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Abstract

Climate and weather influence the occurrence, distribution, and incidence of infectious diseases, particularly those caused
by vector-borne or zoonotic pathogens. Thus, models based on meteorological data have helped predict when and where
human cases are most likely to occur. Such knowledge aids in targeting limited prevention and control resources and may
ultimately reduce the burden of diseases. Paradoxically, localities where such models could yield the greatest benefits, such
as tropical regions where morbidity and mortality caused by vector-borne diseases is greatest, often lack high-quality in situ
local meteorological data. Satellite- and model-based gridded climate datasets can be used to approximate local
meteorological conditions in data-sparse regions, however their accuracy varies. Here we investigate how the selection of a
particular dataset can influence the outcomes of disease forecasting models. Our model system focuses on plague (Yersinia
pestis infection) in the West Nile region of Uganda. The majority of recent human cases have been reported from East Africa
and Madagascar, where meteorological observations are sparse and topography yields complex weather patterns. Using an
ensemble of meteorological datasets and model-averaging techniques we find that the number of suspected cases in the
West Nile region was negatively associated with dry season rainfall (December-February) and positively with rainfall prior to
the plague season. We demonstrate that ensembles of available meteorological datasets can be used to quantify climatic
uncertainty and minimize its impacts on infectious disease models. These methods are particularly valuable in regions with
sparse observational networks and high morbidity and mortality from vector-borne diseases.
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Introduction

Climate variation and weather patterns have been linked to the

occurrence of a number of infectious diseases [1]. Pathogens

causing zoonotic (e.g. hantaviruses or plague), and vector-borne

diseases (e.g. malaria, dengue, tick-borne encephalitis, Lyme

disease), are particularly sensitive to meteorological variables such

as temperature and precipitation because these variables affect

vector and host population dynamics in addition to pathogen

transmission [1,2,3]. Capitalizing on these relationships, weather

and climate variables have been used successfully to model the

spatial and temporal distributions of several vector-borne and

zoonotic diseases [4,5,6,7]. Understanding how climate and

weather influence disease occurrence in a particular geographic

region is an essential part of disease forecasting, and can help

promote the timely implementation of disease control and

prevention efforts [8]. A better understanding of the association

between weather patterns and disease occurrence is also a

necessary step in determining how climate change may affect

the distribution and incidence of different infectious diseases [1,2].

The per-capita mortality, morbidity, and economic burden

associated with vector-borne diseases are highest in tropical and

sub-tropical regions including sub-Saharan Africa and Southeast

Asia [9,10,11]. Furthermore, the emergence of new vector-borne

and zoonotic infectious diseases is also most likely to occur in the

tropical regions of Africa and southern Asia [12]. However,

because a large proportion of tropical countries are underdevel-

oped [13], the tropics also have the sparsest coverage of quality-

controlled, ground-based meteorological data [14]. In areas where

meteorological stations are absent, it is necessary to use satellite- or

model-based gridded regional or global climatologies to explore

the association between climate or weather and the occurrence of

infectious diseases. Several different datasets are available for

Africa, however they vary in their spatial resolution as well as their

ability to accurately resolve weather patterns, particularly in areas

with complex topography [15,16,17]. The problem of having

sparse or incomplete meteorological data for examining associa-

tions between disease and climate is not new, but has been

overcome in previous studies of historical disease outbreaks in

innovative ways. For example, in lieu of traditional climate
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records, the paleoclimatic forcing of plague in Central Asia over

the past millennium has been demonstrated using several climate

proxy data sources (glacial ice cores, tree rings, and stalagamite

isotope data) that associate major human plague outbreaks with

periods favorable for epizootics in the wild rodent hosts of the

bacteria [18,19].

The selection of datasets to be used as independent variables for

disease forecasting models influences the ability of the models to

detect an association between weather and disease occurrence, as

well as the functional relationship between the meteorological

variables and the disease outcome. Due to uncertainty in

individual gridded meteorological datasets that arises for various

reasons (e.g., poor constraint from in situ observations, coarse

spatial and temporal scales, algorithm assumptions, etc.), tech-

niques that employ only one realization of a meteorological

variable (i.e., one dataset) to develop and implement a disease

model may not adequately capture the range of possible weather

(and therefore disease) outcomes, especially in data-sparse regions

like the tropics [20,21,22]. In such cases, employing ensembles of

gridded meteorological datasets to develop and implement disease

models may provide more robust results for weather-sensitive

disease outcomes, as well as measures of uncertainty. We use

plague in the West Nile region of Uganda to evaluate how

selection of meteorological variables and use of ensemble and

model averaging techniques influences plague model outcomes,

specifically the inter-annual variation in case counts.

Plague is a rodent-associated flea-borne disease caused by the

bacterium Yersinia pestis. Plague has caused three major human

pandemics that killed millions. Although improved sanitation and

access to antibiotics has reduced disease incidence and case fatality

rates, sporadic cases and focal outbreaks still occur regularly. The

majority of human cases in the last few decades have occurred in

eastern and southern Africa [23,24,25], where case fatality rates

may be as high as 40% [26]. Outcome of infection can be improved

by early diagnosis and treatment with antibiotics [27,28]. A system

forecasting the expected incidence of plague in a particular region

during the next year would help inform local public health officials,

health care providers, and the general public, and better utilize

resources for prevention and control efforts.

