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Abstract
Purpose The aim of this prospective study (ClinicalTrials.gov: NCT01880203) was to evaluate the diagnostic and prog-
nostic value of a 7-panel mutation testing in the aspirates of thyroid nodules with indeterminate cytology (IC).
Methods Eligible patients had a thyroid nodule ≥15 mm with IC (Bethesda III–V) for which surgery had been recom-
mended. Detection of BRAF and RAS mutations was performed using pyrosequencing and RET/PTC and PAX8/PPARγ
rearrangements using Real-Time quantitative reverse transcription‐polymerase chain reaction (RT-PCR).
Results Among 131 nodules with IC, 21 (16%) were malignant including 20 differentiated cancers and one thyroid
lymphoma. Molecular abnormalities were identified in 15 nodules with IC corresponding to 10 malignant and 5 benign
tumours. BRAF mutation was detected in 4 nodules all corresponding to classic PTC, and PAX8/PPARγ rearrangement in 2
HCC. In contrast, RAS mutation was identified in eight nodules, of which four were malignant, and one RET/PTC3
rearrangement in a follicular adenoma. This data resulted in an accuracy of 88%, sensitivity of 48%, specificity of 95%,
positive-predictive value of 67%, and negative-predictive value of 91%. After a 56 month’s follow-up, the proportion of
excellent response was similar in patients with molecular alterations (67%) and those without (60%).
Conclusions By increasing the overall risk of cancer from 16 to 67% in mutated nodules and by diminishing it to 9% in wild-
type, this study confirms the relevance of the 7-panel mutation testing in the diagnostic of nodules with IC. Genetic testing,
however, did not predict outcome in the cancer patient subgroup.
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Introduction

At least one woman out of two after 50 years old has a
thyroid nodule. Owing to their frequency and the wide use
of neck ultrasound (US), the clinical management of thyroid
nodules has become a public health issue. Facing a thyroid
nodule, the clinician has to recognize functional autonomy
and to evaluate the risk of cancer. Although thyroid nodules
are common, only a small fraction (~5%) corresponds to
malignant tumours which are generally of good prognosis.
Assessing the risk of cancer is mainly based on thyroid
cytology after fine needle aspiration biopsy (FNAB) using
the Bethesda classification [1]. This is a good, if not a
perfect method for identifying patients with thyroid cancer.
The main limitation is represented by indeterminate cytol-
ogy (IC) which occurs in up to 25% of cases and does not
allow differentiating between benign and malignant
nodules. Indeterminate cytology comprises Bethesda class
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III (atypia of undetermined significance/follicular lesion of
undetermined significance (AUS/FLUS)), class IV (folli-
cular neoplasm/suspicious for follicular neoplasm (FN) or
Hürthle cell neoplasm (FN/SFN)) and at a lesser degree,
class V (suspicious for malignancy (SM)). Surgery is
strongly recommended in Bethesda V associated with a
high risk of cancer up to 75%. In clinical practice, surgery
still remains a usual option for Bethesda III or IV nodules
although the risk of cancer does not exceed 20–25%. As a
result, ~80% of operations can be a posteriori considered as
useless in those categories. Given the potential morbidity of
thyroid surgery for parathyroid glands and recurrent nerve,
and the necessity of hormonal treatment after total thyr-
oidectomy, a more accurate preoperative assessment is
needed to better select patients for surgery. This trend
towards a risk-adapted approach, personalized therapy and
treatment de-escalation was strengthened in the 2015 ATA
guidelines [2]. Improving the characterization of nodules
would allow surveillance in patients with likely benign
nodules and enable a shift to the most appropriate surgical
procedure in those with malignant nodules also taking into
account the assumed prognosis of cancer. From this point of
view, although the presence of somatic mutations, particu-
larly BRAF mutation [3], has been shown to be associated
with more aggressive disease, the prognostic impact of
molecular testing in the aspirates of IC nodules on the long-
term outcome of patients with thyroid cancer has not been
evaluated so far.

