and informal caregivers.
,e indirect annual cost of caring for those with dementia is
conservatively estimated at $1.2 billion; this estimate is
projected to double by 2031 [1].

In response to the escalating demands of caring for persons
with dementia, intelligent assistive technologies (IATs) for this
population have proliferated. IATs have been developed for
nearly every aspect of daily living and range from distributed
systems (e.g., smart homes and integrated sensor systems),
personal robots (e.g., socially/physically assistive), mobility and
rehabilitation aids (e.g., powered wheelchairs and electronic
canes), handheld/multimedia devices (e.g., smart phones,
personal digital assistants (PDAs), and tablets), software
applications (mobile or web-based apps), voice-prompting
systems [2], wearable devices (e.g., smartwatches and
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e-textiles), and human-machine interfaces (HMIs) [3]. Of
particular note is the growth in wearable technologies for
this population, which are primarily used to monitor the
well-being and safety of individuals with dementia. Wear-
ables have been employed to track sleep and toileting pat-
terns [4], to aid memory retrieval [5], and to aid way finding
and navigation [6–9].

While the majority of IATs for individuals with dementia
have focused onmaintaining and improving their functional
and cognitive abilities, there has been minimal focus on
tracking the subjective experience of individuals with de-
mentia. Understanding the subjective emotional and mental
experience of an individual with dementia has important
implications for the quality of life of these individuals and
their caregivers (familial and professional). Insight into the
significant events for individuals with dementia can make
visible what is meaningful to them [10] and can, thus,
empower caregivers to understand and ameliorate care
decisions based on what matters to them [11], as well as
intervene before a minor annoyance or frustration can build
into an outburst or an aggressive behavior. Moreover, the
communication of meaning and important moments is
critical to maintaining a sense of connection and thus to
preserving relationships between individuals with dementia
and their caregivers [12]. In this paper, we describe a novel,
wearable IAT that can track and detect moments of sig-
nificance for individuals with dementia. As dementia is
associated with progressively declining cognitive and motor
abilities, this IAT focuses upon detecting significant mo-
ments from their physiological signals.

,e feasibility of detecting significant mental and
emotional reactions from changes in physiological signals
has long been established [13]. Physiological signals have
been used to provide insight into an individual’s significant
reactions in fields such as polygraphy [14] and biofeedback
[15] for decades. Additionally, physiological signals such as
electrodermal activity (EDA), heart rate, and skin temper-
ature are amenable to being recorded from noninvasive,
wearable sensors. ,e IAT presented in this paper records
physiological signals from a device worn on the hand and
uses a custom software to detect individual-specific mo-
ments of significance from changes in their physiological
patterns. We demonstrate that this IAT is able to accurately
detect moments of physiological significance and moments
experienced as significant interpersonal interactions in in-
dividuals with dementia and their caregivers. Furthermore,
we make the algorithms and software freely available
through a Matlab toolbox, which can be effectively used to
detect moments of significance from patterns of physio-
logical signals recorded from wearable sensors.

2. Materials and Methods

2.1. Description of Assistive Technology

2.1.1. Hardware. Autonomic nervous system (ANS) signal
data were collected from a wearable device called the Triple
Point Sensor (TPS) (,ought Technology Ltd. ©). ,e TPS
was designed to be worn on the fingertip by securing it with a

loose elastic or Velcro strap.,ree physiological signals were
recorded at a sampling frequency of 15Hz: (1) electrodermal
activity (EDA); (2) skin temperature; and (3) heart rate
(HR). Signals were transmitted via Bluetooth to a paired
Android phone, which stored the data in a custom database.

2.1.2. Software. Custom software, called Events Finder, a
freely available MATLAB toolbox (https://github.com/
BIAPT/Events-Finder), was designed to detect salient mo-
ments from individual-specific physiological signatures.
Broadly, the software detected characteristics from the ANS
signals that are known a priori to be associated with changes
in emotional state. Analysis of the EDA signal focused on the
detection of electrodermal reactions (EDRs)—transient in-
creases of 0.05 µs or more within 10 seconds, which have
been associated with heightened emotional arousal [16, 17].
Skin temperature analysis focused on detecting changes
between vasoconstrictor and vasodilatory responses [18],
and the heart rate was monitored for unusual patterns of
acceleration and deceleration [19]. ,e software consists of
three components: (a) preprocessing; (b) signal quality as-
sessment; (c) event detection, which are detailed in the
sections below.