Previous models have identified strong associations between

temperature and precipitation and plague occurrence

[4,19,29,30,31,32,33,34]. However, the majority of these studies

were focused in temperate regions that show a clear seasonality

and where human cases are rare. By contrast, similar models for

tropical areas, such as plague foci in Africa, are uncommon. Here,

we examine the relationship between regional temperature and

rainfall and the inter-annual occurrence of human plague in the

West Nile region of northwestern Uganda from January, 1999 to

July, 2011. Because ground-based meteorological data in this

region is very limited, we used several different publicly available

gauge-, model- and satellite-derived gridded climate and meteo-

rological datasets from U.S. and European data archives. First, we

used the collection of meteorological datasets to create an

ensemble dataset based on the estimated accuracy of the different

datasets within our study region. Next, we used the meteorological

ensemble dataset to evaluate how well meteorological data

described variation in historical inter-annual plague occurrence.

Finally, we assessed the sensitivity of model results to the selection

of different datasets using model averaging techniques. We show

that by incorporating both within-dataset and between-dataset

variation and uncertainty, the modeled association between

climate and plague occurrence is less sensitive to biases and errors

associated with an individual data source. Model selection

identified several rainfall variables that are strongly associated

with the annual number of human plague cases.

Study area background
Plague cases in Uganda are concentrated within Okoro and

Vurra counties in the West Nile region (Figure 1a). These two

counties are located on the Rift Valley escarpment in the districts

of Arua (Vurra) and Zombo (formerly Nebbi) and are bordered on

the west by the Democratic Republic of Congo (DRC). Plague is

highly seasonal in Uganda, with the majority of cases typically

arising between September and December each year (Figure 2a).

For the purposes of our analysis, we defined a plague year as

August of one year to July of the following calendar year. A total of

2,409 suspect plague cases were reported in Okoro and Vurra

counties from August, 1999 to July, 2011, a mean of 201 cases per

year for both counties combined. The number of annual suspect

cases ranged from a high of 505 during the 2001–2002 plague

season to a low of 13 during the 2009–2010 and 2010–2011

plague seasons (Figure 3a). There was a non-significant negative

linear trend in the number of annual plague cases over the time

period of this study (F1,10 = 3.847; p = 0.08).

The higher elevations in Okoro and Vurra counties experience

lower temperatures and more annual rainfall than in the Nile

Valley east of the escarpment (Figure 1b,c). Rainfall in the region

Figure 1. Spatial distributions of plague, temperature, and
rainfall in West Nile region of Uganda. (A) Reported cumulative
plague incidence per 1,000 population from 1999–2007 in Vurra and
Okoro counties of Uganda. (B) Average August rainfall (mm) and (C)
average February maximum temperatures (uC) in northwestern Uganda.
Temperature and rainfall averages were based on data from 1999–2009
generated using a 2 km Weather Research Forecasting (WRF) model
[68].
doi:10.1371/journal.pone.0044431.g001
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falls mainly during a secondary rainy season from March to May,

followed by a primary rainy season from July/August through

November (Figure 2b). Monthly variations in temperature are

relatively minor, with mean temperatures ranging from 21.8uC in

August to 25.4uC in February (Figure 2c).

Results

Development of meteorological ensembles
Good quality ground-based meteorological data for the

northwestern highlands region of Uganda is largely non-existent.

There are no publicly available meteorological datasets from

Vurra or Okoro counties. We employed meteorological data from

the closest station with daily temperature and rainfall observations

for the time period of this study, the airport in Arua, Uganda,

which is located several kilometers north of Vurra County (see

Figure 1a) at an elevation of 1204 m, below the 1300 m threshold

for high plague risk [35,36]. We also selected one additional

temperature dataset and six additional gauge- and satellite-

estimated or re-analysis rainfall datasets based on their estimated

accuracy in sub-Saharan Africa (Table 1; SI Materials and

Methods; Figure 4).

To develop a meteorological ensemble, we first evaluated the

ability of the six gauge- and satellite-estimated datasets to

reproduce observed seasonal rainfall variability measured at all

rain gauges within 500 km of Okoro and Vurra counties. The

FEWS-Net rainfall dataset had the highest mean correlation

(r = 0.34) when compared on a site-by-site basis with the

normalized seasonal rainfall frequencies from the 11 meteorolog-

ical stations within the 500 km radius. The TRMM (r = 0.23),

GPCP (r = 0.17), and CMORPH (r = 0.16) rainfall datasets had

intermediate correlation values, while the two re-analysis datasets,

ERA-Interim and NCEP/DOE—which have comparatively

coarse spatial resolutions–were poorly correlated (r = 0.08) (Table

Figure 2. Seasonal patterns of suspect plague cases, temper-
ature, and rainfall. Average monthly (A) number of suspect plague
cases, (B) rainfall, and (C) mean temperature in Vurra and Zombo
counties, Uganda for 1999–2010. Data are organized by plague year
which runs from August to July. Temperature data are averages of
monthly means from the Arua airport observational dataset and the
ERA-Interim dataset. The warm season is from January to April and the
cool season is from June to October. Rainfall data are average monthly
rainfall totals from the CMORPH, TRMM, FEWS-Net, and the Arua airport
observational datasets. (See text for further details regarding the
meteorological datasets and seasonal descriptions).
doi:10.1371/journal.pone.0044431.g002

Figure 3. Annual number of observed versus predicted suspect
plague cases. (A) Plot of annual number of observed vs. predicted
number of suspect human plague cases from the best-fit regression
model using the meteorological ensemble dataset that uses a weighted
average of all of the rainfall and temperature datasets included in this
study (see Table 2 for model details). (B) Predicted number of suspect
human plague cases from the best-fit regression model using each of
the individual rainfall datasets.
doi:10.1371/journal.pone.0044431.g003
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S2). Based on these correlations FEWS-Net was given the highest

weighting in the rainfall ensemble dataset (see Table 1 for weights).

