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Abstract

The large volume of high-resolution images acquired by the Mars Reconnaissance Orbiter has 

opened a new frontier for developing automated approaches to detecting landforms on the surface 

of Mars. However, most landform classifiers focus on crater detection, which represents only one 

of many geological landforms of scientific interest. In this work, we use Convolutional Neural 

Networks (ConvNets) to detect both volcanic rootless cones and transverse aeolian ridges. Our 

system, named MarsNet, consists of five networks, each of which is trained to detect landforms 

of different sizes. We compare our detection algorithm with a widely used method for image 

recognition, Support Vector Machines (SVMs) using Histogram of Oriented Gradients (HOG) 

features. We show that ConvNets can detect a wide range of landforms and has better accuracy and 

recall in testing data than traditional classifiers based on SVMs.
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1. Introduction

During the past ten years, the Mars Reconnaissance Orbiter (MRO) has collected over 

30 Terabytes of data. Two of the cameras onboard MRO that are routinely used to study 

geological landforms include the High Resolution Imaging Science Experiment (HiRISE; 

0.3 m/pixel resolution; McEwen et al., 2007) and the Context Camera (CTX; 6 m/pixel 

resolution; Malin et al., 2007). However, the total data volume of these images poses new 

challenges for the planetary remote-sensing community. For instance, each image includes 

limited metadata about its content, and it is time consuming to manually analyze each 

image to search for non-indexed information. Therefore, there is a need for computational 

techniques to search the HiRISE and CTX image databases and discover new content.

Many algorithms can classify image content, such as Support Vector Machines (SVMs) 

and logistic regression. Yet, most of these algorithms require pre-processing steps, like 
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smoothing filters or Histogram of Oriented Gradients (HOG) methods (Dalal et al., 2005), 

which are typically tailored to address a specific classification problem. These preprocessing 

steps extract characteristics of the data, like edges in a picture, or patterns of illumination 

in a remote sensing scene. The signal processing and computer science communities refer 

to these characteristics as features. Convolutional Neural Networks (ConvNets) have become 

an increasingly popular alternative for image classification (LeCun, 2016), and compared 

with other classifiers, ConvNets have the best performance for recognition of both characters 

(Ciresan et al., 2012) and images (Graham, 2015). ConvNet architectures are the best 

performing algorithms in both the Mixed National Institute of Standards and Technology 

(MNIST) and Canadian Institute for Advanced Research (CIFAR) data sets, which are the 

standard classification data sets within the computer vision community. ConvNets learn their 

own input features, which alleviates the need to test different pre-processing algorithms. 

Furthermore, Graphical Processing Units (GPUs) can significantly increase the speed of 

training and classification steps in ConvNets. Using GPUs is not unique of ConvNets, and 

other Deep Learning architectures can also benefit from GPU acceleration.

In this paper, we address the problem of automated landform detection using ConvNets to 

identify Volcanic Rootless Cones (VRCs) and Transverse Aeolian Ridges (TARs) in two 

types of Mars satellite imagery by:

1. Training a ConvNet to detect landforms of varying size and shape, using VRCs 

as an example;

2. Showing that, for VRCs, a ConvNet performs better than optimized SVMs with 

HOG features; and

3. Showing that ConvNets also have the ability to detect a variety of other 

landforms, such as TARs.

Although our classifier is designed to detect many geologic features, the scope of the current 

study focuses on identifying VRCs and TARs as two examples of morphological distinct 

landforms, which are intended to highlight the broad applicability of our classifier to a wide 

range of geological classification problems.

2. Background information

2.1. Automated landform detection

Previous applications of machine learning in planetary sciences have typically focused on 

the automated detection of impact craters (Urbach and Stepinski, 2009; Bandeira et al., 

2012; Stepinski et al., 2012; Emami et al., 2015; Cohen et al., 2016). Such Crater Detection 

Algorithms (CDAs) diminish the need for an operator to delimit manually all craters within 

a region, which is useful for generating impact crater inventories over large areas; however, 

manual inspection is still required to validate the results. The most popular CDAs first 

extract features from the data (e.g., shapes and patterns of light and shadow) and then apply 

a classifier (Stepinski et al., 2012). For instance, Urbach and Stepinski (2009) proposed a 

popular and efficient CDA, which applies a series of filters to remove the background noise 

and then creates a set of features that look for the characteristic crescent-shaped shadow of 

a crater. Bandeira et al. (2012) used the same approach, but added texture recognition to 
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improve the precision of the algorithm. Cohen et al. (2016) showed preliminary results using 

a ConvNet for crater detection and demonstrated that they outperformed previously tested 

methods in the same dataset.

