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1  | INTRODUC TION

Most organisms exhibit different phenotypes in response to differ-
ent environmental factors (Xue & Leibler, 2018). Heterophylly in 
Neobeckia aquatica (Eaton) Greene in response to the temperature 
and submergence (Amano et al., 2015) and Arabidopsis thaliana as 
a response to light (Mishra et al., 2012) are only two of many ex-
amples that can be found in the plant kingdom. Even metabolic 

changes in the form of carbon fixation can occur such as in the case 
of Mesembryanthemum crystallinum L. (Tallman et al., 1997). These 
responses are all considered to be evolutionary strategies for adapt-
ing to variable environments (Xue & Leibler, 2018). In some extreme 
cases such as in Pinus sylvestris L., the high spectrum of phenotype 
variability led to the assignment of various names currently recog-
nized as synonyms (The Plant List, 2013). Contrarily to the charac-
teristics, which justify taxa levels, those apparent morphological 
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Abstract
•	 Morphological and ecological differences of two forms of Helosciadium repens are 

known and described in the literature: aquatic and terrestrial. However, their taxo-
nomic status is currently unknown. The question whether they are genotypically 
adapted to specific environmental conditions or are those differences a result of 
phenotypic plasticity is addressed in this study.

•	 SSR and ISSR data were used to uncover genotypic differences. Data from drought 
stress experiments (system water content and relative water content of leaves) 
were used to evaluate the response to water as an environmental factor. The sto-
matal index of both forms grown under different water treatments was analyzed.

•	 The principal component analysis of the ISSR data revealed no clustering that 
would correspond with ecotypes. The diversity parameters of the SSR data 
showed no significant differences. The aquatic populations showed a tendency 
toward heterozygosity, while the terrestrial ones showed a bias toward homozy-
gosity. Both forms responded similarly to the changes in water availability, with 
newly produced leaves after drought stress that were better adapted to repeated 
drought stress. Stomatal indices were higher in plants from aquatic habitats, but 
these differences disappeared when the plants were grown in soil.

•	 The observed responses indicate that the differences between forms are due to 
phenotypic plasticity.
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differences are nonpermanent and disappear when the plants grow 
under the same conditions.

Helosciadium repens (Jacq.) W.D.J. Koch (Apiaceae) (Figure 1) 
is a small perennial herb, growing on alternating wet pastures, lit-
toral zones of trenches and springs (Weber, 1995), and along or in 
slow running streams (pers. observation). Two forms are known and 
described from the literature (Casper & Krausch, 1981; Hacker, 
Voigtländer, & Russow, 2003; NLWKN, 2011; Voightländer & Mohr, 
2008). The terrestrial (hereafter Terr) form is hemicryptophytic and 
grows leaves with a length between 10 and 30  cm (Oberdorfer, 
1983; Schubert & Vent, 1994). Their stolons can grow to a length 
between 20 and 30 cm and can as such colonize open patches very 
quickly (Hacker et al., 2003). The flowers are arranged in an umbel 
and produce nectar and a schizocarp fruit which releases two seeds 
per flower (East, 1940; Frank & Klotz, 1990; T. Herden, M. Bönisch, & 
N. Friesen, unpublished data; Klotz, Kühn, & Durka, 2002; NLWKN, 
2011). Helosciadium repens also build up soil seed banks (Burmeier & 
Jensen, 2008). According to the database BIOLFLOR (Frank & Klotz, 
1990), H. repens can self‐fertilize. They, however, cite East (1940) as a 
reference for this statement. Upon further investigation, we uncover 
that East (1940) stated that little is known about the self‐fertilization 
in this taxon (applying to Umbelliferae) and did not mention H. repens 
at all.

The hydrophytic populations or aquatic form (hereafter Aqu) can 
be occasionally found in Southern Germany, Bavaria (pers. observa-
tion). The aquatic form tends to exhibit vegetative growth only and 
does not produce flowers (Casper & Krausch, 1981; Schossau 2000 
cited in Hacker et al., 2003; NLWKN, 2011). They can grow leaves up 
to 40 cm in length (Casper & Krausch, 1981), can colonize waterbod-
ies up to a depth of 60 cm, and their stolons can grow up to a length 
of 150 cm (Voightländer & Mohr, 2008). They stay immotile due to 

their roots anchored on driftwood, tree roots, or other aquatic veg-
etation. The plants do not root in the substrate (pers. observation).

