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Abstract: Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the par-
ticularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique
mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosyn-
thesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects:
(i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA,
SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their
functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of
UGA; (iv) the structure–activity relationship and action mechanism of SelA, SelB, SelC and SelD; and
(v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before
Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and
effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency
of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the
production of selenoprotein.

Keywords: selenocysteine; selenoprotein; biosynthesis; affecting factors; mechanism analysis

1. Introduction

At present, there are 22 kinds of amino acids involved in protein biosynthesis. The
21st amino acid [1] (Selenocysteine, Sec) and 22nd amino acid [2] (Pyrrolysine, Pyl) were
recently appended to the earlier 20 standard amino acids in the genetic code. Sec and Pyl
are nonstandard amino acids encoded by the meaningful termination codon UGA and
UAG respectively. This paper focused on the UGA-encoded Sec. Due to the particularity of
this codon, selenoprotein composed of Sec inevitably require some special translation and
synthesis mechanism in the cell. Studies have shown that the methods to synthesize Sec
mainly include chemical synthesis and biosynthesis utilizing animals, plants or microor-
ganisms [3]. Among them, the cost and requirements of chemical synthesis are high, and
it is not suitable for large-scale production. The Sec biosynthesis by plants and animals
usually require long production cycle but low synthetic efficiency. Comparatively speak-
ing, microbial synthesis of Sec outperforms in low culture cost, mild reaction conditions,
considerable fermentation performance and convenient genetic manipulations.

In addition, the selenoprotein synthesized by Sec has a variety of health care and
medical functions, and has a broad market application prospect. As one key catalytic
amino acid residue of Glutathione peroxidase (GPx), Thioredoxin reductase (TrxR), Se-
lenoprotein P (SELENOP) and some others, Sec involves such physiological activities as
anti-aging, anti-inflammation, anti-cancer, detoxification, maintenance of cardiovascular
health, improvement of immunity and fertility [4]. These biological functions are mainly
carried out by selenases which are the catalytically active form of selenoproteins only by
incorporating Sec as the catalytic residue on the active site. In this regard, this paper firstly
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discussed the pathway of Sec biosynthesis and the influence of its internal components,
then pointed out both important factors and elements affecting the incorporation of Sec,
and analyzed their action mechanisms afterwards, with a view to promoting the synthetic
efficiency of selenoprotein and the subsequent industrial production.

2. The Biosynthesis Mechanism of Sec and the Role of Its Internal Influencing Factors
2.1. The Synthesis Mechanism of Sec in Prokaryotes and the Role of Main Influencing Factors
2.1.1. Mechanisms of Sec Synthesis in Prokaryotes

At present, the prokaryotic expression systems for the synthesis of Sec are mainly Es-
cherichia coli (E. coli) [5,6], Lactobacillus [7,8] and Photosynthetic bacteria (PSB) [9,10]. However,
genome analysis showed that Lactobacillus does not contain selenoprotein-encoding genes
and related regulatory factors of selenoprotein biosynthesis, and the molecular mechanism
of its biosynthesis and metabolism remains unclear [11]. Moreover, study on the selenopro-
tein biosynthesis pathway of Photosynthetic bacteria is still in its infancy and exploration
stage of bacterial strain screening and selenium enrichment condition optimization. Only
E. coli has a clear translation mechanism which contains a cis-acting element (Selenocysteine
insertion sequence, SECIS) and four gene products [12], including SelA (selenocysteine
synthetase, SecS), SelB (selenocysteine-specific elongation factor), SelC (tRNA[Ser]Sec) and
SelD (seleno-phosphate synthase, SPS). They are the important components of the SBIP
(Sec Biosynthesis and Insertion Pathway), as shown in Figure 1 [13].
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2.1.2. The Role of Four Gene Products in SBIP