Aside from detecting impact craters, machine learning methods have only been used to 

identify a few other landforms in a planetary science context. These efforts include using 

Self Organizing Feature Maps (SOFMs) to identify VRCs in Mars Global Surveyor (MGS) 

Mars Orbiter Camera (MOC) imagery (Hamilton and Plug, 2004), applications of SVMs 

to detect dunes in MOC images (Bandeira et al., 2011), and object-based approaches to 

estimating the orientation of TARs with HiRISE data (Vaz and Silvestro, 2014). More 

recently, Palafox et al. (2015) and Scheidt et al. (2015) have also demonstrated the utility of 

ConvNets for detecting VRCs and TARs in HiRISE images. However, in general, little work 

has been done to develop generalized classifiers to detect other geological landforms using 

planetary remote sensing data—with the exception of the hazard navigation and automated 

rock analysis by robotic rovers on Mars. For instance, Gor and Castano (2001) designed 

an automated classifier to detect and analyze rocks for both of NASAs Mars Exploration 

Rovers (MERs) Spirit and Opportunity (Gor et al., 2001). Biesiadecki and Maimone 

(2006) also designed a self-navigation system using stereo matching and Random Sample 

Consensus (RANSAC) algorithms, and used these algorithms to estimate the position of the 

rover by identifying landmarks in the image data (Biesiadecki and Maimone, 2006).

2.2. The characteristics and geological significance of VRCs and TARs

Volcanic Rootless Cones (VRCs) are generated by explosive interactions between lava and 

external sources of water (Thorarinsson, 1951, 1953), and are commonly associated with the 

flow of lava into marshes, lacustrian basins, littoral environments, glacial outwash plains, 

snow, and ice. Terrestrial VRCs cover areas of up to ~150 km2 and generally include 

numerous cratered cones ranging from 1 to 35 m in height and ~2–500 m in diameter 

(Fagents and Thordarson, 2007). VRCs on Mars (Fig. 1) are generally larger, typically 

ranging from tens of meters to ~1 km in diameter, and can form groups covering thousands 

of square kilometers (Hamilton et al., 2010a, 2010b, 2011). Rootless cone morphologies 

and spatial organization strongly depend upon lava emplacement processes (Hamilton et 

al., 2010a, 2010c) and a balance between the availability and utilization of lava (fuel) and 

groundwater (coolant) in molten fuel–coolant interactions (MFCIs; Sheridan and Wohletz, 

1981, 1983; Wohletz, 1983, 1986, 2002; Zimanowski et al., 1991; Zimanowski, 1998). 

However, in the presence of excess lava (e.g., in regions inundated by large sheet-like flows 

of molten lava), it may be assumed that the location of VRC groups will strongly depend 

on the distribution of near-surface H2O and that VRCs may be used a proxy for former 

H2O deposits (Frey et al., 1979; Frey and Jarosewich, 1982; Greeley and Fagents, 2001; 

Fagents and Thordarson, 2007; Head and Wilson, 2002; Fagents et al., 2002; Jaeger et al., 

2007; Hamilton et al., 2010a, 2010c, 2011). Cratered cones, resembling terrestrial VRCs, 

have been identified in many regions on Mars (Fagents and Thordarson, 2007) and their 

widespread occurrence makes them important as a paleo-environmental indicator that can be 

used to infer the locations of near-surface H2O at the time of lava flow emplacement.
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Wind plays a significant role in shaping the surface of Earth and Mars by moving small 

particles to generate a variety of depositional and erosional features. Aeolian bedforms 

include ripples and dunes, as well as a distinct class of bedforms termed Transverse Aeolian 

Ridges (TARs) (Bourke et al., 2003). TARs occur in the equatorial and mid-latitude regions 

of Mars (Balme et al., 2008; Berman et al., 2011), but it is uncertain whether or not 

they form by ripple- or dune-forming processes. It is clear that many martian TARs are 

constructional landforms, resulting from the transport and deposition of granular material, 

alternative hypotheses have been proposed for some examples. For instance, Montgomery et 

al. (2012) explain several TAR-like features on Mars as periodic bedrock ridges, which are 

erosional landforms with crests that are transverse to the prevailing wind direction (Greeley 

et al., 1992; Hugenholtz et al., 2015). These contrasting interpretations carry different 

implications for surface–atmospheric interactions on Mars and the deposition, or erosion, of 

sedimentary units through time. Mapping the spatial distribution of TARs over regional and 

global scales could provide important new constraints for their formation processes, but their 

small size and widespread distribution makes automated approaches to TAR identification 

preferable to manual mapping efforts.