There is scarce information on the two different manifestations 
in the literature. However, when mentioned, authors address both 
appearances as different forms of the species, and do not specify 
what the word “forms” means in the corresponding context (Casper 
& Krausch, 1981; Hacker et al., 2003; NLWKN, 2011; Voightländer 
& Mohr, 2008). Whether they are genotypically adapted to specific 
environmental conditions or a result of phenotypic plasticity is thus 
still unknown. T. Herden, M. Bönisch, & N. Friesen (unpublished 
data) analyzed 27 populations of H. repens in Germany with SSRs and 
found only low levels of variation within the analysed markers. There 
we found no genetically based separation into a Terr or Aqu cluster, 
suggesting differences due to phenotypic plasticity. However, our 
sample set was not aimed to address the taxonomic status of both 
forms. The ecotype hypothesis cannot be excluded based only on 
these results. Markers may fail to detect quantitative variation for 
adaptively important traits (Bekessy, Ennos, Burgman, Newton, & 
Ades, 2003; McKay & Latta, 2002).

If both forms appear to be ecotypes, it can have consequences 
on the conservation management. Ex situ conservation management 
for aquatic forms needs to be adapted as well as conservation at 
the natural sites. Additionally, this information might be interesting 
for plant breeders as both ecotypes may harbor specific traits of 
interest.

This comparison study aimed to answer the question of the taxo-
nomical status of both forms by using simple sequence repeats (SSR) 
and intersimple sequence repeats (ISSR) data on a balanced sample 
set.

Additionally, the adaptation of both forms to drought stress was 
studied by measuring the relative water content (RWC) of leaves, 

F I G U R E  1   Terrestrial and aquatic 
forms of Helosciadium repens (a) terrestrial 
form at the natural site, (b) aquatic form at 
the natural site, (c) leaf of terrestrial form, 
(d) inflorescence of the terrestrial form, 
and (e) leaf of the aquatic form

(a) (b)

(c) (d) (e)
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system water content, and water loss during drought stress con-
ditions. The stomatal index (SI) was measured for different water 
treatment levels. A small scale experiment was set up, to determine 
whether H. repens is capable of self‐fertilization.

2  | MATERIAL AND METHODS

2.1 | Genetic analysis

2.1.1 | SSR analysis

SSR or microsatellites are short stretches of repeated short nucleo-
tide motifs. These motifs typically consist of mono‐, di‐, and tri‐nu-
cleotides, but even longer ones can be found. The repetitions of the 
motifs are mainly <100 base pairs (bp) long and can be found in all 
genomes (Tautz, 1989). They can show side‐specific length varia-
tion because of the occurrence of different numbers of repeat units 
(Morgante & Olivieri, 1993). Most of these length differences are 
caused by the slippage effect during replication and accumulate over 
time (Tautz & Schlötterer, 1994). Using the polymerase chain reac-
tion (PCR), with specific primer pairs flanking a specific microsatel-
lite, it is possible to amplify and measure the exact bp length of a 
microsatellite. SSR markers are considered to be a reliable system for 
diversity studies as they are codominant and multiallelic (Baldwin, 
Pither‐Joyce, Wright, Chen, & McCallum, 2012; Fu, Kong, Yingxiong, 
& Cameron, 2005; Geethanjali, Anitha Rukmani, & Rajakumar, 
2018; Park, Lee, & Kim, 2009; Yasodha et al., 2018). They are neu-
tral markers and are thus usually not subjected to natural selection 
(Holderegger, Kamm, & Gugerli, 2006; Kimura, 1983).

The data from T. Herden, M. Bönisch, & N. Friesen (unpublished 
data) were evaluated to investigate genetic differences between Aqu 
(16R, 19R, 20R, 21R, 22R, 24R, and 25R) and Terr (1R, 5R, 8R, 9R, 
10R, 12R, 18R, and 27R) populations (Table 1). Counts for allelic rich-
ness, fixation index (F‐Index), inbreeding coefficient Fis, private al-
leles, rare alleles, single locus genotypes (SLG), multilocus genotypes 
(MLG), and numbers of alleles were taken from the data analysis of 
T. Herden, M. Bönisch, & N. Friesen (unpublished data) (Table S2).