The Arua airport rainfall observations – which have interannual

variations that are representative of the broader regional

variability over Vurra and Okoro counties – were given a ‘neutral’

weight of 0.143 (1/7). The airport data, despite being the only

‘true’ in situ observational data among the 7 rainfall datasets, were

not given greater weighting because of uncertainty arising from

collection techniques, transcription errors, and missing data. The

ERA-Interim and NCEP/DOE re-analysis rainfall datasets were

included in the weighted ensemble, but excluded from the model

averaging of individual dataset results (see description of technique

below) due to their poor correlations with surrounding meteoro-

logical stations. The temperature ensemble dataset was created by

averaging the ERA-Interim and Arua airport datasets with equal

weights. Modeled and measured temperature datasets are

generally of much higher quality than rainfall datasets, and

therefore uncertainty among datasets is not as big of a concern for

temperature.

Association between weather and plague occurrence
The best fit model to the inter-annual case data with the

weighted meteorological ensemble dataset (AICc = 19.6, adjusted

r2 = 0.864; Figure 3a) contained a negative association with the

number of days of .10 mm of rainfall in the preceding dry season

(December-February) (Figure 5a) and a positive association with

the number of days with between 0.2–10 mm of rainfall during the

interval between rainy seasons from June to July prior to the start

of the plague season (Figure 5b). Including interactions or

quadratic terms of the significant predictors did not improve

model fit, and the number of suspect plague cases in the previous

year was not a significant predictor when included in the model

(p.0.20). No other model had a DAICc,2 (Table 2). The model

selected with the weighted meteorological ensemble dataset

performed better than a model with the same variables using an

unweighted ensemble dataset (adjusted r2 = 0.864 vs. 0.719). The

leave-one-out method indicated the best fit model was not overly

sensitive to input from any one year (mean R2 = 0.861, 95% CI:

0.796–0.926). In addition, the weighting of the observational

rainfall dataset from Arua in the rainfall ensemble dataset did not

influence results; the best fit model was identical when the

weighting was varied from 0% to 50%.

To test the robustness of the best-fit regression model generated

using the weighted meteorological ensemble dataset to variability

between individual meteorological datasets, we determined the

best-fit model using each of the 18 different temperature and

rainfall dataset combinations, and then averaged model statistics

and parameter values across all 18 combinations. Among the

potential models predicting the square-root transformed number

of annual suspect plague cases for each of the 18 dataset

combinations, 63 two-variable models, but no single variable

models, had DAICc,2. The mean adjusted r2 across all 18

potential meteorological datasets was highest for the models with

the number of days of between 0.2 and 10 mm of rainfall during

June-July and either the days of .2 mm (Model #1) or .10 mm

(Model #2) of rainfall during the preceding dry season as the

explanatory variables (mean r2 = 0.65 and 0.62; Table S3). The

difference between the mean adjusted r2 values for these two

models was not statistically significant (one-sided, paired Student’s

t-test; t = 1.222, p = 0.12) and the mean DAICc between the two

models was only 1.8, indicating significant support for either

consensus model. No other models had a mean DAICc,2 when

model results were averaged across all potential meteorological

datasets. Both explanatory variables were statistically significant in

each of the two consensus best two-variable models with a

DAICc,2 (Table S3). In each model, the number of days with

between 0.2 and 10 mm of rainfall in June and July was positively

associated with the annual number of the suspect plague cases at a

zero-year lag (i.e., wetter-than-normal conditions in the interval

rainy season immediately prior to the plague season). In addition,

the number of suspect plague cases was negatively associated with

the number of days in the dry season with either .2 mm or

.10 mm of rainfall at a zero-year lag (i.e., more cases following

drier-than-normal conditions during the preceding December-

February dry season).

There was large variability in model fit when the consensus best

two-variable models were run using the individual rainfall datasets

(Figure 3b). Adjusted r2 values ranged from a high of 0.87 with the

CMORPH data (which only covers 2003–2010) to a low of ,0

(un-adjusted r2,0.15) using the coarse-resolution ERA-Interim or

NCEP/DOE data for the model with .2 mm of dry season

rainfall and between 0.2–10 mm of June-July rainfall as param-

eters (Table 3). Both variables from the consensus best two-

variable model were statistically significant for only two of the

seven rainfall datasets (TRMM and FEWS-NET), and neither

were significant for three of the seven datasets, which happen to

have the coarsest spatial resolution (GPCP, ERA-Interim, and

NCEP/DOE). The large range of results shown in Table 3 and

Figure 3b underscores the importance of performing quality

control on meteorological datasets prior to using them, and of

Figure 4. Variability among the different temperature and
rainfall data sources. (A) Standardized monthly mean temperatures
(1998- present) from the Arua airport (Observational) and ERA-Interim
datasets. (B) Standardized monthly days of rainfall .0.2 mm (1998-
present) from Arua airport (Observational), National Centers for
Environmental Prediction re-analysis II project (NCEP/DOE), USAID
Famine Early Warning System Network (FEWS-Net), and Climate
Prediction Center morphing technique (CMORPH) rainfall datasets.
The other rainfall datasets were not included in the figure to maintain
clarity.
doi:10.1371/journal.pone.0044431.g004
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employing ensemble approaches likes the one used here for disease

model development and implementation, to increase the likelihood

of robust results and to understand model uncertainty.