(1) Preprocessing. Each of the three ANS signals was pre-
processed to remove nonphysiological artifacts. Filters were
chosen to be compatible with real-time processing, to ensure
that the final software had translational potential for real-
world use. First, missing datapoints or datapoints that
resulted from hardware error were identified by flagging
samples with (1) a value of 0 and (2) whose value was greater
or less than three standard deviations from the average of the
preceding second of data. ,ese datapoints were replaced by
interpolation using a 1-D median filter (EDA filter order
n� 75; skin temperature filter order n� 1). Second, all sig-
nals were sent to a moving average filter with a non-over-
lapping, 0.5-second window; the resulting smoothed data
had a sampling frequency of 2Hz. ,ird, the signals were
sent to a modality-specific filter that enhanced particular
features associated with a salient reaction. To minimize jitter
and lag in the EDA signal, a one Euro filter was applied with
parameters mincutoff� 50 and beta� 4 [20]. An exponential
decay filter was applied to the skin temperature signal to
remove the high-frequency noise inherent in the signal
(smoothing parameter p � 0.95). Finally, the cubic
smoothing spline function from MATLAB was applied to
the heart rate data (smoothing parameter p � 0.001). ,e
effects of these modality-specific filters on their respective
physiological signals are illustrated in Figure 1.

(2) Signal Quality Assessment. After preprocessing, a signal
quality index (SQI) algorithm was applied on a sliding
window of 0.5 seconds across all three physiological signals.
,e index ranged from SQIx � 1, when data from physio-
logical signal x was physiologically valid, to SQIx � 0, when
data from physiological signal xwas wholly contaminated by
noise resulting from the actions of the user, such as shifting
the sensor’s position on the hand, scratching around the
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sensor, and applying pressure to the sensor. EDA signals
were assigned a lower SQIEDA when the rate of change
exceeded physiological possibility, when it registered no
signal for 25 seconds or longer, or when the absolute value
exceeded the bounds of a normal physiological range. Skin
temperature signals were assigned a lower SQItemp when it
registered no signal for 25 seconds or longer, or when values
were less than 15 degrees Celsius (e.g., below normal
physiological range). ,e specific parameters used to gen-
erate SQIx are reported in Table 1. Upon completion of a
data recording session, the mean (µ) and standard deviation
(σ) of the SQIx for each individual physiological signal were
calculated. Subsequently, a binary time series (SQIall) of non-
overlapping 0.5 second steps was created, where SQI (t)all � 0
if SQI (t)EDA< μ (SQIEDA) − σ (SQIEDA) or SQI (t)temp< μ
(SQItemp) − σ (SQItemp), and SQI (t)all � 1 otherwise. Any
datapoint where SQI (t)all � 0 was not considered in the
subsequent event detection algorithm.

(c) Physiological Event Detection. ,e objective of this sub-
component was to detect events in the cleaned, high-quality
data that corresponded to a salient moment for the user. ,e
dominant physiological modality that manifests emotional
processing varies from individual to individual [21, 22], and
the characteristics of the changes within this dominant
modality also vary according to multiple factors, including
sex, age, and time of day [23]. ,us, in broad terms, event
detection required (1) tuning the parameters for detecting
specific features within each signal and (2) varying the
relative weight of contribution of each of the three physi-
ological signals.