3. Methods

3.1. Support Vector Machines (SVMs)

In planetary remote sensing, SVMs have been used to detect impact craters on the Moon 

(Burl, 2000) and to study volcanic landforms on Venus (Burl, 2001; Decoste and Schölkopf, 

2002). SVM algorithms use a function, known as a kernel, to create a decision boundary 

that separates data into distinguishable classes (Boser et al., 1992; Hastie et al., 2009). In 

remote sensing, these kernels become especially important as objects from different classes 

may have overlapping characteristics.

Our SVM classifier uses Histogram of Oriented Gradients (HOG) features to accentuate 

landforms in HiRISE and CTX images. In the HOG transformation, a series of oriented 

gradients—discrete angles between 0 and 360°—are drawn in small, adjacent non

overlapping units. A histogram representing the number of elements in line with these 

oriented gradients is created for each unit and depicted as an intensity vector in that unit. An 

array of HOG features representing the linear landforms of an image can provide additional 

information beyond the original data set. HOG is very robust to changes in illumination and 

shadowing, which is a desirable characteristic in a landform detection algorithm (Dalal et al., 

2005).

3.2. Convolutional Neural Networks (ConvNets)

Artificial Neural Networks (ANNs) are composed of connected set of linear classifiers, each 

of which is trained to generate a specific decision boundary and classify simple spaces. 

Layers within an ANN are connected in sequential order, such that the input of a layer is 

the output of the previous one. Traditionally, ANNs have an input layer, which receives 

the input data; a set of hidden layers, which serve as the classifier; and an output layer 

that provides the result of the classification (Hornik et al., 1989). ConvNets differ from 

traditional neural networks in that different inputs share weights, rather than each input 
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having a single weight (LeCun et al., 1998; LeCun et al., 1990). The purpose of sharing 

weights is to take advantage of local consistency in the data.

The first layer is the input layer, while the last layer is the output layer. Each unit, has the 

following evaluation function:

yi = f(∑wj · xj), (1)

where yi is the output of the ith unit, wj refers to the weight of the jth input, and xj refers 

to the jth input. The function f (·) is called the activation function and it bounds the output 

to the range [0,1] or [−1, 1]. This bounding makes the ANN a classifier, with outputs either 

True (1) or False (0). In the case of multiclass classification, an ANN will use a softmax 

function, which allows for multiple classes in the output.

After training, the ANN can classify new data points, which may belong to two or more 

classes. Each of the perceptrons will be sensitive to different features of the dataset (e.g., 

color, edges, etc.) without the need of adding pre-processing steps. This results in general 

classifiers that can be used for very different classes, which makes them suitable to detect 

many kinds of landforms (e.g., linear and sinuous shapes, such as TARs and dust devil 

tracks, etc).

ConvNets extract features in the images using convolutions. The training of the ConvNet 

yields good values for the convolutional window for each unit in the network. These 

convolutions help extract the most descriptive features of an image. ConvNets work with 

data arranged as an image matrix.

In general, a ConvNet architecture is composed of: convolutional layers, which learn the 

convolutions that best represent the classes in the data; pooling layers that reduce the 

number of features from the convolutions to enhance computational performance (Nair and 

Hinton, 2010), control overfitting and allow for translation invariance; and Rectified Linear 

Unit (ReLU) layers, which apply the ReLU (Nair and Hinton, 2010) activation function to 

increase the nonlinear properties of the network. The electronic appendices provide a full 

description of the three layers used in a traditional ConvNet, basic training paradigms, and a 

description of how a ConvNets handle training data.

3.2.1. Description of MarsNet—MarsNet consists of five ConvNet architectures running 

in parallel, each of them tuned for different sliding window sizes. To select the most 

appropriate window sizes to identify VRCs, we tested more than 20 different windows-size 

candidates. We used a simple validation scheme, where we tested the error of the different 

window sizes using 30% of the data for training and 70% for testing. We found five optimal 

sizes, which are 8, 16, 20, 52, and 100 pixels (Fig. 1). Each pixel size corresponds to a single 

ConvNet architecture. We employ five ConvNet architectures in parallel—one per pixel size

—to search for landforms of different size within a target HiRISE or CTX image (although 

we can easily adapt our system for use with other image data). The training examples are 

generated by manual tagging of individual cones in both CTX and HiRISE images (Fig. 