Discussion

In areas where meteorological stations are absent, satellite-

derived and global climate-reanalysis datasets can be used to

address the link between weather and disease occurrence for

explanatory or predictive purposes. However, as we have shown

here, the correlation between different datasets is not always

strong, and for many regions it is difficult to assess which datasets

are most accurate. To address this issue we generated a suite of

descriptive models using several different temperature and rainfall

datasets and tested these models with ensemble datasets. Model fit

varied among datasets, but the two key rainfall variables, 0.2–

10 mm June-July rainfall and .10 mm (or .2 mm) dry season

rainfall, remained significant even when their effects were

averaged across all datasets. Using multiple meteorological or

climatological datasets and model-averaging techniques provides a

conservative approach that reduces the possibility of detecting a

spurious correlation, or failing to detect an actual correlation,

between disease occurrence or incidence and variables from a

single dataset that may not be highly accurate in a particular study

area.

Ensembles of meteorological or climatological models are

frequently used to reduce the uncertainty inherent in probabilistic

weather and climate forecasting because regional and global

climate models vary considerably in their ability to accurately

represent different aspects of weather or climate dynamics

[20,21,22,37,38]. Multi-model ensemble averages are better at

representing current climate conditions and past changes than any

single global circulation model for a range of climate variables

[20,37]. The high level of variability between rainfall frequencies

in the West Nile region of Uganda for the different gauge- and

satellite-derived meteorological datasets included in this study

indicates that it is also important to address the uncertainty in

gridded meteorological data when attempting to determine the

response of ecological processes, such as infectious disease

occurrence, to weather patterns. Weighting the meteorological

ensemble based on the degree of agreement with ground-based

observational rainfall frequencies from local meteorological

stations resulted in a strong model fit. However, even an

unweighted ensemble of all seven rainfall datasets still produced

a moderately strong model fit and both rainfall variables were

statistically significant. This relatively good fit was partly because

the unweighted rainfall ensemble dampened the effects of spurious

rainfall values from any one member. Therefore, in situations

where ground-truthing would be difficult or when rapid prediction

is desired, using an unweighted multi-dataset ensemble would

likely represent an improvement over the selection of a single

meteorological dataset.

For three of the seven individual rainfall datasets considered in

this study, neither of the rainfall variables from the consensus best

two-variable model was statistically significant. These three rainfall

datasets (GPCP, ERA-Interim, and NCEP/DOE) had the coarsest

spatial resolution of the datasets considered in this study,

suggesting that the use of these datasets may not be appropriate

in topographically complex regions such as along the Rift valley in

East Africa. It is therefore important to validate global or regional

meteorological datasets using other data sources, such as regional

meteorological stations as we have done here. The local rainfall

data from the in situ Arua airport record only produced a moderate

model fit (adjusted r2 = 0.48) and the standardized frequency of

Table 1. Meteorological datasets used in analysis of the interannual variation of suspect plague cases.

Dataset Source Time span Spatial resolution Ensemble weight Reference

Temperature

Arua airport Local meteorological station 1/1999–12/2010 N/A -

ERA-Interim European Centre for Medium-Range
Weather Forecasts - Interim
reanalysis project

1/1998–12/2010 1.5u lat./long. [70]

Rainfall

Arua airport Local meteorological station 1/1999–12/2010 N/A 0.1431 -

ERA-Interim European Centre for Medium-Range
Weather Forecasts - Interim reanalysis
project

1/1998–12/2010 1.5u lat./long. 0.065

NCEP/DOE National Centers for Environmental
Prediction Reanalysis II project

1/1998–12/2010 1.875u lat./long. 0.066 [71]

GPCP Global Precipitation Climatology Project 1/1998–4/2008 1u lat./long. 0.133 [72]

TRMM Tropical Rainfall Measurement
Mission -Multisatellite Precipitation
Analysis project, product 3B42

1/1998–12/2010 0.25u lat./long. 0.179 [73]

CMORPH National Oceanic and Atmospheric
Administration Climate Prediction
Center - Morphing Technique project

1/2003–12/2010 0.07u lat./long. 0.123 [74]

FEWS-NET United States Agency for Development -
Famine Early Warning System Network

1/1998–12/2010 0.1u lat./long. 0.265 [75]