Signal-specific feature detection consisted of a set of
adjustable parameters for each physiological modality.
Within the EDA signal, electrodermal reactions (EDRs) are
associated with an orientation response and heightened
emotional arousal [16, 17]. Canonically, an EDR consists of
an increase greater or equal to 0.05 μS within a 10-second
interval [16]. Tuning the event detector to capture EDRs for
each individual required varying (1) tEDR, defined as the time
interval within which to search for an EDR and (2) AEDR,
defined as the minimum amplitude (μs) increase across tEDR
that was considered to be an EDR. Heart rate has natural
patterns of acceleration and deceleration, driven by factors
such as respiratory sinus arrhythmia [19, 24]. Salient events
were detected at time points where heart rate acceleration
and deceleration varied outside of these baseline patterns.
Acceleration and deceleration patterns were tracked using
the find_peaks algorithm in MATLAB. Tuning the event
detector to capture significant changes from these patterns
required varying minPeakProminence, the threshold for
which one peak must deviate with respect to height and
location from the other peaks in the heart rate time series to
be flagged as an event. Fingertip temperature changes as-
sociated with salient responses are driven by transient
changes in the cutaneous microcirculation [18, 25]. Vaso-
constriction and vasodilatory responses manifest as changes
between the rate of cooling and heating in the fingertip. ,e
event detector for fingertip temperature was tuned by
varying (1) ttemp, defined as the time interval within which to
consider trends in temperature and (2) Tmax − Tmin, defined
as the difference between the maximum and minimum
temperature (°C) within the interval ttemp.
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Figure 1: Preprocessing of autonomic nervous system signals. Modality-specific filters were applied to each physiological signal to enhance
salient features.
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Applying the above rules for detecting features in each
physiological modality yielded three time series, with a step size
of 0.5 seconds, and values corresponding to the strength of each
feature extracted from the physiological data: EDR (t),
Δtemp(t), and HRvar (t). Subsequently, the three physiological
modalities were assigned a weighting factor to scale the
relative contribution of each signal to the overall score S,
indicating the magnitude of change in the weighted
physiological features.

S � aEDR(t) + bΔtemp(t) + cHRvar(t), (1)

where 0≤ a, b, c≤ 1. All three weighting factors (a, b, and c)
where initialized to 1 and adjusted in an iterative fashion as
described in Section 2.3.

2.2. Study Design

2.2.1. Participants. Participants were recruited from a
nonprofit organization that provided a variety of services to
the community for individuals with dementia and their
caregivers.,e assistive technology was calibrated and tested
on three dyads, each dyad consisting of an individual with
dementia and his/her primary caregiver. Pseudonyms and
the relationship between members of the dyad are listed in
Table 2. Written consent was obtained from all caregivers for
themselves and for the individual with dementia—who also
provided written assent—after a careful discussion of risks
and benefits. ,is study was approved by the Institutional
Review Board of McGill University (A06-B25-17B).

2.2.2. Data Collection. Participants engaged in an 8-week
movement-based program and ran over the course of 15
weeks. ,e program was held at the nonprofit organ-
ization—a familiar environment that was chosen to support
the engagement and self-expression of the individuals with
dementia [26]. Prior to the beginning of each session, each
member of the dyad was outfitted with the assistive tech-
nology. Participants were given the choice of securing the
sensor onto their fingertip or onto the palm of their hand
based on comfort and ease of movement. Sensors were
secured with a Velcro band. Collection of ANS data from the
sensors was initiated from a paired Android smartphone
prior to the movement session by a research assistant.
Sessions were also video and audio recorded by using a video

camera mounted near the ceiling; audiovisual data were
timestamped and synchronized with the ANS data from each
participant.

Following each 45-minute movement session, ANS data
from each participant were run through the Events Finder
software described above. Events with the highest S score
were selected, and the video recording was spliced 10 sec-
onds prior to and 10 seconds following each event, resulting
in 10-second–20-second clips of physiologically triggered
salient moments for each dyad.

After selected sessions, these 20-second video clips were
presented to the respective dyad on a laptop computer.
Dyads were interviewed to assess whether or not the salient
moments detected by the algorithm corresponded to a
subjective recollection of a significant experience. Significant
experiences were defined as events [10] or heightened
moments that stood out and/or were memorable (e.g., see
also [27]). A research assistant guided their reflection about
the moments captured in the video using the following
questions:

(i) What was happening at this point during the ses-
sion? Was this in relation to your partner?

(ii) Did this moment stand out to you from the ordinary
flow of the session? If yes/no, why?

(iii) Are there moments we did not go over where you
felt an especially strong sense of connection or
disconnection to your partner?

Participant responses were audio recorded and used to
adjust the parameters of the event detection algorithm.