In the last decade, tools of molecular analysis or
imaging have been developed to improve the diagnosis of
thyroid nodules. Investigating the presence of somatic
mutations, genomic rearrangements or gene fusions in
thyroid FNA specimens has been shown relevant in
nodules with IC [4]. Testing for single mutations such as
BRAF V600E has a high specificity for cancer but low
sensitivity [5]. Testing for a limited panel of mutations
(such as BRAF, RAS, RET/PTC, PAX8/PPARγ) enables to
increase sensitivity while maintaining a good specificity
[6]. More recently, ThyroSeq v2.1 next-generation
sequencing (NGS) multi-gene panel of molecular mar-
kers has been shown to provide high sensitivity, 90.9 %
and specificity, 92.1% in Bethesda III nodules [7].
Sophistication of ThyroSeq v3 improves sensitivity at
94.1% while moderately lowers specificity at 81.6% and
enables to avoid 82% of unnecessary surgeries in patients
with histologically proven benign nodules [8]. Also,
recent studies in patients with IC nodules using genomic
sequencing classifier have reported sensitivity ranging
from 91 to 100% and specificity from 68 to 93% [9, 10].

Besides molecular testing, efforts have been made to
look for imaging methods in capacity to refine diagnosis of
nodules with IC. Recently, we reported the results of a
prospective bicentric study designed to assess the relevance

of US and shear wave elastography. Both methods failed to
discriminate benign and malignant nodules [11]. The other
objective of this study was to evaluate in the same patients
the diagnostic and prognostic values of a 7-panel mutation
testing on the indeterminate cytological specimens. We
present here the results of that study.

Patients and methods

Patients

The study protocol was approved by the Local Ethics
Committee (Ref. 2012–35, Comité de protection des per-
sonnes Nord-Ouest III) and the French Health Authorities
(Ref 130213B-22). This trial is registered as ID-RCB 2012-
A01313–40, ClinicalTrials.gov NCT01880203. It was
conducted according to the provisions of the Declaration of
Helsinki and the Good Clinical Practice Guidelines of the
International Conference of Harmonization. Written
informed consent was obtained from all patients.

As previously described [11], eligible patients had a
thyroid nodule ≥15 mm with IC according to Bethesda
classification in the six months before inclusion, for whom
surgery had been recommended. Indeterminate cytology
included class III, IV and V sub-categories and was con-
firmed by an experienced cytologist working in the other
participating centre.

Fine needle aspiration (FNA)

The FNA procedures were conducted under US guidance
into the nodule of interest. The study protocol provided for
two dedicated passes of FNA washed in a tube containing
nucleic acid preservative solution (RNA protect®, QIA-
GEN™) which was frozen at −20 °C until analysis.

Nucleic acids extraction

Total RNA and DNA were extracted from FNA samples
using AllPrep DNA/RNA Micro Kit (QIAGEN™) accord-
ing to the manufacturer’s protocol. The amount of total
RNA and DNA was determined by spectrophotometry
using NanoVue (GE Health Care Bio-Science, Piscataway,
NJ, USA) and used as template for RT-PCR and PCR
amplification.

Detection of point mutations

DNA was amplified by polymerase chain reaction (PCR)
using the following primers (BRAF: forward: 5′-biotin- CTT
CATAATGCTTGCTCTGATAGG-3′, reverse: 5′-GGCCA
AAAATTTAATCAGTGGAA-3′; HRAS: forward: 5′-ATT
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GATGGGGAGACGTGCCTGTTG-3′, reverse: 5′-biotin-
TACTGGTCCCGCATGGCGCTGT-3′; KRAS: forward:
5′- CATGTTCTAATATAGTCACATTTTCAT-3′, reverse:
5′- biotin- AGCTGTATCGTCAAGGCACTCTT-3′; NRAS:
forward: 5′- GCAAATACACAGAGGAAGCCTTCG-3′,
reverse: 5′-biotin-GGCCAAAAATTTAATCAGTGGAA-
3′;) with a product size of 226 bp, 77 bp, 121 pb and 137 bp
respectively. DNA was amplified using the Quantitec
Multiplex PCR NoROX kit (QIAGEN™) according to the
manufacturer’s protocol. The cycling conditions were: 1-
for BRAF and KRAS: 95 °C for 15 min, 45 cycles of 95 °C
for 20 s, 60 °C for 30 s and 72 °C for 30 s, final extension at
72 °C for 20 min; 2- for NRAS: 95 °C for 10 min, 30 cycles
of 94 °C for 20 s, 70°C for 20 s with a decrease of 0.5 °C per
cycle and 72 °C for 45 s, 19 cycles of 94 °C for 20 s, 50°C
for 20 s and 72 °C for 45 s, final extension at 72 °C for
10 min; 3- for HRAS: 95 °C for 10 min, 40 cycles of 95 °C
for 30 s, 69 °C for 45 s and 72 °C for 30 s, final extension at
72 °C for 10 min.