2.1.2 | ISSR analysis

Intersimple sequence repeats (ISSR) are regions between micros-
atellite loci. In a PCR, only one primer containing an SSR motif is 
used, which amplifies multiple fragments with various length (Reddy, 
Sarla, & Siddiq, 2002; Zietkiewicz, Rafalski, & Labuda, 1994). Only 
regions between adjacent, inversely oriented SSRs are thus ampli-
fied (Zietkiewicz et al., 1994). Usually, the PCR products are visual-
ized on an agarose gel, and the banding pattern is transformed into 
a binary matrix. Every band is treated as a single trait. By analyzing 
the matrix, kinship relations can be computed. Polymorphism can be 
detected due to mismatches in the priming site (changes in the SSR 
where the primer binds) or differences in length of the amplified se-
quences (Zietkiewicz et al., 1994). This method has been widely used 
for decades in population genetic studies and studies to character-
ize genetic divergence among species (Andiego et al., 2019; Kumar, 
Mishra, Singh, & Sundaresan, 2014; Reddy et al., 2002; Schlotteröer, 
Amos, & Tautz, 1991; Zietkiewicz et al., 1994).

DNA isolates were taken from T. Herden, M. Bönisch, & N. Friesen 
(unpublished data). An agarose gel documentation with 47 lanes was 

TA B L E  1   Provenances of the analysis populations (modified after T. Herden, M. Bönisch, & N. Friesen (unpublished data))

Lab‐ID GE‐Sell ID State District Commune Form

1R MV‐GC‐20120912‐1400 MV Demmin Meesiger Terr

5R MV‐DS‐20131029‐1030 MV Müritz Alt Schwerin Terr

8R NRW‐DB‐20150818‐1831 NW Paderborn Delbrück Terr

9R NI‐OM‐20150812‐0955 NI Diepholz Hüde Terr

10R SH‐TIV‐20150902‐0900/0910/0920 SH Plön Blekendorf Terr

12R Bbg‐SE‐20150723‐1634 BB Havelland Seeblick Terr

16R BY‐GAP_FARC‐20151021‐1004 BY Garmisch‐Partenkirchen Farchant Aqu

18R BY‐KEH_NIED‐20150908‐1005 BY Kelheim Langquaid Terr

19R BY‐KF_KAUF‐20150814‐1012 BY Kaufbeuren Kaufbeuren Aqu

20R BY‐LL_BISC‐20160828‐1022 BY Landsberg am Lech Dießen am 
Ammersee

Aqu

21R BY‐MB_TRAC‐20150811‐1002 BY Miesbach Fischbachau Aqu

22R BY‐MB_TRIN_20150802‐1003 BY Miesbach Kreuth Aqu

24R BY‐MN_SALG‐20150804‐1019 BY Unterallgäu Salgen Aqu

25R BY‐MUE_MARS‐20150829‐1027 BY Mühldorf a. Inn Maitenbeth Aqu

27R BY‐TS_WINK‐20151114‐1001 BY Traunstein Übersee Terr

Notes: GE‐Sell ID = reference IDs used in the project GE‐Sell, states = federal states of Germany (BB = Brandenburg, BY = Bavaria, 
MV = Mecklenburg‐West Pomerania, NI = Lower Saxony, NW = North Rhine‐Westphalia, SH = Schleswig Holstein, ST = Sachsen Anhalt), form = form 
of H. repens (Terr—terrestrial; Aqu—aquatic).
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used. Three individuals from each population (eight Terr—1R, 5R, 8R, 
9R, 10R, 12R, 18R, and 27R and seven Aqu populations—16R, 19R, 
20R, 21R, 22R, 24R, and 25R) were chosen for further investigation 
(Table 1). The isolated DNA was used directly in a PCR with 10  µl 
Biozym red HS Taq master mix (Biozym Scientific GmbH), 1 µl of cor-
responding primer (Table S1), and 1 µl DNA template in a final volume 
of 20 µl. PCR products were checked on an agarose gel. The bands 
were scored independently as either present (1) or absent (0) and sum-
marized in a matrix. Polymorphism information content (PIC) values 
were calculated using the formula described previously in Roldan‐
Ruiz, Dendauw, Bockstaele, & Depicker, 2000. A principal component 
analysis (PCA) was performed using the function dudi.pca from the R 
package ade4 (Bougeard & Dray, 2018; Chessel, Dufour, & Thioulouse, 
2004; Dray & Dufour, 2007; Dray, Dufour, & Chessel, 2007).