2.3. Personalization of the Assistive Technology. Prior to the
first movement session, all parameters of the Event Finder
algorithm were set to default values. All physiological mo-
dalities were equally weighted (i.e., a� b� c� 1). Default
parameters for feature detection within each physiological

Table 2: Participant description.

Participant with dementia Caregiver Dyad
Mary Liam, spouse 1
Elisa Giselle, daughter 2
Irene Sophie, daughter 3

Table 1: Creating an artifact-detection algorithm to score the signal quality of physiological data.

ANS signal Feature extracted ,reshold SQI

Electrodermal activity

First derivative of signal over 15 s sliding window,
incremented in 0.5 s intervals Positive or negative change >3 µs 0.4

Flatness over 25 s sliding window, incremented in
0.5 s intervals Difference between two consecutive points ≤0.001 µs 0.1

Out of normal physiological range
≤0.02 µs 0
>20 µs 0.65
>30 µs 0

Skin temperature
Flatness over 25 s sliding window, incremented in

0.5 s intervals Difference between two consecutive points ≤0.0001°C 0.5

Out of normal physiological range <15°C 0.5
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signal were empirically derived from preliminary data:
electrodermal reactions were initiated as increased in 0.05 μs
across 10 seconds (i.e., tEDR � 10; AEDR � 0.05); heart rate
acceleration and deceleration were flagged at minPeakPro-
minence� 10 bpm; skin temperature trends were considered
to change if there was a change of 0.01°C across 10 seconds
(i.e., Tmax − Tmin � 0.01; ttemp � 10).

After each of the first four sessions, a research assistant
reviewed the physiological data of each participant to in-
dividually tailor each of the parameters to match the par-
ticular idiosyncratic patterns of his/her physiological
responsiveness. First, the audiovisual recording was ob-
served in full for any moments that stood out from the
ordinary flow of the session. Time points associated with
these moments were flagged on the synchronized physio-
logical signal recording. For each of these time points, a 10-
second epoch surrounding each event was segmented,
and EDR (t), Δtemp(t), and HRvar (t) were calculated. ,e
parameter value (Table 1) associated with each feature was
calculated and used to replace the default parameters.
Subsequently, the Event Finder algorithm was re-run, and
the accuracy of detection of significant moments was cal-
culated. ,e parameter set that produced the highest ac-
curacy was retained for the next movement session.

At the end of some of the last four sessions, the algorithm
parameters were iteratively adjusted to align with partici-
pants’ subjective report of the experience associated with
detected physiological responses. Participants were pre-
sented with 20-second video clips containing salient mo-
ments detected by the personalized Event Finder algorithm.
,eir responses of whether or not the video detected a
significant event were used to iterate on the parameters to
decrease the overall score S of the nonsignificantmoments. If
participants reported significant moments that were not
detected by the algorithm, parameters were adjusted to
increase the overall score S of these moments. ,e algorithm
with the adjusted parameters was used to detect significant
moments in the participant’s next movement session.

2.4. Data Analysis. For all sessions where participants
provided feedback about the salience of the moments
identified by Event Finder, two research assistants in-
dependently reviewed the video and interview data to assess
the performance of the assistive technology. True positives
(TPs) consisted of events identified by the algorithm that
corresponded to a salient moment for the user. ,ese
moments were recognized by the participant’s ability to
vividly recall their subjective experience in the video clip
associated with the event. False positives (FPs) consisted of
events identified by the algorithm that did not correspond to
a salient moment for the user. FPs occurred when (1) the
event was flagged as a result of a signal artifact (e.g., the video
showed the user adjusting the sensor) or (2) the participant
could not recall what happened at the moment depicted in
the video, or described only what he/she was observing in the
video. All true-positive events were further coded to assess
whether they corresponded to a moment of physiologi-
cal significance (TPphys) or a moment of interpersonal

significance (TPpers). TPphys included vivid recollections of
subjective feelings of discomfort, effort, pain, surprise, re-
laxation, or stress in relation to the event. TPpers were de-
fined as events where participants described positive or
negative feelings induced by interactions with another in-
dividual. ,ese events were typically accompanied by an
underlying explanation or story.