Mutation detection of BRAF codons 600 and 601
(sequencing primer: 5′-CCACTCCATCGAGATT-3′),
HRAS codon 61 (sequencing primer: 5′-TCCTGGATA
CCGCCG-3′), KRAS codons 12 and 13 (sequencing primer:
5′-CTTGTGGTAGTTGGAGCT-3′), NRAS codon 61
(sequencing primer: 5′-GACATACTGGATACAGCT-3′)
using the Pyrosequencing PyroMark™ Q24 system was
done following the manufacturer’s instructions.

Detection of rearrangements

Real-time quantitative reverse transcription‐polymerase
chain reaction (RT-PCR) mixture was prepared using
40 nM of each primer set and probes as previously
described [12], 2X Quantitec Probe RT-PCR master Mix
(QIAGEN™), Quantitec RT Mix (QIAGEN™) and 10 ng
of RNA in a final reaction volume of 25 µL according to
the manufacturer’s protocol. Reverse transcription two-
step PCR thermal cycling for cDNA amplification and
real-time data acquisition were performed with a 7500
FAST (Thermofisher™) Real-Time PCR System using
the following cycle conditions: a reverse transcription
step of 50 °C for 30 min, a cDNA denaturation step of
95 °C for 15 min followed by 50 cycles amplification of
94 °C for 15 s and 60 °C for 1 min. Negative control (no
cDNA) and positive controls (RNA from tumours or cell
lines known to carry a particular rearrangement was used
as a positive control.) were cycled in parallel with each
run. To decrease the likelihood of false negatives,
GAPDH was amplified in parallel for each sample.
Fluorescence data were analysed by the 7500 Fast Dx
software and expressed as Ct, the number of cycles
needed to generate a fluorescent signal above a pre-
defined threshold. Baseline and threshold values were set

by the 7500 Fast Dx software. Samples with a delta Ct
inferior to 10 have been considered as positive.

Surgery and histological examination

Thyroid surgery was performed in each participating
institution and consisted in either lobectomy or total
thyroidectomy. The surgeon oriented the resected speci-
men and localized the nodule for pathological diagnosis
with the support of the descriptive diagram. The 2004
World Health Organization criteria were used for diag-
nosis [12].

Initial treatment and follow-up for patients with
differentiated thyroid cancer

The initial treatment for patients with differentiated thyroid
cancer (DTC) was a combination of thyroid surgery, with or
without neck dissection, and treatment with radioactive
iodine (RAI). This treatment was discussed in a multi-
disciplinary team and was not affected by the presence or
absence of molecular markers in FNAB samples.

After initial treatment, patients were assessed at
9–12 months and then annually. The response to treatment
was evaluated according to the ATA 2015 guidelines [2].
Excellent response was defined by negative imaging and
either suppressed thyroglobulin (Tg) <0.2 ng/mL or TSH-
stimulated Tg <1 ng/mL, biochemical incomplete response
by negative imaging and suppressed Tg ≥1 ng/mL or sti-
mulated Tg ≥10 ng/mL or rising anti-Tg antibodies (TgAb)
levels, structural incomplete response by structural or
functional evidence of disease with any Tg level, with or
without TgAb, and indeterminate response by nonspecific
findings on imaging studies, with non-stimulated Tg
between 0.2 and 1 ng/mL or stimulated Tg between 1 and
10 ng/mL, or TgAb stable or declining in the absence of
structural or functional disease.

Statistical analysis

Patient characteristics and patient subgroups were compared
using the Wilcoxon or Kruskal-Wallis test (continuous
variables) and chi-square or Fisher’s exact test (nominal
variables), as appropriate. All tests were two-sided, and a
p value < 0.05 was considered statistically significant.
Analyses were performed with R (version 3.4.0). Sensitiv-
ity, specificity, positive predictive value (PPV), negative
predictive value (NPV) and accuracy were computed to
assess the diagnostic performances of the 7-panel testing.
As an exploratory analysis, the link between diagnostic
performances and cancer prevalence, PTC rate and BRAF
mutated PTC rate in previous studies and ours was assessed
through a linear model.

