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Rapid Organocatalytic Formation of Carbon Monoxide:
Application towards Carbonylative Cross Couplings
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Abstract: Herein, the first organocatalytic method for the
transformation of non-derivatized formic acid into carbon
monoxide (CO) is introduced. Formylpyrrolidine (FPyr) and
trichlorotriazine (TCT), which is a cost-efficient commodity
chemical, enable this decarbonylation. Utilization of dime-

thylformamide (DMF) as solvent and catalyst even allows for
a rapid CO generation at room temperature. Application to-

wards four different carbonylative cross coupling protocols
demonstrates the high synthetic utility and versatility of the

new approach. Remarkably, this also comprehends a carbon-

ylative Sonogashira reaction at room temperature employing
intrinsically difficult electron-deficient aryl iodides. Commer-
cial 13C-enriched formic acid facilitates the production of ra-
diolabeled compounds as exemplified by the pharmaceutical

Moclobemide. Finally, comparative experiments verified that
the present method is highly superior to other protocols for

the activation of carboxylic acids.

Introduction

Carbon monoxide (CO) is one of the most important building
blocks in chemistry in both, academia and industry.[1, 2] Funda-

mental applications are, for example, carbonylative cross cou-
plings and hydrocarbonylations of alkenes and alkynes
(Scheme 1 A). Since CO is a highly toxic and flammable, odor-

less gas, its utilization is inevitably associated with severe
safety hazards and risks. Therefore, compounds that liberate

CO under controlled conditions in stoichiometric quantities
have been developed (Scheme 1 B).[2] These so-called CO surro-
gates are either directly added to the reaction mixture for the
in situ CO production, or CO is formed ex situ in a separate re-

action vessel. In the latter case, the CO generating and con-
suming process are spatial separated, for which they do not
need to be compatible. Beneficially, this facilitates the substitu-
tion of gaseous CO through a CO surrogate significantly. A gas
exchange is secured by a connection of the two chambers.

Several two chamber gas reactors have been constructed for
the ex situ gas synthesis,[2, 3a] whereby some devices are even

commercially available.[4]

Examples of common commercial CO surrogates[2] are

(1) carboxylic acid chlorides like COgen 1 and sila derivatives
such as SilaCOgen 2, which have been implemented by

Scheme 1. Previous and this work. [TM] = transition metal catalyst, dba = di-
benzylidene acetone, DIPEA = di-iso-propyl ethyl amine, FPyr = N-formylpyr-
rolidine, TCT = 2,4,6-trichloro-1,3,5-triazine, rt = room temperature.
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Skrydstrup and Lindhardt mainly for the ex situ CO prepara-
tion.[2c,e,f, 4] (2) N-Formyl saccharin (3), the application of which

has been pioneered by Manabe (in situ) and Fleischer (ex
situ).[2b, 5] (3) Aryl formates like 4, which have been discovered

by Manabe for the in situ CO production,[2b,g, 6] and (4) metal
carbonyl complexes like 5 as introduced by Larhed for the in

and ex situ CO release.[2i, 7]

In fact, formic acid (6) is an even simpler and significantly
cheaper source of CO, which has been initially applied in situ

for hydrocarbonylations of alkenes and alkynes and carboxyla-
tions of aryl halides, respectively.[8, 9] Furthermore, the group of
Wu published a range of protocols for carbonylative cross cou-
plings using the mixed anhydride of formic and acetic acid,

which was synthesized from Ac2O and HCO2H in prior.[10] In ad-
dition, the same team discovered that carbodiimides promote

the in situ development of CO directly from methanoic acid.[11]

Finally, de Borggraeve introduced decarbonylations of 6 with
methylsulfonyl chloride (MsCl) and NEt3.[12]

Certain heterogeneous catalysts[13] and Brønsted acids like
H2SO4

[14] facilitate the ex situ decarbonylation of formic acid.