3. Results

Each dyad participated in 2-3 sessions where they provided
oral feedback that was used to calibrate Event Finder and to
assess the performance of the algorithm.,e total number of
events per session presented to the dyads for feedback varied
according to Table 3, with fewer events in the earlier sessions
to help dyads become accustomed to the interview process.
,e session ID reflected the state of the internal parameters
of the algorithm (e.g., default or customized).

3.1. Persons with Dementia Have Distinct, Personal Charac-
teristics of Physiological Responsiveness. While the Events
Finder software was initialized with the same default pa-
rameters across all participants, individual-specific patterns
were identified by the end of the fourth session. ,e tailored
parameters used in Events Finder at the end of the final
session are presented in Table 4 for all participants with
dementia. Mary’s salient reactions were characterized by
EDRs, which morphologically increased sharply in ampli-
tude (i.e., 0.24 μs in 10 seconds) (Figure 2(a)). Elisa’s salient
reactions were manifest in heart rate accelerations and
decelerations (i.e., peak prominence >25 bpm) (Figure 2(b)).
Irene’s reactions were primarily reflected in changes in
the rate of change of her peripheral skin temperature
(Figure 2(c)).

Examples of the physiological responses that triggered
the detection of an event for each person with dementia are
presented in Figure 2 and for each caregiver in Figure 3.

3.2. Assistive Technology Can Identify Salient Events from
Physiological Reactions. ,e performance of the assistive
technology in identifying salient events was assessed through
classifying each flagged event as either TP or FP, based upon
video observation and participant feedback. Two research
assistants independently classified each event; the interrater
reliability was 96.6%.

Across all participants, 70% of significant moments
detected by the best tailored Event Finder algorithm were
true positives. ,e performance of the algorithm improved
upon individual tailoring for both persons with dementia
(Figure 4(a)) and their caregivers (Figure 4(b)).

3.3. Events Identified through Physiological Reactions Include
Interpersonal Moments. Within the TP events identified by
Event Finder, TPpers ranged from 40 to 89%. While the
software predominant caught moments of TPphys such as
anxiety or pain over performing a specific movement, a
significant portion was related to moments of interpersonal
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interaction. ,e physiological characteristics of three such
events are presented in Figure 5, and the context of these
events are described below. In contrast to Figure 4, where
data were presented over the course of a long session (e.g.,
more than 10 minutes), Figure 5 illustrates a signal event
detected in 30 seconds of physiological data.

,e first event was triggered by a sharp decrease in
temperature, identified by the algorithm as a negative 0.01°C
change within 10 seconds (Tmax � 35.8367°C and Tmin �

35.8267; ttemp � 10) measured (Figure 5(a)). Prior to this
moment, Mary was disengaged from the movement activity.
Liam described the change in their interpersonal interaction
that accompanied this event:

“I pretend to be pulled away fromMary.,en she gave me
a light headbutt on my back. And that’s when I touched
her forehead withmine (forehead) back. She was playing!”

,e second event was from dyad 1, triggered by Mary’s
EDR and shift from increasing to decreasing fingertip
temperature (Figure 5(b)). Prior to this event, Mary had
made eye contact with a staff member, Meredith, from the
nonprofit organization, who she had known for several years
but had recently forgotten. Liam describes the moment
accompanying the physiological change:

“Oh, it was you! Meredith! You got a response. It was
Meredith’s engagement. Do you remember dear [toMary]
when Meredith was looking at you? You can see you and
Meredith in the picture over there. And. . . when you saw
her, you wanted to move with her.”

While Mary could not self-report about her experience
of the moment, the significance of this event was described
by several other participants. Meredith reported experi-
encing a significant connection with Mary during this
moment:

“She looked at me and her face lightened up. . . something
changed in her eyes and she smiled at me. I do not know
how to say it. . . it’s something you feel. . . I think it was
recognition! Recognition! She recognized me. . . she re-
membered who I was.”

Sophie (caregiver in dyad 3) also reported that she
noticed the significance of this moment. She began to cry as
she explained what she witnessed: “I was so happy to see
[Mary] happy, so that made me happy too. Because she was
really smiling and she was really happy, and I thought, “Oh
good for her!” Meredith got [Mary] up dancing. . . and
[Mary] was enjoying it.”