Firstly, in prokaryotes, SelC is catalyzed by Seryl-tRNA synthetase (SerS) to load Ser
to form Ser-tRNA[Ser]Sec. Secondly, as the key conversion compound between inorganic
selenium and organic selenium, hydrogen Selenophosphate (H-Se−) is the primary source
of selenium. After being catalyzed by SelD, low-molecular-weight Selenophosphate (SeP)
is synthesized from H-Se− and becomes the most direct selenium donor of Sec [14]. Subse-
quently, with the participation of SeP, Sec synthase (SelA/SecS) catalyzed the conversion of
Ser-tRNA[Ser]Sec to Sec-tRNA[Ser]Sec. Finally, another key elongation factor, SelB, recognizes
and reversibly binds SECIS and delivers Sec in the form of the previously synthesized
Sec-tRNA[Ser]Sec to the A site of the termination codon UGA on the ribosome. A translated
quaternary polymer (SelB•GTP•Sec-tRNA[Ser]Sec•mRNA) [15,16] would be formed subse-
quently to achieve the co-translational insertion of Sec into the nascent polypeptide chain,
enabling the generation of selenoproteins. In the SBIP pathway, these positive SelA, SelB,
SelC and SelD can all promote the expression of Sec, so the reading efficiency of UGA can
be improved by appropriately increasing the expression of these four gene products [17].
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2.2. The Synthesis Mechanism of Sec in Eukaryotes and the Role of PSTK and SBP2 within It

The mechanisms of Sec synthesis in eukaryotes, archaea and prokaryotes are quite
similar, except for a few differences. One difference is that the position and structure of
SECIS on selenoprotein mRNA are significantly distinct. Another difference is that the
translation elongation factor is defined as SelB [18,19] in prokaryotes while eEFSec [19,20]
in eukaryotes has slightly different structures. The third difference is that additional steps
for two proteases are required [21], such as PSTK (O-phosphoseryl-tRNA[Ser]Sec kinase) and
SBP2 (SECIS-binding protein 2), besides SelC, SerS, SelA (SecS), and SelD (SPS2, a kind of
selenoprotein [22]). PSTK phosphorylates the hydroxyl on Ser-tRNA[Ser]Sec and converts it
to SeP-tRNA[Ser]Sec [19], which is converted to Sec-tRNA[Ser]Sec by SecS afterwards [23,24].
In addition, SBP2, an 846 amino acid protein found in yeast, is another important factor
affecting the synthesis of Sec in eukaryotes. After certain folding, SBP2 can interact
with eEFSec to promote translation extension, and it also can avoid the termination of
translating at UGA. As shown in Figure 2 [1,13], in the eukaryotic Sec expression pathway,
SECIS in the downstream untranslated part of mRNA binds first to SBP2, which in turn
binds to eEFSec protein. eEFSec presents the recruited Sec-tRNA[Ser]Sec to the UGA codon
and makes it bind with the growing amino acid chain to facilitate the synthesis of new
eukaryotic selenoprotein.
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3. Elements on mRNA and Their Functional Mechanisms
3.1. The Cis-Acting Element SECIS on mRNA and Its Functional Mechanism
3.1.1. The Functional Mechanism of SECIS in Prokaryotes
The Distribution and Introduction Function of SECIS

It has been reported that SECIS contained in prokaryotes are distributed in the Open
Reading Frame (ORF) and at the 3′ downstream end of the UGA codon on the Sec-specific
selenoprotein mRNA [25,26]. SECIS of E. coli formate dehydrogenase F (FDhF) has often
been used in prokaryotes as research objects [27,28]. In E. coli, SECIS is a cis-acting element
to assist Sec insertion, which, in combination with SelB, subsequently promotes UGA
translation. As the codon encoding Sec is also the stop codon UGA, its read-through
efficiency is very low, only 1–3% of common amino acids, which limits the effective
expression of selenoprotein. When the SECIS element was firstly introduced into the ORF of
lemon phosphatide hydroperoxidase-glutathione peroxidase (citPHGPx), the successfully
expressed mutant citPHGPx was four times more active than the wild-type one without
the SECIS [29]. In conclusion, as a signal element, the introduction of SECIS will realize
the partitioning between recoding and termination at the stop codon UGA, which is
decoded into Sec preferentially. The SECIS introduction accurately and efficiently guides
the incorporation of Sec, rather than terminate the synthesis of selenoprotein.
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The Action of Structure, Sequence and Location of SECIS