Time span is the period of the analysis for which each dataset is available. Spatial resolution is represented by decimal degrees of latitude and longitude. Ensemble
weight is the weight each individual dataset was given in the ensemble rainfall dataset based on ground-truthing. The last column provides a reference for additional
information on each dataset.
1Initial ensemble weight of 0.143 for Arua airport rainfall dataset was set at 0.143 (1/7) because dataset could not be ground-truthed.
doi:10.1371/journal.pone.0044431.t001
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0.2–10 mm June-July rainfall was not statistically significant for

this dataset, despite consistently being the strongest predictor

among other datasets. This suggests that caution be exercised

when attempting to extrapolate regional meteorological conditions

from a single data source, particularly if the quality of the data is

uncertain and/or its location may not be representative of the

entire study region. In this case, we believe the Arua airport record

is reasonably representative of the broader regional rainfall and

temperature variability (as informed by comparison of grid points

in the gridded datasets), but that its quality (especially for the

rainfall data) is questionable due to measurement uncertainty,

transcription errors, and data outages. Although model fit with

one or more of the individual rainfall datasets was comparable to

model fit with the ensemble dataset for either of the consensus best

two-variable models, no individual rainfall dataset performed as

well as the ensemble dataset for both consensus models. The

inability of any individual dataset to perform well with both

models is likely due to differences between how strongly the

frequencies of .2 mm and .10 mm rainfall are correlated for a

given dataset based on a bias towards or against capturing heavier

rainfall events. Because the individual rainfall datasets were

compared with surrounding ground stations using the number of

days with.0.2 mm rainfall, the dataset(s) that were identified as

having the highest correlation with measured rainfall amounts

might not be the best at representing the frequency of heavier

rainfall events. Therefore caution should be exercised before

selecting a single data source based solely on its correspondence

with overall rainfall frequencies or amounts, without also

considering its accuracy at representing the frequency of heavier

rainfall events that might influence disease occurrence.

We found that the annual number of suspect plague cases in the

West Nile region from 1999–2010 was negatively linked to the

amount of rainfall during the December-February dry season and

positively associated with rainfall in the June-July interval season

immediately prior to the plague transmission season in August.

Rainfall is an important determinant of the geographic distribu-

tion and timing of plague outbreaks in wildlife and humans

[4,19,29,30,31,32,33,39,40]. The occurrence of bubonic plague in

arid or semi-arid temperate regions is positively associated with the

amount of annual or seasonal rainfall one or two years prior

[4,32,34,39]. In tropical regions the association with rainfall is

mixed; plague intensity in southern China is positively associated

with drought conditions during the preceding year and extremely

wet or extremely dry conditions in the current year [34] and most

human cases occur during the dry season in Vietnam [41,42,43].

However, in other tropical and sub-tropical regions plague

generally occurs during the rainy season or shows no clear

seasonal pattern [44,45]. In addition, previous research in the

West Nile region of Uganda established a positive link between

Figure 5. Association between rainfall and plague occurrence.
Relationship between square-root transformed number of annual
suspect plague cases and (A) the standardized number of days of
.10 mm in the dry season (December-February) prior to the start of
the plague year in August (zero-year lag) and (B) the standardized
number of days of 0.2–10 mm rainfall in June and July prior to the start
of the plague year (zero-year lag). The rainfall data is the weighted
ensemble of all seven rainfall datasets included in our analyses (TRMM,
CMORPH, FEWS-NET, NCEP/DOE, ERA-Interim, GPCP, and Observation-
al). Dotted lines are the regression coefficients estimates from the best
two-variable model using the ensemble rainfall dataset.
doi:10.1371/journal.pone.0044431.g005

Table 2. Model AICc, DAICc, and adjusted r2 values for the best fit models (all models with DAICc,10) using the weighted
meteorological dataset ensemble with square-root transformed number of suspect plague cases as the response variable.

Coefficient #1 Coefficient #2 AICc DAICc Adj. R2

.10 mm Dry season rainfall (2) 0.2–10 mm June/July rainfall (+) 19.6 0 0.864

.2 mm Dry season rainfall (2) 0.2–10 mm June/July rainfall (+) 23.1 3.4 0.819

.2 mm Dry season rainfall (2) .2 mm June/July rainfall (+) 25.3 5.7 0.781

.10 mm Dry season rainfall (2) .2 mm June/July rainfall (+) 29.3 9.6 0.696

DAICc represents the difference between a model’s mean AICc value and the mean AICc value of the best fit overall model. +/2 symbol after the coefficient names
indicates whether the coefficient value is positive or negative.
doi:10.1371/journal.pone.0044431.t002
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rainfall in February, October, and November (but a negative

association with June rainfall) and the spatial risk of plague [40].

The positive association between plague and lagged rainfall in

arid and semi-arid regions has been explained by the trophic

cascade hypothesis [4,32]. Increased rainfall increases plant

primary productivity, which leads to increases in rodent

abundance. In several systems, plague epizootics in rodent

populations, or an increased risk of spillover to humans, are

associated with rodent populations surpassing a threshold density

[46,47,48,49,50]. In the American Southwest the positive associ-

ation between rainfall and plague occurs at a lag of one to two

years, likely because there is a delay in the response of rodent

abundance to increased primary productivity [4]. In our study, we

found a positive association between rainfall in June and July and

the number of cases in the immediately following August-July

plague year. However we found no evidence of a positive

association between plague occurrence and rainfall in the

preceding years. The rodent found most often in and around

human dwellings in the West Nile region of Uganda is the roof rat,

Rattus rattus, and the most abundant sylvatic rodent is the Nile rat,

Arvicanthis niloticus [51,52]. Unlike the ground squirrels (Spermophilus

and Amerospermophilus spp.) and prairie dogs (Cynomys spp.) that are

believed to be the primary epizootic hosts in the American

Southwest and have relatively low reproductive rates [4], R. rattus

can produce up to five litters of 6–12 young per year and A. niloticus

is capable of giving birth to litters of 4–12 young every 23 days

during the breeding season [53]. In addition, both species can

breed year-round under highly favorable conditions. Due to the

high reproductive rates of these species, we might therefore expect

a much more rapid response to changes in rainfall and other

environmental conditions.