1). The output of MarsNet consists of a series of heatmaps that indicate the likelihood of 
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positive identification for each of the landforms of interest. For instance, if we had three 

landforms within a scene (e.g., VRCs, TARs, and impact craters), the output of MarsNet will 

be three heatmaps, indicating the likelihood of each of the landforms.

Due to the difference in size of the input images that are passed to each of the parallel 

ConvNets, these networks each have a different number of convolutional and pooling layers 

(Table 1) before connecting to the fully-connected softmax output. The softmax output 

allows MarsNet to output multiple classes instead of only a True/False decision. In Fig. 

2, we present a graphical representation of the feature complexity in the different layers 

in MarsNet. Each convolutional layer increases the number of calculated features, whereas 

each pooling layer reduces the dimension of the feature map. At the end, the output of the 

last convolutional layer is passed through to a fully connected ANN with a softmax function 

to obtain a label for the input patch.

Both HiRISE and CTX images vary in their resolution, depending largely on the initial 

binning of the data, and training a single ConvNet to detect features in range of image 

resolutions can lead to an increased number of false positives due to differences in 

resolution. One alternative is to downsample the HiRISE images to match the resolution 

of the CTX images. Therefore, we have developed two MarsNet architectures, one to 

process HiRISE images and another to process CTX images. Both of these networks use 

independent, but co-registered training and testing images.

3.2.2. Data extraction—We manually labeled examples of VRCs in HiRISE and CTX 

images, as well as examples of TARs in HiRISE images. To do this, we created a Graphic 

User Interface (GUI) where the user can tag the landforms of interest directly in a target 

image. We also tagged other features as a catch-all class for all the features that do not 

correspond to VRCs. In the case of TARs, we also tagged sand and bedrock, instead 

of a single catch-all class. For the TARs, we only tagged examples in HiRISE images. 

We then extract four images surrounding the center pixel of the tagged image (Fig. 1), 

instead of a single image to train the classifier. These images will serve as training data for 

partial features instead of only complete landforms. Training on partial landforms allows the 

classifier to make a positive detection even if an image contains only part of the landform. 

This extraction creates four Y × Y images for each training example (where Y can be 

either 8, 16, 20, 52 or 100 pixels). In the end, the dataset consists of 800 positive examples 

of rootless cones (from 200 tagged images) and 800 examples of TARs (from 200 tagged 

images).

Since each image has different illumination parameters, we need to normalize the 

training examples. Without a normalization, the training examples from one image are 

not transferable to different images. A normalized image (X′) is calculated from a non

normalized image (X) in the following way:

X′ = X − μ
σ , (2)
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where the mean (μ) and standard deviation (σ) were calculated over all the possible 

classification windows in the original HiRISE/CTX image. For instance, if we were 

classifying 10 HiRISE images, we would have 10 μ parameters and 10 σ parameters.

3.2.3. Data training, metrics, and parameters—The quantitative metrics of interest to 

evaluate a classification algorithm are accuracy, specificity, and recall (Eqs. (3)–(5)). These 

metrics are sufficient to test classification algorithms over different datasets as well as their 

capability to detect false positives and false negatives (Bishop, 2006). Accuracy measures 

the ratio of mistakes the classifier made on the test dataset. Specificity measures the rate of 

negative landform detection. And, recall measures the ability to detect positive examples, 

that is, the occurrence of a landform of interest. For instance, in a dataset with 5 data points 

of positive examples and 100 negative examples, an algorithm set to detect every example 

as a negative example would have an accuracy of 95%. On the other hand, that very same 

algorithm would have a recall of 5%, which is a poor recall measurement. The same case 

can be done for specificity and few negative examples.

Accuracy = true negative+truepositive
true positive+false negative + true negative + false positive (3)

Specificity = true negative
true negative+falsepositive (4)

Recall = true positive
true positive+false negative (5)

We can use quantitative evaluation metrics only when the dataset is labeled, which in our 

example is a very small subset of the real data. For example, a single HiRISE image can 

have on the order of 100 million windows of 16 × 16, and we already mentioned that our 

positive samples are 800 for each different landform.