As shown in Figure 3 [12], SECIS in prokaryotes is a special “stem-loop” structure [25],
and also presents as a highly specific hairpin structure [30], consisting of 40 nucleotides:
(1) The secondary “stem-loop” structure (11 nt away from UGA) at the upper end of SECIS
is composed of 17 nucleotides between 15 and 31, and the conserved sequence of this
structure can be used to predict Sec. Among them, 15–19 and 28–31 nucleotides must be
paired to form the stem structure, so as to ensure that U17 is located on the convex ring
in the middle of the 5’ end secondary structure. In addition, except for the U17, G23 and
U24 sites located on the apical ring, the bases of other sites are highly variable, which
provide a basis for the synchronous optimization of its sequences and encoded amino acids,
improving the incorporation efficiency of SECIS-guided Sec and improving the properties
of selenoprotein. Since U17 and G23 are the binding sites of SECIS and SelB, the mutation of
any one of them will lead to the complete loss of UGA readability. (2) In the lower region of
SECIS near UGA, the readability is reduced by about 25% because there are unpaired bases
between 4–14 and 32–41 [27]. In addition, the difference of the SECIS sequence position
in prokaryotic cells corresponds to that of the prokaryotic gene expression process. Since
transcription and translation occur simultaneously when prokaryotic genes are expressed,
SECIS must be immediately followed by UGA to ensure that the transcription has passed
the SECIS sequence when translated into UGA and decoded into Sec.
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3.1.2. The Functional Mechanism of SECIS in Eukaryotes
The SECIS’s Distribution and Its Relative Distance from UGA

The SECIS elements on mRNAs for incorporation of Sec into 25 mammalian selenopro-
teins also exist in eukaryotes and archaea. SECIS elements in eukaryotes and prokaryotes
are similar in structure, but the former ones are distributed outside the 3′-untranslated
region (3′-UTR) of selenoprotein mRNA [31,32], located far downstream of UGA, and
have a relatively large sequence (about 80–150 nt) [33]. Generally speaking, the distance
between the codon of SECIS and Sec is at least 51–111 nt to facilitate the translation of the
UGA codon [34], while some eukaryotes require a distance of more than 2000 nt to achieve
that. However, the far distance of SECIS from the UGA codon will lead to a decrease in
the efficiency of its guiding Sec incorporation, then more trans-acting factors are needed
to complete the regulation process. The difference of SECIS position in eukaryotic cells
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also corresponds to that of the eukaryotic gene expression process. The transcription and
translation of eukaryotic genes are sequential, so eukaryotes do not have the same SECIS
problems found in prokaryotes. SECIS in eukaryotes are located in 3′-UTR, which does not
affect the sequence of amino acids in the ORF frame.

The Sequence Specificity of SECIS

Eukaryotic SECIS elements were first identified in 5′-DI (deiodinase) and GPx [32],
and then two SECIS elements (as shown in Figure 4a [35,36]) were found in 3′-UTR of
human selenoprotein P, the only one containing multiple UGA codons [37–39]. Between
the two ones, SECIS 1 [37,38] plays a major role in selenoprotein synthesis. SECIS have two
common conserved sequences among different eukaryotic species, namely the kink-turn
structure of the “AUGA:AG” sequences [40,41] in the upper stem part of the inner ring
and the “AAR” motif [35] (as shown in Figure 4b [33]). In eukaryotes, the binding protein
SBP2 is required to be involved in selenoprotein synthesis, and the kink-turn structure is its
anchor site, which is important for UGA recoding. So the middle core area is the primary
functional site of the SECIS element. However, the AAR mutation has no effect on the
recruitment for eEFSec by the SECIS-SBP2 complex [42]. The conserved region and stem
length of SECIS are such important factors affecting the activity of itself that any mutation
or deletion of the bases in the conserved region will significantly reduce or even lose the
activity of SECIS [43]. When the length of stem on secondary structure is 10–12 base pairs
(bp), SECIS maintains high activity [44]. However, some studies have found that the first
nucleotide of the kink-turn structure on SECIS of Caenorhabditis elegans TrxR is not A but
G [45], and mutation analysis showed that A/G was interchangeable.
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sequences are highlighted in red fonts; the binding sites of SBP2 protein to SECIS and eEFSec are,
respectively, highlighted in blue and green circles. (b) shows two molecular models of SECIS in
eukaryotes. The letter “N” in the middle convex ring between Helix I and II represents characteristic
nucleotide. Form 2 differs from form 1 in the additional small ring, which will be formed to stabilize
the SECIS‘s secondary structure when the top ring is large.