Endocrine (2021) 71:407–417 409



Results

Patient characteristics

As previously described [11], 140 patients were initially
enroled in this study. Since nine patients were secondarily
excluded (consent withdrawal, n= 4; spontaneous nodule
shrinkage, n= 1, surgery cancelled for comorbidities, n= 1;
surgery performed outside the participating centres, n= 3),
131 patients were assessable.

Cytological and pathological data

From a cytological point of view, 37 patients (28%) had a
nodule scored class III, 84 (64%) class IV and 10 (8%) class
V (Fig. 1). Central review confirmed the IC status in all 131
nodules.

Among 131 nodules, 21 (16%) were pathologically
confirmed as malignant and 110 were benign. Malignant
nodules included 9 PTC (classic variant, n= 4; follicular
variant [FVPTC], n= 3; oncocytic variant, n= 1; diffuse
sclerosing variant, n= 1), 3 follicular thyroid carcinomas
(FTC) with minimal invasion, 3 Hürthle-cell carcinoma
(HCC), 5 poorly differentiated carcinomas (PDTC) and one
large B-cell lymphoma. In the classes III, IV and V, the
rates of cancer were 13%, 13% and 50%, respectively.
Benign nodules included 61 follicular adenomas, 26 nod-
ular hyperplasia, 15 oncocytic adenomas, 6 other patholo-
gical diagnoses (1 multinodular goiter, 1 Grave’s disease, 1

trabecular hyalinized adenoma, 3 lymphocytic thyroiditis)
and 2 tumours of uncertain malignant potential. The median
size of the 131 nodules was 30 mm (range, 15–71).
According to EU-TIRADS classification [13], there were 52
(40%) nodules scored Tirads 3, 33 (25%) Tirads 4 and 46
(35%) Tirads 5 with no significant differences between
malignant and benign nodules as previously reported [11].

Molecular analysis on cytological specimens

Figure 1 shows the molecular alterations in patients with
malignant or benign nodules for each cytological subgroup.
Molecular abnormalities were identified in 15/131 nodules
including 4 BRAF mutations, 8 RAS mutations (4 NRAS, 3
HRAS, 1 with both KRAS and NRAS mutations), 1 RET/
PTC3 rearrangement and 2 PAX8/PPARγ rearrangements.
Ten (47.6%) of the 21 malignant nodules presented mole-
cular abnormalities vs 5 (4.5%) of the 110 benign nodules
(p < 0.001). BRAF mutation was identified in 4 nodules all
corresponding to classic PTC. PAX8/PPARγ rearrangements
were also associated with an HCC in the two patients where
they were found. In contrast, RAS mutation was detected in
8 nodules, among which 4 were malignant (2 FTC, 1
FVPTC and 1 PDTC). Last, one RET/PTC3 rearrangement
was detected in a follicular adenoma.

Overall, molecular analysis had an accuracy of 88%, a
sensitivity of 48%, a specificity of 95%, a PPV of 67% and
a NPV of 91% (Table 1). Therefore, while the probability of
cancer before testing in nodules with IC was 16%, the

Fig. 1 Molecular alterations in patients with malignant or benign
nodules for each cytological subgroup (Bethesda III, IV and V). WT
wild-type, PTC papillary thyroid cancer, FVPTC papillary thyroid

cancer with follicular variant, FTC follicular thyroid carcinoma, HCC
Hürthle-cell carcinoma, PDTC poorly differentiated thyroid carcinoma
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probability after testing increased to 67% in mutated-
nodules and decreased to 9% in wild-type ones. There was
no significant difference between the Bethesda III, IV and V
subgroups in terms of accuracy, sensitivity, specificity, PPV
or NPV.

Outcome of patients with thyroid cancer

The patient with thyroid lymphoma and a patient with an
NRAS-mutated FTC who was long-lost after initial treat-
ment were excluded from the prognostic analysis. Of the 19
remaining DTC patients, 9 had a mutated tumour and 10 a
wild-type tumour (Table 2). At 9–12 months after initial
therapy, a similar proportion of patients with mutated and
wild-type cancers presented excellent response (55% (5/9)
vs 40% (4/10); p= 0.66). Three of 19 DTC patients
received additional treatments because of persistent or
recurrent disease, two with mutated tumour and one with
wild-type. At last visit, after a median follow-up of
56 months (16–81), the proportion of excellent response
was similar in patients with molecular alterations and those
without (67% (6/9) vs 60% (6/10); p= 1).