2.2 | Self‐fertilization test

Plants from two populations that were currently available (nine indi-
viduals from 9R and nine from a population from Austria) were pot-
ted in trays. These were then isolated from potential pollinators using 
transparent plastic hoods with Drosophila impermeable mesh for air-
flow. One control from each population was potted outside of the 
isolation hoods. The isolated individuals were pollinated by hand with 
their pollen. At the end of their vegetation period, the seeds were col-
lected. Seeds were drawn randomly for germination tests.

2.3 | Dry stress experiment

Stolons from 15 Terr plants (population 9R) were potted in 10 × 10 cm 
pots (the stolon was approximately 5  cm long with two leaves). 
For substrate, 173  g of “Einheitserde Special” (Einheitserdewerke 
Werkverband e.V., Sinntal‐Altengronau, Germany) was used. Plants 
were grown for three weeks in a greenhouse to ensure that they have 
rooted successfully. During that time, all pots stood in trays filled with 
water to ensure that they were watered to their maximum water ca-
pacity. They were treated with extra light using one unit of the KIND 
LED L600 grow light (Santa Rosa, CA), until the start of the experiment. 
All plants were weighted (system water content (SWC)  = weight of 
soil, pot, and plant) just before they were put into a climatic chamber 
(maximum run time for every run: 20  days, day temperature: 33°C; 
night temperature: 22°C; light: 14 hr; dark: 10 hr; rel. humidity >80%). 
The pots were weighed daily during the runs. During the experiment, 
the pots were not watered. To ensure that all plants grew under the 
same condition, the pots' positions in the chamber rotated every day. 
If plants lost all their leaves due to wilting, they were taken out of the 
chamber and watered immediately to their maximum water capacity, 
to prevent the loss of study material.

All plants recovered during a recuperation period of three weeks in 
the same greenhouse conditions as mentioned above. The experiment 
was then repeated with the same plants to assess potential adaptation.

The same experiment was conducted with plants from Aqu pop-
ulations (population 16R, 22R, 24R), which were grown in soil for 
a time period of one year. For that, five individuals were collected 
at three natural sites (with the maximum distance between each 

sample) and cuttings were used in the experiment. For every plant, 
the results were statistically evaluated by one‐way analysis of vari-
ance (ANOVA), using the software R (R Core Team, 2017).

At the beginning of each run, one leaf from every plant was used 
to measure the RWC. For that, the weight (W) of a freshly harvested 
leaf was measured and put in a 50‐ml centrifuge tube with 5 ml of 
distilled water for rehydration. As Arndt, Irawan, and Sanders (2015) 
already indicated, rehydration by floating leads to erroneous RWC 
estimates. Therefore, the leaves were put petiole first in the distilled 
water, making sure that the water level did not reach the lowest pair of 
leaflets. They were rehydrated for three hours in darkness under room 
temperature conditions, and the turgid weight (TW) was measured af-
terward. All leaves were left in a dry chamber with 10% relative air 
humidity overnight and weighted afterward to measure the dry weight 
(DW). The RWC was calculated using the formula of Weatherley 
(1950). The measurement was also carried out with leaves that exhibit 
a complete loss of turgor pressure. The system water loss (SWL) was 
calculated (SWL = (1 − SWCend/SWCstart) × 100).

Tests for significance were made with the geom_signif function 
using the R package ggplot2, and plots were drawn using the func-
tion ggplot from the R package ggplot2 (Wickham & Chang, 2018).

2.4 | Stomatal index

To estimate the SI, nail polish impressions from the epidermis were 
made (as described in Miller & Ashby, 1968) from plants cultivated ex 
situ in the Botanical Garden of Osnabrueck, Germany. Ten impressions 
from the upper surface were made from all leaflet pairs of a leaf, to test 
whether there are significant differences between each leaflet pair. 
The same was done for the lower leaf surface. Pictures of impressions 
were made using a transmitted light microscope under 400× magnifi-
cation. Stomata counts (SC) and epidermis cell counts (EC) were quan-
tified (guard cells were treated as a part of the stomatal apparatus). 
The observed surface area was measured (A), and the stomatal den-
sity (SCD), as well as the epidermal cell density (ECD), was calculated. 
Three pictures were taken from every leaflet pair, and the quantifica-
tions of the SC and EC were averaged. The SI was calculated for every 
leaflet pair using the equation from Salisbury (1928).