3.2. PSL (Proximal Stem Loop) and SPUR (SelS Positive UGA Recoding) on mRNA and Their
Functional Mechanisms

It is widely believed that SECIS is the primary RNA element that controls the insertion
of Sec, but recent findings in the lab of Eric M. Cockman [46] suggest that selenoprotein
S (SelS) is synthesized differently. The first 91 nucleotides of the 3′-UTR on the protein
mRNA contain two conserved regions: (1) PSL: a 34 nt proximal stem loop spanning
3–36 nucleotides. The stem consists of 14 bp and the stem loop consists of 6 nt; (2) SPUR: It
belongs to the UGA recoding cis-acting element of SelS and contains an 18 nt nonconserved
sequence region of 37–54 nucleotides and a 37 nt conserved region of 55–91 nucleotides
located downstream. As shown in Figure 5 [46], only the PSL in the orange box has a highly
conserved structure, while the sequence in other parts is variable. It has been reported
that only in trials following the alternative insertion of a V5 tag [47,48] does the deletion of
PSL increase the incorporation of Sec recoding in SelS-V5 structures, but not when PSL is
replaced by other stem loops or non-structural sequences. This indirectly indicates that
PSL does not play a positive role in Sec insertion. In addition, the activity of SPUR is
independent of the two apical rings, but the readability from UGA to Sec is related to
other nucleotide sequences on SPUR. When SPUR mutates at a single point, there is a
reduction in UGA recoding, usually by 60% or more. Therefore, SPUR is very important
for optimizing UGA recoding.
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3.3. Translation Competitor RF2 on mRNA and Its Functional Mechanism

RF2 is a release factor (RF) that can read the UGA codon normally and promote the
termination of translation. It is also a competitive factor for Sec translation during the
expression process. When RF2 is overexpressed, the incorporation efficiency of Sec is only
modestly reduced by less than two times, due to the competitive binding to the UGA codon
between Sec-tRNA[Ser]Sec-SelB-GTP complex and RF2. That is to say, RF2 does not compete
with the Sec incorporation mechanism; it only terminates translation on those ribosomes,
making Sec incorporation fail in the end [49]. In order to exclude the influence of RF2 on
Sec translation, SECIS must be closely followed by the UGA codon. Sec is combined with
SelB and GTP to form Sec-tRNA[Ser]Sec -SelB-GTP ternary in the form of Sec-tRNA[Ser]Sec,
and then inserted into UGA + SECIS preferentially, so that it can avoid the competition
from RF2.

4. The Specificity of UGA Codon

Almost all selenoprotein genes contain UGA codon encoding Sec (the 21st amino acid)
and SECIS element [50]. First of all, UGA is the unique genetic code of Sec in organisms,
located in the ORF or 3′-UTR region of selenoprotein mRNA. After being recoded by
UGA, Sec would be incorporated and synthesized into selenoproteins. Sequence analysis
showed that the ORF of selenoprotein mRNA could contain one or more UGA codons.
Moreover, the cDNA transfection results showed that the position of UGA on mRNA
was corresponding to the position of Sec in the primary structure of selenoprotein, which
confirmed that Sec was absolutely encoded by UGA. Since UGA is also a stop codon, it
is necessary for there to be a special translation mechanism to translate UGA into Sec in
cells. As mentioned in 3.1 above, the sequential division of the two functions of UGA
codon (UGA→Sec and UGA→stop) is realized through the SECIS sequence existing on the
mRNA during the translation process, that is, guiding Sec and directly inserting into the
polypeptide chain.

5. The Structure–Activity Relationship and Action Mechanism of Four SBIP Factors
5.1. Structure–Activity Relationship and Action Mechanism of a Synthase Factor—SelA

In early studies of formic acid metabolism in the late 1980s and early 1990s, four
selenoprotein-related genes (formerly formic acid dehydrogenase genes) were identified
in E. coli: SelA, SelB, SelC and SelD, which are specifically responsible for the biosyn-
thesis of Sec and incorporation into selenoprotein. In SBIP, SelA is responsible for the
conversion from Ser to Sec on tRNA[Ser]Sec. SelA, the synthetase of Sec-tRNA[Ser]Sec, has a
homodecameric quaternary structure [51], and its internal subunit dimer is similar to the
homotetramer SepSecS (Sep-tRNA: Sec-tRNA[Ser]Sec Synthetase) [23,24] in conformation.
Both SelA and SepSecS are members of the fold-type-I superprotein family of pyridoxal
phosphate (PLP)-dependent enzymes, but their sequences are similar only at the PLP
binding site [52,53]. The relative molecular weight (Mr) of SelA is about 500 kDa [51], and
the 5′-PLP bound internally is about 50 kDa [54]. In addition to the conserved core and
C-terminal region in PLP-dependent enzymes, SelA also has a unique N-terminal region.
Karl [54] measured the nucleotide sequence and derived the amino acid sequence of the
E. coli MC4100 SelA gene early: the initiation codon is ATG, and the termination codon
is TGA. Later, Itoh [51] showed that the SelA catalytic site was close to the dimer–dimer
interface(as shown in Figure 6 [51]), and the interaction between them was also crucial for
the formation of the catalytic site. In summary, all the active sites of the decamer formed
by the pentameric reaction of dimers continuously adapt and locate Ser-tRNA[Ser]Sec to
synthesize Sec.
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5.2. The Structure–Activity Relationship and Action Mechanism of a Specific Translation
Elongation Factor—SelB