Comparison of present data with previous studies

The analysis of the present data with previously reported
studies [6, 14–22] is shown in Table 3 and in Fig. 2. In
each study, we extracted the nodules with AUS/FLUS,
FN/SFN or SM cytology, or Bethesda classes III, IV and
V, or with “indeterminate” cytology. Only nodules oper-
ated on were taken into account for analysis. The number
of cases in each study varied from 23 to 513, cancer
prevalence from 16 to 56%, PTC rate from 1 to 56% and
rate of BRAF positive PTC tumours from 0 to 24%.
Sensitivity ranged from 18 to 81%, specificity from 86 to
100%, PPV from 19 to 100% and NPV from 64 to 91%.
The sensitivity (48%) and PPV (67%) estimated in our
series were generally lower than in other studies while
NPV (91%) was slightly higher.

Although not significant, data shows a trend to a link
between diagnostic performances of genetic testing and
cancer prevalence, PTC rate and proportion of PTC har-
bouring BRAF mutations in each cohort, especially
regarding sensitivity and PPV (Fig. 2).

Discussion

This prospective bicentric study confirms the clinical rele-
vance of a 7-panel mutational testing in the characterization
of cytologically indeterminate nodules. Molecular testing
shows a good specifity (95%), a more limited sensitivity
(48%) and an acceptable accuracy (88%). In this series of
patients with a 16% pre-test probability of cancer, a 67%
PPV and 91% NPV mean that the post-test probability
increased to 67% in mutated-nodules and decreased to 9%
in wild-type ones.

The impact of a 7-panel mutational testing on the diag-
nosis of IC nodules has been reported in previous studies
[6, 14–22]. As shown in Fig. 2, the analysis of the present
data and the literature shows that our sensitivity (48%) and
PPV (67%) was generally lower than in previous studies
while NPV (91%) was moderately higher. These studies
were conducted between 2009 and 2018, and included
nodules with variable proportions of AUS/FLUS, FN/SFN
or SM cytology, using Bethesda classification or not,
resulting in a wide range of cancer prevalence from 16 to
56%. Similarly, the PTC rates were highly variable ranging
from 1 to 56% as well as the proportions of BRAF mutated
PTC tumours from 0 to 24%. Given its frequency, the
presence of BRAF mutations significantly affects the results
of the 7-panel testing in IC nodules. BRAF mutation is
characteristic of PTC but only a part of them (45 to 80%)
are BRAF mutated. This variable proportion is linked to
pathological variants [23], classic PTC tumours being more
often BRAF positive than other PTC variants, and to the
geographical origin of patients with Koreans showing very
high proportions of BRAF mutated PTC tumours [24]. The

Table 1 Test performances in
the whole cohort of patients, and
in the Besthesda III, IV and
V groups

All Bethesda III Bethesda IV Bethesda V

n= 131 n= 37 n= 84 n= 10

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

True prevalence 16 [10–23] 14 [5–29] 13 [7–22] 50 [19–81]

Sensitivity 48 [26–70] 60 [15–95] 45 [17–77] 40 [5–85]

Specificity 95 [90–99] 97 [84–100] 95 [87–98] 100 [48–100]

Positive predictive
value (PPV)

67 [38–88] 75 [19–99] 56 [21–86] 100 [16–100]

Negative predictive
value (NPV)

91 [84–95] 94 [80–99] 92 [83–97] 62 [24–91]

Accuracy 88 [81–93] 92 [78–98] 88 [79–94] 70 [35–93]
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quite low sensitivity observed in the present study (48%)
can be explained by a 16% cancer prevalence and a 7%
PTC rate at the low end of the expected range. Nevertheless,
the histological distribution of the study group is consistent
with what we could expect from IC, namely a combination
of classic PTC (19%), FVPTC (14%), FTC (14%), and
HCC (14%) and PDTC (24%). As cancer prevalence also
impacts NPV and PPV [25], this could have resulted in
“underestimating” a 67% PPV and “overestimating” a
91% NPV.