Eventually, Cantat and co-workers recently described a chemi-
cal looping strategy for the decarbonylation of formic acid.[15]

Therein, methyl formate was transformed ex situ to CO and

MeOH by means of MeOK as transition metal-free catalyst.
So far, decarbonylation of methanoic acid typically requires

high reaction temperatures of 75–190 8C.[8–11, 13, 14] The only no-
table exception constitutes the activation with MsCl and NEt3

according to de Borggraeve.[12] Alongside lower temperatures
were only accomplished in rather specific cases.[10a, 11b, 13a] Under

consideration of the cost-efficiency of formic acid, the develop-

ment of approaches for its ex situ decarbonylation under
milder conditions (e.g. at room temperature) and with a broad-

er applicability constitutes an indispensable task.
Lately, our group discovered that Lewis bases[16] like 1-for-

mylpyrrolidine (FPyr) and dimethylformamide (DMF) catalyze
the transformation of carboxylic acids into the respective acid
chlorides by means of trichlorotriazine (TCT), which is also de-

noted as cyanuric chloride (see Scheme 1 C for structure).[17a, 18b]

Indeed, TCT is the most cost-efficient reagent for the activation

of OH groups like in alcohols and acids besides phosgene
(COCl2).[17a] Since cyanuric chloride contains three Cl atoms, it
can be applied in substoichiometric quantities down to
33 mol % with respect to the substrate (100 mol %). In fact, the

beneficially low stoichiometry is facilitated by formamide catal-
ysis. Against this background, we envisioned a novel ex situ
CO formation approach based on formic acid (Scheme 1 C).

Activation of formic acid should either yield formyl chloride
7 or an intermediate like I, which bears a similarly good leaving

group as chloride. Actually, formic acid chloride is known to be
labile towards decarbonylation, wherefore a rapid decomposi-

tion to CO was predicted.[19] Surprisingly, CO evolution from

methanoic acid using common chlorination agents has not
been reported in the realm of transition metal catalyzed trans-

formations so far.[20] Actually, organocatalytic conversion of
HCO2H into CO is a challenging task, which has to this end

only been accomplished through preceding derivatization to
methyl formate.[15, 21] Herein, a novel operationally simple

method for the transformation of formic acid into CO based
on organocatalysis and ex situ application towards four differ-
ent carbonylative cross couplings is disclosed.

Results and Discussion

At the outset, the reaction of methanoic acid with TCT was in-
vestigated by means of gas volumetry (Figure 1, see chp. 2 of

the supporting information = SI for details). The use of DMF as

solvent and catalyst enabled a rapid CO generation already at
room temperature (Figure 1 A, see chp. 2.2 of the Supporting

Information). Notably, DMF is a common and inexpensive or-
ganic solvent. When TCT was applied in excess (41 mol % =

1.2 equiv) with respect to methanoic acid (1.0 equiv), already
after 4.5 min (= t2/3) a gas yield n(gas)/n0(HCO2H) of >67 % was

noted (green points). Since at room temperature solvent and

HCl evaporation can be neglected, the gas yield is equivalent
to the yield of CO and consequently also conversion of formic

acid. In the present work, at most 1.5 equiv of HCO2H were en-
gaged in the carbonylative transformations (see Scheme 2 and

Scheme 3). Hence, 67 % conversion comply to 1 equiv of CO

Figure 1. Gas volumetry to follow CO formation: A) in DMF, B) solvent
screening and C) alteration of catalyst loading. n(gas) = amount of gas as de-
termined by the ideal gas equation, n0(HCO2H) = initial amount of formic
acid, THF = tetrahydrofuran, EtOAc = ethyl acetate, 2-MeTHF = 2-methyltetra-
hydrofurane.
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being generated. After 75 min 98 % gas yield were reached,
which substantiates an almost quantitative conversion of 6.