SelB (i.e., Sec-specific translation elongation factor in prokaryotes) is a GTP-binding
protein [16,55], belonging to the translation GTPases family (other family members include
elongation factors EF-Tu and EF-G, translation initiation factor 2 (eIF2γ/IF2), release factor
3 (RF3) and its eukaryotic homologues). Phylogenetic tree studies have shown that the EFs
of Sec in different biological domains are similar in structure, with the N-terminal domains
D1, D2 and D3 similar to their EF-Tu corresponding domains and the C-terminal domain D4
responsible for identifying SECIS, while these four domains have slight differences among
different species. Therefore, Miljan Simonović [19] used SelB (as shown in Figure 7a [55]),
aSelB(as shown in Figure 7b [19]) and eEFSec (as shown in Figure 7c [19]), respectively,
for the designation of EF in bacteria, archaea and eukaryotes. Among them, both eEFSec
and SelB are homology models based on EF-Tu structure, but there are some differences in
several structural domains between them, and the most significant difference lies in D4 (as
shown in Figure 7d [19]). For example, D4 of SelB in bacteria consists of four wing-shaped
helical folds that rotate around the ligation region, and this structural difference seems to
explain why the encoding of Sec in bacteria depends on the neighboring SECIS in ORF
without SBP2 involvement.
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5.3. Structure–Activity Relationship and Action Mechanism of Transporter—SelC

The transporter SelC (i.e., tRNA[Ser]Sec) [13,56] is not only found in bacteria, but also
in archaea and eukaryotes. The longest tRNA in typical E. coli is SelC, which is composed
of 95 nucleotides, and its unique cloverleaf secondary structure(as shown in Figure 8 [56])
consists of an 8 bp aminoacyl acceptor stem, a 5 bp TΨC arm, a 20 nt variable arm, a 6 bp
Dihydrouridine arm (D arm) and a 4 nt ring. In the primary structure, site 8 corresponds
to G, site 14 corresponds to A, sites 10–25 corresponds to a set of Y-R base pairs, and
sites 11–24 corresponds to a set of R-Y base pairs. However, SelC lacks Levitt base pairs
(G15:C48 or A15:U48) found in other tRNAs in E. coli, which are used to maintain the
stability of the interaction between the D arm and the TΨC arm. In the SBIP pathway, the
first step of the synthesis of Sec is to aminoacylate and synthesize the transporter SelC
into Ser-tRNA[Ser]Sec under the action of SerS; after the conversion from Ser to Sec on
tRNA[Ser]Sec, Sec-tRNA[Ser]Sec is finally gathered in the translation complex SelB•GTP•Sec-
tRNA[Ser]Sec•mRNA. Therefore, SelC is also known as the UGA decoder, by which Sec is
incorporated into the small pieces of selenoproteins.
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5.4. Structure–Activity Relationship and Action Mechanism of Synthase Factor—Binding
Protein SelD

Selenophosphate synthetase (SPS), originally derived from the SelD gene product
of E. coli, has been confirmed to be present in most organisms [57]. It is a common key
enzyme involved in different selenium metabolism processes and belongs to a protein
superfamily that contains an ATP-binding domain. There are two types of SPS in mammals:
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SPS1 and SPS2 [22,57,58]. SPS1 loads Thr substitute at Cys17 site of EcSPS (E. coli SPS).
SPS2 in the same position is itself a selenoprotein containing Sec, which is responsible for
transferring selenium element to selenophosphate and serves as a direct selenium donor
for selenoprotein biosynthesis [59]. SPS2 is mainly responsible for catalyzing 5’-adenosine
triphosphate (ATP) and hydrogen selenide (HSe−) to produce SeP (H2SePO3