The prevalence of PAX8/PPARγ rearrangements is gen-
erally limited in IC nodules with no cases reported in some
studies [15, 18] and only one in others [17, 19]. Our data
confirms that PAX8/PPARγ rearrangements are cancer spe-
cific. Nevertheless, whereas PAX8/PPARγ rearrangements
were identified in three FVPTC and one FTC in Nikiforov’s
study [6], in our series there were associated with two
patients with HCC. The findings in the three HCC of our
cohort (i.e., two cases with PAX8/PPARγ rearrangements
and one wild-type tumour) were quite unexpected. Indeed,
the prevalence of PAX8/PPARγ rearrangements is generally
low in HCC, estimated at 5% in the review by Maximo et al
[26] although rates up to 27% have already been reported
[27]. The association between RET/PTC rearrangements
and HCC is more prevalent and has been estimated at 35%
[26]. Comprehensive analysis of the molecular landscape of
HCC has very recently been achieved showing that these

tumours exhibit a wide range of recurrent mutations, nota-
bly of the mitochondrial genome and high DNA copy-
number alterations [28, 29].

In contrast, and as expected, RET/PTC rearrangements
and RAS mutations presented more limited diagnostic
values. No RET/PTC rearrangements were found in malig-
nant tumours and one RET/PTC3 was detected in a benign
nodule. The presence of RET/PTC rearrangements is pos-
sible in benign nodules and a recent systematic review in
2239 benign lesions from 38 studies showed a prevalence of
RET/PTC rearrangements ranging from 0% to 68% [30]. A
study performed in PTC tumours also suggests that the
variability in the rate of RET/PTC rearrangement could also
be related to the use of different detection methods and
tumour genetic heterogeneity [31]. With respect to RAS
mutations, they were detected in eight nodules, half of them
corresponding to malignant lesions (2 FTC, 1 FVPTC, 1
PDTC) leading to a 50% PPV. Although comprehensive
pathological data was available in a few previous studies
[6, 15, 16], true-positive RAS mutations were observed
mainly in FVPTC or FTC, and sometimes in classic PTC,
HCC or PDTC. False positives were found in all previous
studies, and the estimated PPV for RAS testing ranged from
13 to 92% [6, 15, 16]. As in previous studies, mutations
were present in follicular adenomas. No non-invasive fol-
licular thyroid neoplasm with papillary-like nuclear features
(NIFTP) was found in our series. Recently, it has been

Table 3 Analysis of the present data in comparison with that of the literature

Reference 1st author,
yr, [ref. number]

Cytology (n in each
subcategory)

Operated
nodules, n

Malignant nodules,
n (%)

PTC, n (%) BRAF positive
PTC, n (%)

Test performance, %

Se. Sp. PPV NPV

Nikiforov 2009 [19] FLUS (21), FN
(23), SM (7)

51 20 (39%) 16 (31%) 7 (14%) 75 100 100 86

Cantara 2010 [18] Indeterminate (41),
SM (54)

95 53 (56%) 53 (56%) 23 (24%) 81 98 98 80

Nikiforov 2011 [6] AUS/FLUS (247), FN/
SFN (214), SM (52)

513 121 (24%) 110 (21%) 17 (3%) 61 98 89 89

Beaudenon-
Huibregtse 2014 [17]

AUS/FLUS (22), FN/
SFN (19), SM (12)

53 25 (47%) na na 44 89 79 64

Eszlinger 2014 [16] Indeterminate 141 22 (16%) 2 (1%) 0 (0%) 18 86 19 85

Eszlinger 2015 [15] Thy 3 (163), Thy 4 (39) 202 83 (41%) 57 (28%) 37 (18%) 60 92 92 77

Labourier 2015 [14] III (58) IV (51) 109 35 (32%) na na 69 86 71 85

Bongiovanni 2015 [20] FN/SFN (23) 23 4 (17%) 1 (4%) 0 (0%) 75 95 95 75

Mancini 2012 [21] Thy 3 (38), Thy 4 (9) 47 17 (36%) na na 59 90 77 79

Bellevicine 2020 [22] AUS/FLUS (86), FN/
SFN (34), SM (57)

177 93 (53%) 82 (46%) 39 (48%) 63 67 68 62

Present study III (37), IV (84), V (10) 131 21 (16%) 9 (7%) 4 (3%) 48 95 67 91

III, IV, V: for Bethesda class III, IV or V

Thy 3, equivalent to FN/SFN; Thy 4, equivalent to SM

AUS/FLUS atypia of undetermined significance/follicular lesion of undetermined significance, FN/SFN follicular neoplasm/suspicious for
follicular neoplasm (FN) or Hürthle cell neoplasm, SM suspicious for malignancy
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Fig. 2 Test performances (a, sensitivity; b, specificity; c, PPV; d, NPV) according to cancer prevalence, PTC rate and BRAF positive PTC rate in
previous studies (6, 12, 14–20) and in the present study. The quality of the linear model adjustment is displayed on each graph (R2 and p value)
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reported that a substantial proportion (47%) of NIFTP could
harbour NRAS mutations [32].