The association between rainfall and plague occurrence could

also arise due to the influence of rainfall on vector and rodent

ecology in a more complex manner than a direct trophic cascade.

Higher rainfall may increase flea survival [32], and plague

occurrence is positively associated with rodent flea burdens

[43,54,55]. Therefore, higher rainfall in June and July could

increase flea abundance, increasing the likelihood of plague

transmission in subsequent months. In the West Nile region of

Uganda, an elevated risk of plague occurrence at the individual

hut level has been associated with proximity to annual crops

including corn [56]. Drier dry seasons and wetter months of June

and July (between the two rainy seasons) are likely to influence

both crop productivity and the timing of planting and harvesting

of these crops. Plague risk in this region has also been associated

with the presence of bare ground in January when annual crop

fields are typically fallow [35]. Less rainfall during the dry season

from December through February may alter the timing of crop

planting or it may influence rodent abundance and behavior.

Human plague cases occur following epizootics and subsequent

die-offs in the domestic-dwelling R. rattus population [52], but it is

believed that Y. pestis is maintained long term in the sylvatic and

peridomestic rodent populations (particularly A. niloticus)

[44,52,57,58,59,60,61,62]. Therefore an increase in human plague

cases may result from conditions that promote epizootics in R.

rattus, increase the prevalence of Y. pestis in sylvatic rodent

populations, or increase the spillover rate from sylvatic rodent

populations to R. rattus. The primary route of transmission

between the sylvatic, peridomestic, and domestic settings in this

region appears to be via contact between R. rattus and A. niloticus

(Amatre et al. 2009). Further research is needed to determine how

the contact rates between these rodent species varies seasonally

and from year to year, and whether these changes are associated

with variations in rainfall and associated factors such as the timing

of annual crop harvests.

The model results presented here are descriptive only; we could

not explicitly evaluate the causal relationship between rainfall and

the annual variation in plague occurrence in the West Nile region

of Uganda. Field studies are needed to examine how flea

abundance, rodent abundance, and rodent contact rates are

influenced by rainfall changes in the two time periods identified in

this study. Research should also be conducted to determine how

rainfall during these time periods influences primary productivity

in the sylvatic environment and agricultural variables such as crop

yield and the timing of planting, harvesting, and drying of annual

crops such as corn. The predictive ability of the model is limited by

the fact that we used human plague cases as a response variable.

Without knowledge of rodent population dynamics or fluctuations

in the incidence or prevalence of Y. pestis in rodent populations, we

cannot predict when epizootics are likely to occur. Although the

Table 3. Model adjusted r2 values and coefficient estimates for the two consensus best-fit models when run using the
meteorological ensemble dataset and each of the individual precipitation datasets.

Model #1 Model #2

Precipitation Data set Adj. R2
Dry season
.2 mm rain

0.2–10 mm
June–July rain Adj. R2

Dry season
.10 mm rain

0.2–10 mm
June–July rain

Arua Obs. 0.48 22.72 NS 0.55 22.73 NS

CMORPH 0.87 22.36 NS 0.70 22.62 NS

TRMM 0.77 21.87 1.99 0.83 22.34 2.05

FEWS-NET 0.84 22.26 1.76 0.66 22.09 2.94

GPCP 0.13 NS NS 0.12 NS NS

ERA-Interim 20.14 NS NS 20.12 NS NS

NCEP/DOE 20.09 NS NS 0.01 NS NS

Ensemble 0.82 22.31 2.07 0.86 22.72 3.78

Model means 0.65 21.95 1.76 0.62 22.05 2.19

Coefficients estimates not significant at the a= 0.05 level are listed as NS. Model mean values represent the mean adjusted r2 and coefficient estimates averaged across
model results from the individual and weighted ensemble meteorological datasets (results from the ERA-Interim and NCEP/DOE datasets were not included in the
model means due to their low accuracy in the study region). All model mean coefficients were significant at the a= 0.05 level.
doi:10.1371/journal.pone.0044431.t003
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number of human plague cases in the prior year was not a

significant predictor in our model, humans are only incidental

hosts and the occurrence or absence of a major epizootic in the

previous year could modify the expected relationship between

rainfall and human cases. Because the amount of rainfall in June

and July prior to the start of the plague season in August was a

significant explanatory variable, the amount of lead time that the

model provides is relatively limited. However, combined with

improved rodent surveillance data, our model could be used to

mobilize prevention and control efforts prior to the September to

January peak in human plague cases. In addition, rainfall in East

Africa is positively correlated with warm El Nino Southern

Oscillation conditions and Pacific and Indian Ocean sea surface

temperatures at a several month lag [5,63,64,65,66]. Further

research is required to determine whether this association extends

to the West Nile region of Uganda, where it could be used to

predict elevated risk conditions with a longer lead time.