To determine the optimal number of units and layers in the present work, we used the 3-fold 

Cross-Validation (CV; Bishop, 2006) training paradigm. We used CV for each pixel size 

to determine the best combination of layers–units. By using CV, we also determined the 

regularization parameter of each network.

3.2.4. SVM optimization—In our experiments, we used an SVM algorithm enhanced 

with HOG features. The HOG transformation divided the image into discrete squares four 

pixels wide and four pixels high and collected information on the size of the oriented 

gradients in these squares. We concatenated these data to the original data set. Training 

of the SVM was then performed, utilizing the MATLAB SVM library and a radial-basis 

function (RBF) kernel (similar to a Gaussian), corrected by ten-fold cross-validation to find 

the parameters of the decision boundary. SVM optimization is handled very well in Matlab, 

which allows us to run more folds than in the ConvNet cases, where we only used 3 folds 

due to the inherent complexity and size of the ConvNet parameter space.
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3.2.5. Description of the pipeline—After we finished training MarsNet, we tested the 

algorithm with previously unseen images. For a new image I, of dimensions Y × Z, we 

generated a blank image of Y × Z for each of the possible classes and pixel sizes. We call 

these images target fields. In our architecture, we have five window sizes and three classes, 

which makes 15 target fields.

In the new image, we use a sliding window of S × S pixels with 90% overlap; here S is the 

window size for each ConvNet architecture in MarsNet. We use the window as an input for 

the classifier (ConvNet or SVM). In the case of the SVM, we calculated the HOG features 

before passing the window to the classifier. If the extracted segment evaluates as a positive 

detection, we add a matrix of ones in the same location in the target field of the class and 

pixel.

Once we finish processing each patch, we will have five heatmaps per class. The location 

of the landforms of interest represent hotspots in the heatmap. We then re-scale the heatmap 

between 0 and 1, which will indicate the likelihood of a landform being located in each 

individual pixel. Finally, we calculate an average of the results generated by different 

window sizes to generate a final heatmap. This average will help aggregate the detections of 

landforms at different scales.

By the end, we have a single heatmap per class, and to complete the mapping, we threshold 

the heatmap at 0.5 likelihood. Adjusting this threshold to higher or lower values affects 

the sensitivity of the mapping. Higher thresholds decrease the number detected values, but 

increases precision, whereas lower thresholds increase detection area, but also increase false 

positive detection.

3.2.6. Code and Data—The code that implements the pipeline for training and testing is 

available at: https://github.com/leonpalafox/CNNPlanetaryScience.

In this repository, we provide precise instructions relating to the use of the code and the 

trained model that we used to detect VRCs and TARs. MarsNet can also be trained to detect 

other landforms, such as like impact craters, recurring slope lineae, dust devil tracks, etc. 

The data that we used in this study is freely though the NASA Planetary Data System (PDS) 

and in the results section, we provide the image identification numbers for all the data used 

in our analyses. Specifically, for this work we have used HiRISE images PSP_002292_1875 

(25 cm/pixel with 1 × 1 binning), ESP_020889_1320 (50 cm/pixel with 2 × 2 binning) and 

CTX image P03_002147_1865 (6.17 m/pixel).

4. Results

4.1. Comparison between the MarsNet and SVMs classifiers using HiRISE data

We compare the quality of both the MarsNet and SVMs by using the same HiRISE image as 

input. In both cases, we trained the classifiers, MarsNet and SVMs, using the same training 

dataset, and we validated the results using the same test dataset. In addition, we used CV to 

optimize the parameters of the classifiers. The CV segmentation was done using the same 

hold-out validation sets for both MarsNet and SVMs.
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Fig. 3 shows maps generated with MarsNet and SVM for HiRISE image PSP_002292_1875. 

It also shows the target fields heatmap associated with the VRC class. Both figures show 

similar mappings and capture the overall cone field. SVMs, however, have a large false 

detection rate, missing some VRCs. MarsNet detected most of the VRCs in the scene, 

although it also misclassified some craters as VRCs. Qualitatively, while the SVMs seem 

to do a good job detecting null areas within a cone field, ConvNets has an overall better 

performance detecting the cone cluster as a whole.

In Table 2, we present the three metrics used for quantitative analysis: accuracy, specificity 

and recall. MarsNet outperforms the SVM based classifier in both accuracy in the 

test dataset and recall. These results indicate that MarsNet works better for classifying 

previously unseen data and is better at finding the true positives, whereas SVMs work better 

on training data and are better at detecting true negatives. However, we consider MarsNet 

to be superior for automated landform detection because the objective of the classifier is to 

apply it to new data and we consider it more important to identify true positives than true 

negatives.