Table 3: List of sessions with marker feedback from dyad interviews.

Dyad Session no. Session ID Max. no. of markers generated per individual

1
4 Default 5
5 Customized (1) 5
6 Customized (2) 7

2 6 Default 7
8 Customized 10

3 4 Default 5
8 Customized 10

Table 4: Creating customized algorithms for dementia participants from ANS signals.

ANS signal Feature extracted ,resholds Scaling
factor

(A) Dyad 1 dementia participant Mary
Electrodermal
activity

First derivative of signal over 10 s sliding window,
incremented in 0.5 s intervals Positive EDA change of 0.24 µs 5

Heart rate Local maxima and minima Peak prominence of 20 bpm 0.05

Skin temperature First derivative of signal over 15 s sliding window,
incremented in 0.5 s intervals

Positive or negative temperature change of
0.05°C 1

(B) Dyad 2 dementia participant Elisa
Electrodermal
activity

First derivative of signal over 20 s sliding window,
incremented in 0.5 s intervals Positive EDA change of 0.25 µs 4

Heart rate Local maxima and minima Peak prominence of 25 bpm 0.96

Skin temperature First derivative of signal over 15 s sliding window,
incremented in 0.5 s intervals

Positive or negative temperature change of
0.11°C 8.4

(C) Dyad 3 dementia participant Irene
Electrodermal
activity

First derivative of signal over 10 s sliding window,
incremented in 0.5 s intervals Positive EDA change of 0.25 µs 4

Heart rate Local maxima and minima Peak prominence of 35 bpm 0.06

Skin temperature First derivative of signal over 25 s sliding window,
incremented in 0.5 s intervals

Positive or negative temperature change of
0.02°C 9
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Figure 2: True positive events detected for participants with dementia in their final movement session. Preprocessed and quality-checked
signals for electrodermal activity (blue), heart rate (green), and skin temperature (yellow) are presented for Mary (a), Elisa (b), and Irene (c).
Red boxes indicate the 30-second “event” that was detected by the final tailored algorithm using parameters presented in Table 4. For each
detected event, ∗ represents the physiological modality dominating each change. Each participant presents varying patterns of physiological
responsiveness, and their event-detection algorithm is dominated by different physiological modalities, illustrating the need for per-
sonalizing the software for each individual.
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Figure 3: True-positive events detected for caregivers in their final movement session. Preprocessed and quality-checked electrodermal
activity (blue), heart rate (green), and skin temperature (yellow) signals are presented for Liam (a), Giselle (b), and Sophie (c). Liam’s
significant events are triggered by electrodermal reactions; Sophie’s by changes in vasodilatory and vasoconstriction responses in skin
temperature. Giselle’s significant events are triggered by a combination of both skin temperature and heart rate responses. ,e specific
parameters for each individual’s algorithm are presented in Supplementary Data, Table 1. ,e unique patterns of responsiveness illustrate
the need to tailor the event detection algorithm for caregivers.
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,e third event was from dyad 2, triggered by Giselle’s
increase of 0.17°C in skin temperature over 20 seconds
(Tmax � 33.96°C and Tmin � 33.79; ttemp � 20) (Figure 5(c)).
Giselle described the excitement that triggered this event: “I

was watching [Elisa] move and realizing she’s doing it more
than usual. Sometimes she only gets into it later. I didn’t
realize she was still moving. I think she moved today more
than she ever did!”
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Figure 4: False-positive (FP) vs. true-positive (TP) markers identified by the default algorithm and the customized algorithm across
chronological sessions. (a) A. Dyad 1 dementia participant Mary. B. Dyad 2 dementia participant Elisa. C. Dyad 3 dementia participant
Irene. (b) A. Dyad 1 caregiver Liam. B. Dyad 2 caregiver Giselle. C. Dyad 3 caregiver Sophie.
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Figure 5: Examples of physiological signals associated with experiences of interpersonal significance. Red boxes highlight the detected event
for (a) a moment of connection experience by an individual with dementia with her spouse; (b) a moment of recognition between an
individual with dementia and a staff member; (c) a moment of connection experienced by a caregiver with her mother. ∗,e physiological
modality dominating the event-detection. However, the patterns of physiological changes triggering events differ within (a) and (b) and
between (b) and (c) participants; all are associated with subjective experiences of interpersonal connection.
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,ese examples demonstrate that the assistive technol-
ogy is not only able to capture moments of physiological
relevance but also able to capture moments of emotional and
interpersonal significance.