Such a fast CO generation was not expected, since under cata-
lytic conditions a similarly rapid conversion of carboxylic acids

into acid chlorides afforded heating to 80 8C.[17a]

To the best of our knowledge, only SilaCOgen (2),[4b] which is
more expensive than formic acid, and activation of formic acid
with MsCl and NEt3

[12] allow a similarly fast gas development.
Although very limited kinetic data is available, based on the re-

ported reaction temperatures the current approach enables a
considerably faster CO formation than almost all other proce-
dures using formic acid.[8–14] With an excess of formic acid
(2 equiv) with regard to TCT (33 mol % = 1 equiv) the evolution

of gas is slower (yellow points).
Nevertheless, after 90 min 80 % yield in terms of CO had

been accomplished. This verifies the partial substitution of the

third Cl atom of TCT, as also observed in the cases of carboxyl-
ic acid and alcohol chlorinations (see mechanism in

Scheme 4).[17a, 18b] From a solvent screening using 10 mol % of
FPyr at 70 8C MeCN and THF emerged as optimal (chp. 2.3 in

the Supporting Information). Remarkably, the initial rate of gas
formation in DMF at room temperature was four times faster

than in MeCN at 70 8C.

Eventually, a variation of the catalyst loading in MeCN dem-
onstrated the tremendous effect of FPyr (Figure 1 C, chp. 2.4 in

the Supporting Information). In these measurements the reac-
tion mixture was heated to 70 8C for 60 min. Both, the gas

yield after cooling down to ambient temperature and the ini-
tial rate clearly increased from 5 over 10 to 30 mol % of FPyr

(green points). Interestingly, a slower development of gas was

observed using 10 mol % of DMF (yellow points) than with
5 mol % FPyr, which attests the latter as superior organocata-

lyst. The blue data points indicate the formation of gas in the
absence of TCT, which was similar to heating MeCN to 70 8C

(see chp. 2.4, Supporting Information). Therefore, the formed
gas consists only of evaporated solvent. As an important

aspect, the gas amount was even slightly lower in the absence

of FPyr (red points). This highlights the importance of FPyr as
catalyst: Without this formamide basically no CO is created at

all.
To probe the synthetic utility, in several carbonylative cross

couplings either gaseous CO or another CO surrogate was sub-
stituted by the present approach (Scheme 2). These reactions

were carried out in a commercial two chamber gas reactor
named COware from Sytracks, which facilitates the spatially
separated ex situ formation of CO (see Scheme 1 C and chp.
3.2 in the Supporting Information).[4]

In carbonylative transformations at elevated temperatures

CO was generated using 10 mol % of FPyr in reaction chamber
1 (Scheme 2 A). As a first example, SilaCOgen (2)[4b] and

Mo(CO)6,[7c] respectively, were replaced by the present method

in the aminocarbonylation of aryl halides 8 (Scheme 2 B). An in-
crease of the NEt3 amount in the chamber 2, in which the

amincarbonylation was carried out, by the amount of metha-
noic acid employed (1.5 equiv) facilitated the neutralization of

HCl, which arose from the decarbonylation.

Scheme 2. Application of the organocatalytic CO formation (A) towards vari-
ous carbonylative cross couplings at elevated temperatures (B–G). Yields
refer to isolated material after chromatographic purification. For detailed re-
action conditions see SI. Bn = benzyl, PMP = para-methoxyphenyl.
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Importantly, production of CO using different solvents fur-
nished amide 10 a in good yields of 81–91 % at 80 8C, which

was required for the C-N cross coupling (Scheme 2 C). Albeit
the solvent has a significant impact on the rate of CO evolu-

tion (see above), the mitigated effect on the yield of 10 a may
be explained by a rather sluggish direct coupling of butyl

amine and aryl iodide 8 a. In addition, CO production at room
temperature in DMF afforded 10 a in 84 % yield (for conditions

see Scheme 3 A). Thus, different solvents can be engaged in

the CO generating and consuming process, cross diffusion
causes no considerable difficulties. In general, CO formation in

DMF is recommended for carbonylative transformations that
are carried out at temperatures below 70 8C. At higher temper-

atures catalytic CO release preferably in MeCN, THF or dioxane
is basically equally efficient.