We also calculated the total accuracy for both classifiers in the final aggregated map, and it 

resulted in 93.56% accuracy on the test sets for MarsNet and 91.36% for the SVMs.

4.2. Comparison of the MarsNet and SVMs classifiers using CTX data

Fig. 4, shows maps generated using both MarsNet and SVMs for CTX images. The cone 

filed represented is the same one we used for the HiRISE images in the previous section, 

we chose a larger area due to the lower resolution of CTX, which decreases accuracy and 

processing times.

We can see that for lower pixel sizes (8, 16) MarsNet generates a large number of false 

positives; however, as we increase the size (52, 100), both mappings look similar to 

each other, MarsNet is able to do a better delimitation of the mapping area, while the 

SVM approach does miss a series of cones in the border of the field. While the MarsNet 

architecture overestimates the field, the SVM architecture underestimates the field.

In Table 3, we see that the metrics obtained from the training data seem to indicate 

that MarsNet does a better job than the SVMs with labeled data. This performance does 

not seem to be represented in the figures due to the high imbalance in the labeled and 

unlabeled data. However, recall in CTX images is clearly better for MarsNet. Relative to 

HiRISE classifications, both systems exhibit worse performance in all categories, which 

is understandable given the low resolution of CTX images, and Fig. 1 shows how larger 

windows actually encompass large areas containing multiple cones rather than small 

individual cones. As a consequence, the CTX-based classifier recognizes VRC groups 

instead of individual cratered cones. As with HiRISE images, MarsNet outperforms the 

SVM in test data, although, for two pixel sizes (16, 20), SVM outperformed MarsNet.

We also calculated the total test set accuracy for both classifiers in the final aggregated map, 

and it resulted in 91.86% accuracy for MarsNet and 89.97% for the SVMs.
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4.3. Applications of MarsNet to other geological landforms

In the following analysis of TARs, we only use HiRISE images because TARs are not 

well resolved in CTX images given their low spatial resolution. SVMs with the same HOG 

feature extractor used for VRCs are also unsuitable for TAR classification, which do not 

exhibit rotational invariance, and so we are unable to directly compare the performance of 

the SVM to the MarsNet using TARs as an example.

Fig. 5 shows that MarsNet correctly identifies areas which contain TARs, including isolated 

examples that are located within the bedrock-dominated region in the southern part of the 

scene. The metrics for TAR detection using MarsNet are consistent with its performance 

detecting VRCs (Table 2). Nonetheless, Fig. 5 illustrates that the classification includes 

some false positives that can be attributed to the fact that some structures within bedrock 

appear very similar to TARs. However, MarsNets performance could be increased by 

expanding it to include additional output classes and training it to recognize bedrock 

structures as a separate landform. In this way, the capability of the classifier improves and 

the number of classes that it is trained to detect also increases.

4.4. Time performance metrics

Using a typical Central Processing Unit (CPU), the processing time for MarsNet operating 

on a HiRISE image is orders of magnitude slower than the processing time for CTX images. 

To address this problem, we used a Graphics Processing Unit (GPU) acceleration available 

in Matlab, via the MatConvNet library (Vedaldi and Lenc, 2015). The library uses the 

cuDNN library by NVIDIA, which calculates convolutions in the GPU. These calculations 

decrease the processing time by at least two orders of magnitude. Our processing times 

are shown in Tables 4, 5. The tables show that even for full resolution HiRISE images, 

it is reasonable to survey a large area of Mars using MarsNet. As expected, CTX images 

take considerably less time. Even when they have a larger footprint, their lower resolution 

makes them faster to process. However, HiRISE images offer better resolution, and for some 

landforms, like TARs, detection is unreliable using CTX images.

5. Discussion

MarsNet has better landform identification results when we compare it with one of the best 

off-the-shelf classifiers (e.g., SVMs). SVMs, however, did have higher specificity in most 

cases, up to 10% compared with ConvNets. A higher specificity from the SVM means that 

the SVM is very good at detecting the negative cases; that is, the absence of a landform. 