The spatial and temporal variation in vector-borne and

zoonotic disease occurrence is often closely associated with

climatic and environmental predictors, but the lack of reliable

environmental and climatic data in many tropical and sub-tropical

regions impedes our ability to model the association between these

predictors and disease occurrence. More accurate models could

improve our ability to target limited surveillance, prevention and

control resources, because disease surveillance and reporting in

these regions also tends to be sparse. In our study region, there was

a wide range in accuracy among individual satellite, in situ, and

simulated meteorological and climate datasets in representing

regional rainfall variability. We have shown that ground-truthing

these datasets (when possible) and the development of multi-

dataset ensembles can be used to reduce the variability and

uncertainty associated with individual meteorological datasets, and

subsequently can generate more robust infectious disease model

outcomes. Because the occurrence and risk of emergence of

vector-borne and zoonotic infectious diseases is highest in tropical

and sub-tropical regions where quality-controlled, ground-based

meteorological data is often limited, an ensemble and model-

averaging approach should often be an important component of

disease modeling and forecasting efforts.

Materials and Methods

Study area
Previous studies have shown that the majority of the plague

cases in the West Nile region of Uganda occur above 1300 m

[35,36]. Elevation in Vurra County ranges from 763–1573 m with

a mean of 1140 m, and elevation in Okoro County ranges from

946–1873 m with a mean of 1458 m. The higher elevation areas

are characterized by lush vegetation, fertile soils, numerous rivers

and tributaries. The highlands in Okoro and Vurra also

experience lower minimum and maximum temperatures and

more annual rainfall than the Nile Valley region east of the

escarpment (Figure 1b,c). Additional ecological characteristics of

Okoro and Vurra counties, as well as the neighboring area outside

of the plague focus, have previously been described in detail

[36,51,56,67,68]. As of 2002, Okoro County had a population of

168,531 and Vurra County had a population of 98,412 (Uganda

Bureau of Statistics, 2002).

Epidemiological data
Epidemiological records of all suspected human plague cases

within Arua and Zombo districts from 1999–2010 were compiled

based on a review of health records from health clinics and

hospitals [36]. Due to the scarcity of laboratory services in the

study area, cases are generally identified as suspect based on

clinical criteria. A suspect plague case is defined as rapid onset of

fever, chills, headache, severe malaise, prostration with either (i)

extremely painful swelling of lymph nodes in the arm-pits or

inguinal area (bubonic plague), (ii) cough with blood-stained

sputum, chest pain and difficult breathing in an area known to

have plague or in a person who has in the recent past been to a

plague-endemic area (pneumonic plague), or (iii) vomiting blood,

bloody diarrhea, with or without history of contact with a known

plague case, with or without history of a visit to a plague endemic

area (septicemic plague). Case records included the place of

residence, date of clinic visit, age, sex, and treatment. Because

most plague cases occur in the home environment, we assume that

exposure to Y. pestis occurred within a patient’s county of

residence. Of the 2490 suspected cases of plague identified from

clinic records between 1 January 1999 and 31 July 2011, 995

(40.0%) occurred in Okoro County and 1414 (56.8%) in Vurra

County. The remaining cases either originated in the DRC (42),

Arua Municipality (1), or were of unknown origin (38), and were

therefore excluded from analysis.

Meteorological variables
Monthly mean temperatures and daily rainfall values for

January 1999 to December 2010 were obtained for the Arua

station from the handwritten weather logs archived at the airport,

and subsequently digitized. A 15-month period of missing

handwritten data from October 2000-December 2001 was in-

filled using daily data for the Arua station that was archived by the

National Oceanic and Atmospheric Administration’s National

Climate Data Center (NCDC). The NCDC record was not the

first choice because the record, overall, is much less complete than

the handwritten record provided by the airport and is subject to

occasional transcription errors. The NCDC data was quality-

controlled and outliers (.+/24 standard deviations from the

monthly means) were discarded. A small percentage of months still

had some days with missing data. In these cases, monthly

frequency data (i.e, days with rainfall .2 mm) was calculated by

multiplying the ratio of the actual to measured days for the month.

Because the Arua meteorological station is outside of our study

area, has periods of questionable data due to collection techniques,

and has several data gaps, we also selected several publicly

available gridded gauge- and satellite-derived regional or global

climate datasets from U.S. and European climate data archives

(Table 1; Materials and Methods S1).

Dataset ensembles
It is not possible to determine which temperature or rainfall

datasets described above are most accurate for our study area due

to the lack of local meteorological stations available for validation.

To address the uncertainty in the accuracy of each dataset and the

differences between the datasets (see Figure 4; Table S1), we

considered individual datasets, as well as weighted dataset

ensembles when constructing the statistical models of plague

described below. For temperature we created an ensemble dataset

for January, 1998 to December, 2010 by equally weighting the

standardized monthly temperatures from the Arua and ERA-

Interim datasets. For rainfall we considered five of the seven

datasets individually (the ERA-Interim and NCEP datasets—

which have the coarsest spatial resolution—had the lowest

correlations with surrounding ground-based rainfall values and

were therefore excluded; see Results) and an ensemble of all seven

rainfall datasets. To create a rainfall dataset ensemble we first

obtained daily rainfall totals for all meteorological stations within

500 km of Vurra and Okoro counties available from NCDC to

Meteorological Ensembles in Disease Models
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ground-truth the spatial rainfall datasets. There were 11 stations