The SI was calculated for two different water treatment levels for 
every form: Terr—terrestrial form growing in pots with drainage with 
local weather conditions, T‐Wet—terrestrial form watered to their 
maximum water capacity, Aqu—aquatic form growing under aquatic 
conditions, and A‐T—aquatic form potted in soil and growing under the 
same conditions as T‐Wet.

3  | RESULTS

3.1 | Genetic analysis

3.1.1 | SSR analysis

There were no significant differences in the numbers of MLG, SLG, 
alleles, allelic richness, rare alleles, and private alleles between Terr 
and Aqu plants (Figure 2a–d,g,h). As T. Herden, M. Bönisch, & N. 
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Friesen (unpublished data) showed, there is no genetically based 
separation into a Terr or Aqu cluster. However, there were significant 
differences (p <  .01) in the F‐ and Fis‐Indices between both forms. 
The F‐Index values for the Aqu populations were mostly nega-
tive indicating an excess of heterozygosity. There were only three 
populations (20R, 22R, and 16R) with positive values. Most of the 
Terr populations had positive F‐Index values indicating an excess of 
homozygosity. Only five populations (2R, 10R, 11R, 12R, and 18R) 
showed negative values (Figure 2e). The same was true for Fis‐Index 
values (Figure 2f). Only two Aqu populations had positive values 
(20R and 22R) and one exhibited a Fis‐Index value of zero (23R). Five 
Terr populations (3R, 10R, 11R, 12R, and 18R) had negative values 
(Table S2). The rest of the Terr populations exhibited positive Fis‐
Index values.

3.1.2 | ISSR analysis

Only eight out of 26 tested ISSR markers produced evaluable poly-
morphic bands. A total of 108 bands were amplified out of which 
64 were polymorphic, and 42 were monomorphic bands (Table S1). 
The percentage of polymorphic bands (P%) per primer ranged from 
77.8% in UBC813 to 38.9% in UBC834. The average percentage of 

the polymorphic band was 60.7%. PIC values spanned from 0.4409 
in UNC810 to 0.2647 in HB15 (Table S1).

The first three components of the PCA explained 87.87% of 
the data (comp. 1:72.87%, comp. 2:11.52%, and comp. 3:2.67%) 
(Figure 3). Two distinct clusters were visible. One was composed 
of Bavarian populations and one of the populations from northern 
Germany. This partitioning coincides with the SSR analysis of T. 
Herden, M. Bönisch, & N. Friesen (unpublished data). Separation into 
Terr or Aqu clusters was not observed.

Both analyses (SSR and ISSR) showed congruent results, namely 
a split between Northern and Southern populations (Figure 3) (T. 
Herden, M. Bönisch, & N. Friesen, unpublished data).

3.2 | Self‐fertilization test

There was an evident difference in the number of seeds between 
the isolated and their control pots. However, due to high humidity 
in the isolated trays, some of the inflorescences and infructescences 
started to rot. Therefore, a test for statistical significance was not 
possible. Nevertheless, the isolated plants produced seeds when 
fertilized with their pollen. Randomly selected seeds were able to 
germinate.

F I G U R E  2   Comparison between aquatic and terrestrial populations of Helosciadium repens in Germany using diversity parameters from 
the SSR analysis. (a) Numbers of multilocus genotypes, (b) numbers of genotypes, (c) numbers of alleles, (d) allelic richness, (e) inbreeding 
coefficient Fis‐Index, (f) fixation index F, (g) counts of rare alleles, and (h) counts of private alleles. Asterisks are indicating significance levels
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3.3 | Dry stress experiment

3.3.1 | Terrestrial plants

During the first run of the Terr plants, none of the plants endured 
the scheduled time of 20  days without a complete loss of leaves. 
About 46% of the plants dropped all leaves during the first nine to 
11 days. Two plants shed all its leaves after 16 days (Figure 4a). On 
average, there was a SWL of 64% at which plants lost all their leaves. 
After 16 days, the control pot had an SWL of 51%. The relationship 

of the variables was explained best with a polynomial regression 
(0.9902  <  adjusted R2  <  0.9993, median: 0.998) instead of a linear 
regression (0.8663 < adjusted R2 < 0.9917, median: 0.9167) (adjusted 
R2, slopes (b), intercept (a), and residual standard deviation (res. SD) are 
given in Figure S1a,b). Only plant VI had an even water loss which was 
comparable to the linear regression (Figure S1a).