4. Discussion

Intelligent assistive technologies (IATs) have emerged as
promising tools to meet the escalating demands of caring for
persons with dementia. While many wearable IATs have
been developed for the purposes of tracking activity and
maintaining functional and cognitive abilities, few tech-
nologies have focused on accessing the subjective experi-
ences of individuals with dementia. In this study, we present
a novel IAT that detects moments of significance for in-
dividuals with dementia through patterns of their physio-
logical signals. ,is IAT is tailored to the individual’s
idiosyncratic response profile and is trained using the do-
main expertise of the caregiver with respect to the emotional
state of the individual with dementia. We demonstrate that
this wearable technology is able to accurately track signif-
icant moments associated with both physical and emotional
events. Such a technology has the potential to accompany
frameworks such as deep assessment [11] to improve care for
people with advance dementia and to support the quality of
life and care decisions of professional and more distal carers.
Physiological markers of “significance” or meaning can
support the understanding of what matters to persons with
dementia, which is now core to health policy [28]. To ac-
company this article, we developed a freely available open-
source toolbox for detecting significant events from phys-
iological signals (http://www.github.com/BIAPT/Events-
Finder). Our toolbox enables nonexperts to flag segments
of a video recording with a high probability of physical or
emotional salience, facilitating discussion and feedback of
the event from the individual with dementia and their
caregiver. ,e open-source nature of our toolbox allows
researchers to customize individual functions for their needs
and to incorporate individual sections into their respective
analysis protocols.

Every individual has a distinct pattern of physiological
responsiveness to salient stimuli. ,us, the performance of
the IAT is dependent on the process of tailoring the pa-
rameters of the algorithm to an individual’s idiosyncratic
physiological characteristics. Tailoring the algorithm resul-
ted in an increase in true-positive events and a decrease in
false-positive events for both individuals with dementia and
their caregivers (Figures 2(a) and 2(b)). ,e initial steps of
this tailoring are time-consuming, as they involve reviewing
video recordings synchronized with the physiological signals
for visual moments of significance. However, this customizes
the Event Finder algorithm so that it is sufficiently tuned to
an individual’s particular patterns of responsiveness to
capture events with a high probability of salience (Figures 3
and 4). ,ese events include both moments of physical
significance and experiences of interpersonal significance
(Figure 5). ,e latter steps of tailoring the algorithm pa-
rameters involved incorporating feedback from both the
individual with dementia and their caregiver about the

identified events. ,is combination of subjective self-report
and third-person observation enabled us to incorporate the
perspectives of individuals with dementia into the tailoring
process and has been shown to be an effective strategy in the
previous research with this population [26]. As symptoms of
dementia include difficulties with abstract reasoning, such as
remembering events and reflecting on their meaning [29],
supporting the feedback process with video recordings and
caregiver reflections was key to the latter stages of tailoring
the algorithm parameters. Feedback from the participants
was also key to identifying the valence of the event, which
was less evident from the physiological data alone [30]. It
was evident in the feedback process that caregivers were
extremely attuned to the nonverbal behavior of the indi-
vidual with dementia, which was an evocative means of self-
communication and interpersonal communication [31].
Integrating their expertise into the behavior of the algorithm
was a critical process in achieving high-performance ac-
curacy in the detection of significant events. Furthermore,
this integration may also facilitate the eventual acceptance of
the IATfor everyday use, as low levels of user involvement in
technology design is a codeterminant of low IAT adoption
rates by individuals with dementia [3].