within that radius that had rainfall totals for at least 25% of the

days between 1999 and 2010 (Figure 6). For each station we

calculated the number of days with greater than 0.2 mm of rainfall

per season. When stations had missing data, seasonal frequency

data was calculated by multiplying the ratio of the actual to

measured days for the season. Seasonal rainfall frequencies for

each station were standardized using the seasonal mean and

variance from 2003–2010. We then calculated the correlation of

the six rainfall datasets described in Table 1 with the standardized

seasonal rainfall frequencies at each of the 11 meteorological

stations. For each of the six datasets, this was done by extracting

the rainfall frequencies from the grid point nearest each

meteorological station, computing the correlation with the

observed rainfall frequencies, and then computing an average

correlation over the 11 stations. Finally, a weighted rainfall dataset

ensemble was created by averaging all seven datasets each

weighted by its average 11-station correlation coefficient. Because

the Arua airport rainfall dataset is already a ground-based dataset

and could not be independently validated, it was given an initial

weight of 1/7 (0.14). To examine the sensitivity of our results to

the weighting of this dataset we ranged its weight from 0.0 to 0.5

while holding proportional weighting of the other rainfall datasets

constant (the results were found to be insensitive to the weighting

of this dataset). For months where data was missing from a

particular dataset (e.g. CMORPH prior to 2003), the ensemble

average was re-weighted to exclude that dataset for the missing

months only.

To reduce the number of potential explanatory variables, we

grouped the rainfall data into four seasons and the temperature

data into two seasons. The dry season runs from December to

February, the secondary rainy season from March to May, the

primary rainy season from August to November, with a rainy-

season interval from June to July separating the two periods of

heaviest rain (Figure 2b). The standardized numbers of days of

rainfall per season in each category were considered as potential

explanatory variables for the number of plague cases. Annual

numbers of days of rainfall in each category were also included.

Standardized mean monthly temperatures for August (coolest

month) and February (warmest month) were included as potential

explanatory variables, as was the standardized mean annual

temperature. The standardized mean temperatures during the

warm (January–April) and cool (June–October) seasons were also

considered as potential explanatory variables (Figure 2c). The

warm and cool seasons were defined as the months where the

mean temperature was greater than 0.5 standard deviations above

or below the annual mean temperature.

Statistical analysis
Linear multiple regression models were constructed to identify

meteorological predictors of annual plague case counts. The

square root transformed number of suspect plague cases per year is

normally distributed (Shapiro-Wilk test; W = 0.945, p = 0.58) and

was used as the primary response variable. The monthly, seasonal,

and annual rainfall and temperature variables described above

were included as potential explanatory variables at both zero- and

one-year lags. We defined the plague year as running from August

to July of the following calendar year, but the annual rainfall and

temperature variables were based on calendar year. The zero-year

lags for the dry season (December–February), secondary rainy

season (March–May), rainy-seasonal interval (June–July), and

warm seasons (January–April) all occur prior to the start of the

plague year in August. For example the March to May secondary

rainy season in 1999 would be considered as a zero lag for the

1999–2000 plague year and as a one-year lag for the 2000–2001

plague year. Therefore the zero-year lags for monthly or seasonal

variables prior to August could still be used to predict an upcoming

plague year up to eight months in advance. Correspondingly, the

primary rainy season from August to November does not occur

prior to the start of the plague year.

The leaps package version 2.9 in R (Thomas Lumley 2009) was

used to perform an exhaustive search of the best fit models with up

to three explanatory variables with bias-adjusted Akaike’s infor-

mation criterion (AICc) as the model selection criterion (SI

Materials and Methods). Model selection was performed using

both the weighted meteorological ensemble dataset and each of

the individual temperature and rainfall datasets. Once the most

frequently included explanatory variables across these datasets

were identified they were then used to determine (1) whether there

was a consensus ‘best’ model across all meteorological datasets and

(2) which variable coefficients remained statistically significant

when averaged across all candidate models using model averaging

techniques (SI Materials and Methods). Due to the limited size of

the dataset, we were not able to withhold a portion of the data for

model validation. Model sensitivity to the number of suspect

plague cases in a given year was tested using the leave-one-out

method where the analysis was rerun by sequentially dropping and

then replacing each year from the model [69]. The leave-one-out

method was used to create a mean and 95% confidence interval of

the model r2 for comparison to the r2 from the best-fit model. All

statistical analyses were performed in R 2.11 (R Development

Core Team 2010).

Supporting Information

Materials and Methods S1 Descriptions of temperature and

precipitation datasets and model selection techniques.

(DOCX)

Figure 6. Map of meteorological stations within 500 km of
Arua, Uganda. Meteorological stations containing rainfall data for at
least 25% of the days between 1998 and 2010 (red circles) within
500 km of the Arua airport (yellow circle).
doi:10.1371/journal.pone.0044431.g006
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Table S1 Correlation matrix for the seven different rainfall

datasets.

(DOCX)

Table S2 Correlation values for rainfall datasets at each of the

11 meteorological stations within a 500 km radius of our study

region.

(DOCX)

Table S3 Mean model AICc, DAICc values and coefficient

estimates and 95% confidence intervals for the consensus best two-

variable models with square-root transformed number of suspect

plague cases as the response variable.

(DOCX)
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