The new leaves that grew back during the recovery period were 
smaller and stiffer.

In the second run, all plants endured the scheduled time of 
20 days without a complete loss of leaves (Figure 4a). The plants 

F I G U R E  3   Principal component 
analysis of the ISSR data of eight 
terrestrial and seven aquatic populations. 
Blue = Aq=aquatic population, 
orange = Terr=terrestrial populations; 
Lab IDs = first digits including the letter R 
(see Table 1); individuals = digits after the 
letter R
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plants, (b) potted aquatic plants; orange 
lines represent smoothed conditional 
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represent smoothed conditional means of 
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showed signs of withering, after an average SWL of 55% (39%–
65%). The control pot had an SWL of 38%. Overall, the SWC was 
significantly higher during the second run. The adjusted R2s were 
higher than 0.98, except for plants II, IV, and V (>0.97) (Figure S1a). 
The relationship of the variables during the second run almost fits 
a linear regression in all investigated plants (Figure S1a,b). The 
slopes of the linear regressions were between −16.6 and −8.1 (me-
dian: −12.76).

Figure 4a shows the smoothed conditional means of all plants 
during the first and second runs. The curve is, except for the slope 
(bcontrol = −7.9948, bmedian = −12.7554), comparable to the one from 
the control pot (Figure S1b plant control).

The RWCs of leaves at the start of run one (with full turgor 
pressure) and the end of the run one (complete loss of turgor 
pressure) were significantly different (Figure 5a). The leaves lost 
on average 31.44% (lowest: 15.1%; highest: 50.49%) of water. In 
run two, the RWCs did not differ significantly between the begin-
ning and the end of the run (Figure 5a). The leaves had a negative 
water loss and gained on average 1.76% (lowest: −13.75%; highest: 
3.75%) of water.

3.3.2 | Potted aquatics plants

During the first run, only one plant out of 15 endured the scheduled 
time of 20 days without a complete loss of leaves (Figure 4b). At day 
15, 53% of the plants lost all their leaves. The average SWL was 63% 
and ranged from 61% to 65%. The control pot had an SWL of 46%.

The adjusted R2 for the linear regression for the SWC curves of 
each plant was between 0.9929 and 0.8864 (median: 0.9549) with 
a res. SD between 28.49 and 7.279 (median: 17.61). The curves of 
plant III, VIII, and X are very close to that of the linear regression with 
the adjusted R2 > 0.98 and the res. SD < 9.2 (Figure S1c,d). However, 
the relationship of the variables was best explained with polynomial 
regression (adj. R2: 0.9893–0.9967, median: 0.9945; res. SD: 9.092–
4.957, median: 6.479) (Figure S1c,d).

The new leaves that grew back during the recovery period were 
smaller and stiffer.

In the second run, all plants endured the scheduled time of 
20  days without a complete loss of leaves (Figure 4b). The plants 
showed signs of withering at an average SWL of 45% (36%–57%). 
The control pot had an SWL of 35%. The adj. R2 was between 0.9968 

F I G U R E  5   Relative water content at the start and the end of the first and second runs during the drought stress experiment. (a) 
Terrestrials, (b) potted aquatics
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and 0.9991 with a res. SD between 3.464 and 1.528. The curves 
fit the linear regression (Figure S1c,d). For plants III and VIII, the 
curves fit the linear regression best in the second run (Figure S1c). 
The slopes of the linear regressions were between −11.92 and −7.13 
(median: −9.08). The slope of the linear regression of the control pot 
was −6.62 (Figure S1d plant control).

Figure 4b shows the smoothed conditional means of all plants 
during the first and second runs. The curve is, except for the slope 
(bcontrol  =  −6.62, bmedian  =  −9.08), comparable to the one from the 
control (Figure S1d plant control).

The RWCs between leaves at the start of the run one (with full 
turgor pressure) and those at the end of the run one (complete loss of 
turgor pressure) differed significantly (Figure 5b). The leaves lost on 
average 23.95% (lowest: 7.33%; highest: 49%) of water. In run two, 
the RWCs were again significantly different when comparing the 
beginning and the end of the run. The leaves lost on average 2.51% 
(lowest: −0.3%; highest: 6.1%) of water. The difference in water loss 
between both runs was significant (p < .001, data not shown).