−), where the
reaction formula [57] is as following:

HSe− + H2O + ATP SPS2→ H2SePO3
− + Pi + AMP

Therefore, the synthesis of SeP and selenoprotein can be increased by increasing
the synthesis pathway of HSe−. SeP is a selenium donor necessary for the synthesis
of important organic selenium compounds such as Sec, SeU (selenides present in some
tRNA swing sites) and Se cofactor (existed in some molybdenum-containing enzymes).
As shown in Figure 9 [58], the SPS subunit consists of two parts: the N-terminal domain
(1–156 AA) and the C-terminal domain (157–336 AA). A steep, 30-amino acid channel is
formed between them, which appears to be the binding/catalytic site for the substrate. It is
speculated that the key catalytic residues Sec/Cys13 and Lys16 should be located on this
mobile segment.
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6. Operating Mechanism of Two Key Enzyme Systems for Inorganic Selenium Source
Flow before Sec Synthesis
6.1. Operating Mechanism of Transporter System

Since the chemical properties of the selenium element are very similar to that of
sulphur, the transport system of sulphur can also be used to transport selenium by microor-
ganisms. It has been reported that selenate (SeO4

2−) can be transferred into cells by the
sulfate ABC transport permeability enzyme system of E. coli (Cys AWTP) [60]. However,
the pathway system of selenite (SeO3

2−) into bacterial cells also includes Gut S, Smo K, Ded
A and other transporters [61–63]. For fungi, such as Saccharomyces cerevisiae, the mechanism
of selenium salt transport is similar to that of E. coli, and both sulfate permeability enzyme
(Sul1 and Sul2) and sulfate transporters (Sul1p and Sul2p) in the system are related to the
transport of SeO3

2− [64]. However, when different concentrations of phosphate (PO4
3−)

are added to the culture medium of yeast cells, the transport of SeO3
2− is constrained by

the different affinity of phosphate transporters (Pho84p, Pho87p, Pho89p, Pho90p and
Pho91p) [65]. In addition to sulfate and phosphate transport systems, MC Dermott addi-
tionally found that the monocarboxylic acid homotropic transporter (Jen1p) in yeast cells is
also involved in the transport of SeO3

2− [66].

6.2. Operating Mechanism of Reductase System

Most bacteria cultured in a selenium-rich salt medium have either a nonspecific
selenite reductase system (consisting of nitrite reductase, sulfite reductase and glutathione
reductase) or specific sulfate reductase, selenate reductase, and fumarate reductase system
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in the cell periplasm [67]. Some microorganisms in the absence of oxygen, respiration
and reduction of two pathways proceed simultaneously. Generally, inorganic selenium
sources (SeO4

2− and SeO3
2−) will eventually be reduced to elemental selenium (Se0); for

instance, in Thauera selenatis (T. selenatis) nitrite reductase action, SeO3
2− will be reduced to

Se0. However, some microorganisms (such as yeast) are eventually reduced to hydrogen
selenide (a key precursor for the synthesis of selenoprotein and selenopolysaccharide) by
Se-enriched culture in the presence of sulfate reductase [68–70]. In addition, under the
action of the selenate reductase (Srd ABC) [71,72] of Gram-positive Bacillus selenatarsenatis
SF-1 and the selenate reductase (SerABC) [73] of Gram-negative bacteria T. selenatis AXT,
SeO4

2− in the medium can be generally reduced to red nano-selenium, and these particles
generally aggregate in the cytoplasm, cell membrane or medium.

The final products of the above Se-enriched transformation by microorganisms,
whether nano-selenium or elemental Se, are insoluble and low-toxicity substances, so
this transformation should be controlled as far as possible. However, hydrogen selenide
(H2Se) is a volatile and highly toxic substance, which must be transformed into other
selenium donors (such as SeP) as soon as possible to avoid the effect on the microor-
ganisms themselves. In addition, there is another explanation for selenite’s toxicity: the
most abundant and simple glutathione (GSH) found in eukaryotic cells, cyanobacteria
and proteobacteria α, β and γ is a mercaptol (RSH) [74]. The selenite (SeO3

2−) in the
culture medium can react with the sulfhydryl group on the molecule to form glutathione
selenotrisulfide (GS-Se-SG) and release reactive oxygen species O2

−. The superoxide anion
O2
− produced by this process is the source of toxicity [75]. However, the degradation

of GS-Se-SG by oxidative kinase can remove this interference and facilitate the further
reduction of GS-Se-SG to other selenium donors.