In fact, FPyr could also be substituted by the twofold

amount of simpler DMF, which furnished the amide 10 a in
85 % yield. Also aryl bromides 11 could be engaged as starting

materials, when the reaction temperature was increased to
100 8C. Worthy of note, in situ CO preparation is in general less
suitable for aminocarbonylations, since CO surrogates are usu-
ally electrophilic and hence react with amines.[7c] Indeed, at-

tempted in situ CO release in one reaction vessel furnished

10 a only in minor traces ,3 %, which testifies the crucial role
of two chamber gas reactor. A high synthetic utility is wit-

nessed by the preparation of the insecticide DEET (10 c) and
the pharmaceutical Moclobemide 10 b (Scheme 2 D). Actually,

the use of commercial H13CO2H as CO surrogate afforded iso-
topically labeled 10 b. This example also unambiguously ac-

counts for formic acid as CO source. Moreover, a reasonable

scalability was demonstrated by the gram synthesis of amide
10 j.

Furthermore, in the alkoxycarbonylation of aryl bromides 11
an atmosphere of CO[22a] and formic acid decarbonylation at

150 8C using zeolite,[13b] respectively, were substituted by the
current methodology (Scheme 2 E). This process and the afore-
mentioned aminocarbonylation allowed the synthesis of the

products 10 d, 12 a and 12 b with acid-labile functions
(Scheme 2 F). These precedents evidence that the simultaneous
HCl formation exerts no influence on the functional group
compatibility. Thereby, particularly remarkable is example 12 b,

which bears a highly acid susceptible acyclic acetal. Further-
more, formamide catalyzed CO release could replace COgen

(1) in the preparation of a-nitro ketone 13 a from nitrome-

thane and the respective iodide 8 a (Scheme 2 G).[22b]

Ultimately, in a challenging carbonylative Sonogashira cou-

pling at room temperature gaseous CO[23a] was substituted by
the present approach using DMF as solvent (Scheme 3). Albeit

in most cases CO was formed at room temperature in DMF as
solvent (Scheme 3 A), examples 15 a + b show that catalytic CO

release at 80 8C is also feasible. Especially in the case of elec-

tron deficient aryl iodides of type 8 the direct Sonogashira
coupling without CO incorporation usually is predominant.[24]

In the past, this problem has been circumvented by exploi-
tation of the expensive and sensitive ligand P(tBu)3.[24b] In con-

trast, the present approach allows for the synthesis of the
ynones 15 e–h even derived from highly electron poor aryl io-

dides containing nitro groups using plain PPh3 (Scheme 3 C).
Indeed, under standard conditions with 1.5 equiv CO ynone

15 f, which is deduced from electron-deficient para-cyano-
phenyl iodide, was formed as side-product in 31 % yield be-

sides the respective Sonogashira coupling product in 40 %
yield (Scheme 3 C and Supporting Information). An increase of

the amount of CO to 2.5 equiv resulted in a minor improve-
ment of the yield to 41 %. However, when CuI was omitted,

the desired ketone 15 f could be isolated in 69 % yield. More-

over, even electron poorer 4-nitrophenyl iodide could be trans-
formed into the corresponding carbonylated product 15 g in

59–62 % yield. As an important aspect, also more reactive aryl
alkynes, are suitable substrates, as confirmed by the synthesis

of ynone 15 i. Again, without CuI the yield could be essential
improved from 55 to 91 %.

Moreover, the amide 10 a was formed in up to 88 % yield

when formic acid was engaged as yield-limiting starting mate-
rial (1.0 equiv, see chp. 1.3 in the Supporting Information). This

outcome proves high levels of CO incorporation. As an impor-

tant feature, the present method is operationally simple and
does not require a reaction setup in a glove box to exclude air

like some other CO surrogates (see also graphical procedure in
chp. 3.2.2 in the Supporting Information).