The RWC at the start of both runs was significantly different, 
comparing both conditions (Aqu and Terr). On average, the differ-
ences were 1.28% in the first run and 4.3% in the second run. At the 
end of both runs, the RWCs in both conditions were not significantly 
different anymore (p < .001, data not shown).

3.4 | Stomatal index

There were no significant differences between the different leaflet 
pairs in a leaf (Figure 6a,b). In all conditions (Aqu, A‐T, T‐Wet, and Terr), 
the SI of the upper surface was significantly lower than the SI from 
the lower surface (p  <  .001) (Figure 6c–f). On the upper surfaces, 
the SI was significantly higher for Aqu than all other conditions with 
different levels of significance (Figure 6g). There were no significant 
differences between conditions A‐T, T‐Wet, and Terr.

On the lower surfaces, the SI of Aqu was significantly higher (with 
different levels of significance) in comparison with the SI of plants 
grown under other conditions (Figure 6h). There was a significant 

F I G U R E  6   Comparison of the stomatal index (SI). (a) SI from the upper surfaces of different leaflet pairs, (b) SI from the lower surfaces of 
different leaflet pairs, (c) SI comparison of the upper and lower surface of aquatic plants, (d) SI comparison of the upper and lower surface 
of potted aquatic plants, (e) SI comparison of the upper and lower surface of terrestrial plants grown in wet conditions, (f) SI comparison of 
the upper and lower surface of aquatic plants, (g) SI comparison of the upper surface of all conditions, (h) SI comparison of the lower surface 
of all conditions, (i) comparison of the SI ratio between the upper and lower surfaces of all conditions. Asterisks are indicating significance 
levels
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difference between the SI of AT and Terr. However, there was no 
significant difference between both forms grown under the same 
condition (A‐T and T‐Wet).

The ratio (SI upper/SI lower) between the upper and lower sur-
faces for each condition was analyzed (Figure 6i). The only signifi-
cant difference was detected between A‐T and T‐Wet (.01 < p < .05).

3.5 | General observations

Five cuttings from every Aqu populations were potted and the rest 
grown in small trays with water. All plants, in the trays with water 
and the pots, build inflorescences and infructescences.

4  | DISCUSSION

Two main results derived from this study: (a) The analyses of the SSR 
and ISSR data showed similar outcomes and no significant separa-
tion into ecotypes; (b) the differences in morphological characters 
of the two forms faded when plants were grown under the same 
conditions.

4.1 | Genetic comparison

Both fingerprinting methods (SSR and ISSR) together portray the ge-
netic diversity of the entire genomes of all investigated individuals. 
Nevertheless, most populations can be genetically told apart from 
each other; both forms are not genetically differentiated (Figures 2 
and 3). Therefore, a taxonomical division based on molecular data is 
not justified.

The only significant difference recovered from the genetic data 
was from the F‐statistics (Figure 2e,f; Table S2). The heterozygote 
excess, revealed by a negative Fis, can be caused by asexual propa-
gation (Stoeckel et al., 2006). Four out of the seven Aqu populations 
exhibited negative F and Fis values. These findings confirm the ob-
servations that these populations tend to grow clonally (Casper & 
Krausch, 1981; Schossau 2000 cited in Hacker et al., 2003; NLWKN, 
2011). However, three of them have positive F‐statistic values. A 
heterozygote deficiency (homozygote excess) is revealed by positive 
Fis values and can be caused by self‐fertilization. This is mainly the 
case in the Terr populations.

In Aqu populations, most of the leaves are partially submerged 
due to floating (pers. observation). When leaves are submerged, they 
encounter an oxygen shortage (Mommer & Visser, 2005). Hypoxia 
triggers the ethylene production and thus the adjustments to the 
submerged conditions such as development of aerenchyma (Drew, 
Jackson, Giffard, & Campbell, 1981; Gunawardena, Pearce, Jackson, 
Hawes, & Evans, 2001; Jackson & Armstrong, 1999; Jackson, 
Fenning, Drew, & Saker, 1985; Kordyum, Kozeko, Ovcharenko, & 
Brykov, 2017; Yamauchi, Shimamura, Nakazono, & Mochizuki, 2013) 
or submergence‐acclimated leaf forms (Kuwabara, Ikegami, Koshiba, 
& Nagata, 2003; Kuwabara, Tsukaya, & Nagata, 2001). In the case 
of H. repens, it possibly inhibits the flowering as it does in Ipomoea 