,e IATpresented in this paper is one of a small handful
IATs that use physiological signals to gather information
about an individual with dementia. Smartwatches have been
developed for this target population to use a combination of
ANS and accelerometry signals to track physical activity
[4, 32] as well as to detect changes in mental and emotional
states. ,e technologies developed to-date use EDA alone
[33] or in combination with heart rate, temperature and
accelerometry signals to recognize stress and agitation in
individuals with dementia [34, 35].,e IATpresented in this
paper advances the capabilities of those developed to-date in
two significant ways. First, existing IATs focus on tracking
states of negative valence (e.g., stress and agitation) in in-
dividuals with dementia; we have demonstrated that our IAT
can also detect moments of positive valence, including
meaningful interpersonal connection, in individuals with
dementia and their caregivers. Second, existing technologies
focus on changes in overall state, such as activity and mood,
and ignore transient, short-term changes. In contrast, our
IAT is specifically tailored to detect “moments” of signifi-
cance, which are transient by nature, in an effort to make
visible what is meaningful to individuals with dementia [10].
By synchronizing the moments detected by physiological
changes with 30-second video clips, our IAT enables in-
dividuals with dementia and their caregiver to focus on the
transient events that are meaningful during an activity or an
interaction, as opposed to their general baseline state. As
such, our IAT advances the capabilities of existing tech-
nologies by highlighting events that signify what matters to
an individual with dementia [11].

While the number of IATs designed for individuals with
dementia double approximately every five years, less than
2% are intended to assist with the social and relational
challenges associated with this condition [3]. Technologies
that address interpersonal interactions are significantly more
popular in other conditions, such as autism spectrum
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disorder [36, 37]. Moreover, IATs designed to detect emotions
from physiological signals have been developed for decades in
the field of affective computing [13, 38].,ese technologies use
advanced features calculated fromANS signals to train feature-
based machine learning algorithms to detect discrete states of
emotion [39, 40] or deploy an end-to-end deep learning ap-
proach for the dimensional recognition of emotions [41].
Drawing from the techniques and knowledge of these estab-
lished fields will significantly accelerate the development of
IATs that support the social and interrelation fabric of in-
dividuals with dementia.

,is study has several limitations. First, the algorithm
parameters were only tailored across the last four movement
sessions. As some participants were absent during one or
more sessions, this only allowed for two to three meaningful
iterations of the algorithm parameters per participant.While
each iteration improved Event Finder performance, we
believe that the algorithm’s performance would continue to
improve with more sessions for tailoring the parameters and
that the results reported herein do not represent the full
capabilities of the Event Finder software. Second, the process
we present for customizing the algorithm runs the risk of
overfitting the parameter set to an individual’s quotidian
physiological characteristics. As the progression of dementia
has been associated with changes in autonomic functions
[42–44], it is possible that the algorithm would need to be
retrained periodically on an individual with dementia as
their physiological characteristics changed over time. ,ird,
while signals from the autonomic nervous system are being
recorded, it is important to not exclusively link the detected
events with physiological responses. For example, clenching
of the fists reflexively during significant moments has been
associated with increases in electrodermal activity [16] and
would have triggered an event detection by the Event Finder
algorithm. Fourth, each physiological signal was processed
independently, though it is known that interactions between
the physiological modalities can discriminate between dif-
ferent mental and emotional states [45–47]. A multivariate
approach to detecting significant changes in physiological
state may result in better algorithm performance [48]. Fi-
nally, a limited number of features were extracted from each
physiological modality; future improvements to the algo-
rithm could involve the addition of features such as heart
rate variability, which have shown strong correlation with an
individual’s emotional state [39].

5. Conclusions

We present a novel intelligent assistive technology (IAT)
that detects salient physical and emotional events in in-
dividuals with dementia through patterns of their physio-
logical signals. Our IAT consists of software that displays
video recordings of events that are synchronized with po-
tential moments of significance detected from physiological
changes. Gathering feedback from individuals with de-
mentia and their caregiver on their subjective experience of
these moments enabled us to tailor algorithm parameters
and improve algorithm performance. ,e algorithm was
able to accurately detect moments of both emotional

significance and moments of significant interpersonal
connection in individuals with dementia. We provide our
software as an open-source toolbox for the detection of
significant physiological events from individually-tailored
parameters in hopes that the assistive technology commu-
nity will be able to benefit from and contribute to these tools.
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