Based on our data and that of literature, a flow chart for
the use of 7-panel testing to guide clinical decision in
patients with IC nodules is proposed in Fig. 3. Given the
generally high risk of cancer in Bethesda V nodules, and
limited sensitivity of the 7-panel testing, surgery is recom-
mended in all Bethesda V patients. If performed, genetic
testing may modulate the extent of thyroid and lymph-node
surgery. The similar performances of the 7-panel testing in
Bethesda III and IV nodules suggest using it in both cate-
gories of patients. Surgery appears to be recommended
when a molecular alteration is detected, particularly BRAF
or PAX8/PPARγ which are highly specific for cancer. In the
absence of molecular alteration, a US and FNAB control at
6–12 months could be performed, except for nodules sus-
picious of cancer for other reasons, e.g., history of radiation,
serum calcitonin increase or EU-Tirads 5, which should be
operated on. The absence of volume progression at 1 year,
all the more if associated with a benign cytology, would
allow continuing spaced monitoring.

An issue that has not been resolved to date is whether 7-
panel molecular testing of cytology specimens could help
predict long-term outcomes in the cancer patient subgroup.
Our data show that the outcome of patients with or without
molecular alterations was not different, suggesting that
mutational testing in FNAB with 7-gene panel may play a
minimal role in identifying high-risk cancers. Again, since
the BRAF mutation is the most common alteration asso-
ciated with aggressive behaviour in PTC [3], the fairly low
rates of PTC and BRAF-mutated PTC in our series may
have contributed to such negative results. Above all, there is
evidence pointing out that the presence of multiple mole-
cular alterations or mutations such as those of TERT [33],
TP53 or PIK3CA [34, 35], that are not included in the 7-

gene panel, have a higher prognostic value. In any event,
this prognostic analysis has been performed in a limited
number of patients and must be confirmed in larger series.

The strengths of the present study are its prospective
design, the confirmation of IC by an independent review,
the histological gold standard and the ability to assess the
prognostic value of the mutational testing with a significant
follow-up. The study also presents some limitations. One is
that certain mutations of the RAS genes, notably HRAS
codon 13 mutations previously reported in anaplastic thyr-
oid cancer, and KRAS codon 61 in both PTC and PDTC,
were not analyzed. This may have underestimated the
number of positive cases although these mutations are
uncommon [35]. Above all, a limitation was not having
access to NGS multi-gene panel such as ThyroSeq v3 [36]
or other recently reported technologies [37–39]. The use of
multi-gene NGS panels makes it possible to analyse more
than one hundred genes and to detect different classes of
genetic alterations, including mutations, insertions and
deletions, gene fusions, gene expression alterations and
copy number variations to improve diagnostic accuracy and
potentially prognostic value of genetic testing on cytologi-
cally indeterminate nodules. When the study was launched,
the NGS multi-gene panel was not available. The cost of
NGS panels remains a critical problem, raised in the same
way by the genomic tests currently available. In countries or
institutions subject to financial constraints, and before the
widespread use of NGS technics, this would support a
relevant role in clinical practice for a small panel of genes.

In conclusion, this prospective study confirms that the 7-
panel mutation testing is a simple and low-cost tool to help
the clinician manage patients with cytologically indetermi-
nate nodules. In the subgroup of cancer patients, however,
mutational testing has not been shown to have a significant
prognostic value.

VIIII V

7-panel tes�ng

Molecular altera�on

Surgery

No molecular altera�on

Surveillance

US + FNAB at 6-12 months

Stable volume
and/or benign

cytology 

Surgery

If performed, the 
7-panel tes�ng 

may modulate the 
deadline and 

extent of thyroid 
and lymph-node 

surgery

Nodule with indeterminate cytology

Nodule  
with 

suspicious 
features*

Volume increase
and indeterminate 

cytology

Fig. 3 Proposal for the use of 7-
panel testing to guide clinical
decision in patients with
cytologically indeterminate
nodules
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