nil (L.) Roth (Suge, 1972; Wilmowicz, Kęsy, & Kopcewicz, 2008) or in 
Xanthium pungens Wallr. (Abeles, 1967). The plants in the tray were in 
contact with the bottom and were thus able to sustain upright leaves 
above the water surface. Due to fluctuations in the water level at the 
natural sites, the very similar conditions can occur possibly leading 
to infrequent flowering. Burmeier and Jensen (2008) observed that 
seeds were able to germinate even under water. Therefore, seed 
recruitment during low water seems possible and could explain the 
positive Fis values.

However, these interpretations remain largely hypothetical and 
constitute a basis for further research.

4.2 | Morphological comparison

4.2.1 | Drought stress

Both forms undoubtedly adapted between the first and the second 
runs (Figure 4). This adaptation is also visible in the RWC values of 
the leaves (Figure 5). During the second run, the RWC values of the 
leaves did not drop as much as in the first runs (Figure 5). In some 
cases, the leaves even gained water and plants grew new leaves dur-
ing the run (pers. observation).

4.2.2 | Stomatal index

There were no significant differences between forms (Figure 6). 
One could interpret the differences in the SI of the upper surface 
of all conditions as a plastic reduction in SI caused by reduced 
water availability (Figure 6h). The difference in the ratio of upper 
and lower surface SI between A‐T and T‐Wet was likely due to the 
variation in the data and would probably disappear if more repeti-
tions were carried out (Figure 6i). Had this been a genotypic trait, 
both extreme conditions (Aqu and Terr) would have shown differ-
ences in the SI.

5  | CONCLUSION

In general, neither molecular data nor the results from water‐
manipulating experiments alone can rule out the hypothesis 
of ecotypes. Molecular markers may fail to detect differences 
(Bekessy et al., 2003), and there could be other ecological fac-
tors in which the two forms behave differently. Billet, Genitoni, 
and Bozec (2018) analyzed aquatic and terrestrial morphotypes 
of Ludwigia grandiflora (Michx.) Greuter & Burdet and based on 
morphological traits they found that the terrestrial morphotype 
outcompetes the aquatic one. However, they did not perform mo-
lecular analyses; thus, the molecular basis of L. grandiflora adapta-
tion remains unknown.

Ecotype hypotheses can be addressed only when morphology 
as well as genetic foundation studies is combined (McKay & Latta, 
2002). In a study on Alternanthera philoxeroides (Mart.) Griseb., 
Geng et al. (2007) used molecular data (ISSR) and common garden 
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experiments to test the ecotypes hypotheses for aquatic and terres-
trial forms. Their data supported, however, the plasticity hypothesis. 
For Coccothrinax argentata (Jacq.) L.H.Bailey, Davis, Lewis, Francisco‐
Ortega, and Zona (2007) found minute differences in the ISSR anal-
ysis between the mainland and insular populations. However, they 
found a great deal of plasticity in the traits included in the study 
that do not support a separation into different taxa. In Ageratina ad‐
enophora (Spreng.) R.M.King & H.Rob., the authors found evidence 
for phenotypic plasticity after checking 16 populations with ISSR 
and common garden experiments (Zhao, Yang, & Xi, 2012). Noel, 
Machon, and Porcher (2007) analyzed Ranunculus nodiflorus L. pop-
ulations in France with microsatellites and common garden experi-
ments. They found no genetic diversity and strong evidence favoring 
phenotypic plasticity.

Since our molecular data provide strong evidence against the 
ecotype hypothesis and the morphological differences disap-
peared during a simple drought stress experiment, the results can 
only lead to one explanation: phenotypic plasticity. Moreover, the 
drought stress experiment showed that plants that experienced 
drought stress performed better when subjected to drought stress 
again. This adaptive plasticity in this species enables it to endure 
short periods of drought stress and periods of water stress (Longa, 
2019). It also gives the plants an advantage over competitors 
in zones of water fluctuations such as wet pastures and littoral 
zones, where this species naturally occurs. The ability of self‐fer-
tilization may benefit H. repens in environments where pollinators 
are scarce.
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