To the best of our knowledge, reactions of formic acid with
ordinary chlorination agents like oxalyl and thionyl chloride

Scheme 3. A) CO formation and B + C) carbonylative Sonogashira coupling
at room temperature. mTol = meta-tolyl, a. For conditions see Scheme 2 A.
b. Prepared from 2.5 equiv of formic acid and 95 mol % TCT. EWG = electron
withdrawing group, mTol = meta-tolyl.
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have so far not been harnessed to access CO for carbonylative
transformations. Against this background, a rigorous compara-

tive assessment against other protocols for the activation of
carboxylic acids was carried out (Scheme 4). Thereby, several

experiments for each method were conducted under variation
of the amount of base, which is why ranges of yields are

stated (see also chp. 1.2 in the Supporting Information).

Indeed, reaction of formic acid with either thionyl or oxalyl

chloride (SOCl2 or C2O2Cl2)[20] afforded the model amide 10 a in

low yields of 5–8 % and 44–54 %, respectively, while the current
method provides this amide in 81 % yield. Despite in situ use

of the mixed anhydride of formic and acetic acid allows car-
bonylative cross couplings,[10] ex situ preparation from Ac2O

and 6 delivered 10 a in synthetically non-useful yields of 37–
42 %. TCT and the amine base NMM have been engaged for

the activation of carboxylic acids as mixed anhydrides with cy-

anuric acid.[25] When this protocol was applied to methanoic
acid, amide 10 a arose in yields of 51–56 %. Hence, the current

organocatalytic approach is indeed superior to other carboxylic
acid activation strategies.

The gas volumetric measurements confirmed that basically
no decarbonylation takes place without FPyr (Figure 1 C). In

contrast, the amide 10 a was still obtained in 35–42 % yield,

when FPyr was omitted. A likely explanation for this result is
the diffusion of NEt3 from the CO consuming chamber 2 into

the CO producing chamber 1, which could effect mixed anhy-
dride activation as in the case of TCT/NMM (see above).

In alignment to our previous work,[17a] the CO formation
should be initiated by a nucleophilic aromatic substitution

(SNAr) of a Cl atom of TCT through FPyr (Scheme 5). The

emerging intermediate IIa shows structural similarities to the
Vilsmeier Haack reagent. Next, substitution with formic acid
would deliver salt I and dichlorohydroxytriazine (16). Inter-
mediate I possesses a good leaving group and could undergo
decarbonylation directly.

Alternatively, I could also proceed a nucleophilic substitution

to yield formyl chloride (7), which is labile and would conse-
quently decompose to CO and HCl.[19] As demonstrated

through the gas volumetry with an excess of HCO2H (Fig-
ure 1 A), 16 passes sequential transformation with FPyr and
methanoic acid to generate intermediate I and chlorodihy-
droxytriazine (17). Finally, the remaining Cl atom of 17 is at
least in part replaced by FPyr to again afford carboxy iminium

salt I and cyanuric acid. This was proven by gas volumetry (Fig-
ure 1 A) and in addition cyanuric acid was confirmed as by-

product in our previous contributions.[17a, 18b]

Conclusions

The first organocatalytic method for the ex situ formation of

CO from non-derivatized formic acid has been presented. For-
mamide catalysis enabled the transformation into CO by

means of substoichiometric amounts of the bulk chemical TCT.
As an important aspect, utilization of DMF as solvent and cata-

lyst facilitates a rapid CO generation at room temperature. Im-

plementation to four different carbonylative cross couplings,
which also includes a carbonylative Sonogashira reaction at

room temperature with challenging electron poor aryl iodides,
proved high synthetic value. High levels of practical relevance

were certified by the synthesis of bioactive compounds,
namely DEET and Moclobemide.

In addition, isotopically labeled molecules like the drug Mo-

clobemide are amenable using commercial 13C-enriched formic
acid. Although HCl is generated simultaneously, even very acid

sensitive functional groups are fully compatible. In order to ex-
change gaseous CO or other CO surrogates through the cur-
rent methodology, the amount of base simply has to be adapt-
ed according to the amount of formic acid. Finally, comparison
experiments witnessed that the present approach is superior

to other common carboxylic acid activation procedures.
We are convinced that the high levels of synthetic utility

and versatility and the low costs associated will pave the way
for a rapid uptake of the current approach. Current efforts are
dedicated towards the exploitation of CO and HCl for product
incorporation.
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