However, its lower accuracy means that it is not as good as MarsNet in terms of detect the 

landforms themselves. This higher specificity is reflected in the fact that for most examples, 

the SVM approach did miss cones in the image. Furthermore, the SVM approach can only 

detect radially symmetric landforms like VRCs because the HOG feature extractor that we 

chose is optimized for landforms with rotational invariance and not for linear landforms like 

TARs. In contrast, MarsNet, calculates its own input features based on the training images, 

which makes them easily adaptable to a wide range of classification tasks.
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Due to their higher spatial resolution, HiRISE images are better than CTX images for 

detecting small landforms. However, CTX images are 8.55 times faster to process than 

HiRISE images (Table 5). This means that even if CTX classifications are not as accurate 

as HiRISE classifications, the challenge of mapping large areas becomes more tractable if 

we use CTX images. Additionally, individual CTX images have a much larger footprint than 

HiRISE images, which is a great advantage when conducting regional surveys, and overall 

CTX has imaged much more of the martian surface (95.3%; Malin, 2007) than HiRISE has 

to date (2.5% coverage; McEwen et al., 2016). Nonetheless, while CTX images provide the 

best approach to mapping the distribution of landforms on regional to global scales, HiRISE 

remains ideally suited for more detailed mapping studies on a local scale.

In terms of classification accuracy, we note that MarsNet sometimes incorrectly identified 

impact craters as VRCs within both CTX and HiRISE images, which stems from the 

fact that we did not use an implicit impact crater class as a training dataset. However, 

as we increase the number of classes represented within the training data, these false 

positives will be reduced—thereby resulting in higher accuracy and specificity values for the 

classification.

Lastly, a remarkable strength of MarsNet is how the same ConvNet architecture was capable 

of detecting both VRCs and TARs. The configuration of the network and data processing 

procedure were unchanged in both cases, and this consistency shows that as long as we 

provide a comprehensive training dataset that contains enough examples of the landforms of 

interest, we can perform an automatic classification using the same architecture.

6. Conclusion

In this paper, we presented a classifier based on ConvNets called MarsNet, which is capable 

of outperforming SVMs augmented with HOG feature extractors. Our system is capable 

of distinguishing between very different landforms, such as VRCs and TARs, and we have 

shown that the current architecture is fast enough to process HiRISE images, as well as 

CTX images, using GPU acceleration. We have presented results demonstrating that the 

same ConvNet architecture is capable of identifying two different landforms types on Mars, 

without the addition of any extra pre-processing steps in the pipeline. This shows that 

MarsNet can be used as a generalized classifier using the same architectural system to detect 

multiple landforms types and at a range of resolutions. For instance, applications to HiRISE 

imagery are ideally suited to detailed local surveys, whereas CTX images may be used to 

survey much larger regions of Mars. Furthermore, our code allows any research team to use 

their own datasets to search for other kind of landforms, which provides a modularity that 

will enable MarsNet to transition from being a tool for automated landform detection to an 

automated mapping system for multiple landform types as its training repertoire increases 

with time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Top: Section of HiRISE image PSP_002292_1875 along with VRC training samples 

extracted at the different sizes for each of the CNNs in the MarsNet architecture. All the 

images are centered in the same feature, and five images sizes are created out of each 

target, each of the images feeds one of the five different ConvNets in MarsNet. Each image 

is segmented in four sub-images. Bottom: Target examples from a section of CTX image 

P03_002147_1865. Both images are illuminated from the left.
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Fig. 2. 
Description of the MarsNets complexity illustrating the number of features within each of 

the five parallel CNNs. The x-axis shows the depth within each CNN and the y-axis shows 

the number of features calculated in each layer. Each feature indicates a weight in the 

ConvNet. CNN layers operating on larger inputs (i.e., images subsets with a larger number 

of pixels) require more layers to obtain the best results.
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Fig. 3. 
Visual comparison maps obtained for HiRISE image PSP_002292_1875. The map in the top 

was obtained using the MarsNet architecture, and the map in the bottom was created using 

the SVM architecture. All the figures without a scale bar share the same scale bar of 500 m. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 4. 
Visual comparison maps obtained for CTX image P03_002147_1865. The map in the top 

was obtained using the MarsNet architecture, and the map in the bottom was created using 

the SVM architecture. All the figures without a scale bar share the same scale bar of 1 km. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 5. 
Left: HiRISE image ESP_020889_1320, includes a large number of TARs along with 

bedrock and sand. Upper Right: Probability of TAR detection using MarsNet after 

combining the results of its five classifiers. Lower Right: Final mapping of TARs (shown in 

red) based on a detection threshold of 0.5. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.)
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