7. Conclusions and Discussion
7.1. Some Other mRNA Elements Affecting the Incorporation of Sec

The above major mechanisms affecting the incorporation of Sec mainly focus on
the key factors such as SelA–SelD and SECIS, which lead to the traditional biosynthesis
of selenoprotein. However, in SBIP, there are three additional influences: (1) the size
of the translation initiation interval—the optimal mRNA translation initiation interval
helps the ribosome to approach the initiation codon, thus accelerating the loading of
ribosomes. For example, if there is not enough time for SECIS to refold between successive
ribosomal channels, the activation efficiency of FDhF translation of selenoprotein gene
is only 40% [49]. (2) Other action modes of SECIS: some SECIS on selenoprotein mRNA
only have the “CCC” but not “AAR” motif, so they do not act directly on ribosomes but
on factors that change together with this element [35]. If UGA codon shutdown occurs
when SECIS is introduced into the mRNA entrance of ribosomes, the adverse effects such
as mRNA cleavage and reverse translation may be stimulated, thus affecting the forward
translation and Sec incorporation rate [49,76]. (3) Effects of REPS (Repetitive Extragenic
Palindromic Sequences): REPS exists in E. coli, located at about 500 nt downstream of
the stop codon on mRNA, which leads to a large number of stem loop structures in the
downstream region. When the distance between REPS and the stop codon is less than
15 nt, the translation is down-regulated; while the distance between the REPS and the stop
codon is prolonged, the translation is up-regulated [76].

7.2. The Effect of Some Inherent Factors on Selenoprotein Expression

First, foreign elements or foreign proteins may affect the expression of selenopro-
tein. Peter [77] pointed out that the heterologous selenoprotein SelB from Bacillus could
not interact properly with the ribosomes of E. coli due to the influence of the ribosome
fidelity control. Therefore, heterologous SelB can reduce the normal reading of UGA
in E. coli. However, heterogenous SelC genes do not inhibit the translation of UGA, be-
cause tRNA[Ser]Sec genes from many organisms can supplement SelC damage in E. coli
mutants, so that SelC does not become a bottleneck for Sec-tRNA[Ser]Sec biosynthesis and
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heterogenous Sec expression [78]. Secondly, inherent factors such as ribosomes affect the
read through rate of Sec. Some ribosomes accumulate upstream of the UGA codon [79],
causing some ribosomes to terminate translation at UGA rather than binding Sec. Fur-
thermore, the selected plasmid is also significant. For example, the pSUABC plasmid
used to co-express the SelA, SelB and SelC genes could increase the yield of recombinant
selenoprotein by at least 5–7 times. Finally, other inherent matching problems, such as
inactive collation of Sec to UGA, inefficient placement of Sec-tRNA[Ser]Sec or poor reactivity
of Sec in peptidyltransferase reactions, may result in a low delivery rate of Sec-tRNA[Ser]Sec

to ribosomes [49].

7.3. The Exploration and Thinking of New Mechanism

People have formed an inherent impression on the conventional biosynthesis of
selenoprotein. To explore the decoding efficiency of UGA, they mainly focus on several
key factors in SBIP: one synthase SelA, one transporter SelC, and two binding proteins
(GTP binding protein—SelB and ATP binding protein—SelD). However, new methods and
mechanisms to promote Sec incorporation have been discovered: in addition to the inherent
RF and novel influencing factors (such as PSL and SPUR), Elias S.J. Arnér’s [80] team from
Sweden also found that Sec can also effectively incorporate a predefined UAG stop-codon
to compete with RF1 (but not RF2). The mammalian selenium protein TrxR with high
purity, yield and activity can be produced by using pABC2-rTRSUAG in E.coli C321.∆A with
RF1 depleted. This study opens up a novel method for recombinant selenoproteins with
SelB-mediated Sec to be directly inserted into the UAG codon (rather than the traditional
UGA). The method still employs the catalytic tetrad of SelB in selenoprotein biosynthesis,
but does not rely on SECIS. Human glutathione peroxidase 1 (GPx1) can also be produced
with this new system. In short, these new modes of Sec synthesis are still to be discussed
and deeply explored.
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