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Abstract There has been a growing appreciation of

the importance of respiratory fungal diseases in recent

years, with better understanding of their prevalence as

well as their global distribution. In step with the

greater awareness of these complex infections, we are

currently poised to make major advances in the

characterization and treatment of these fungal dis-

eases, which in itself is largely a consequence of post-

genomic technologies which have enabled rational

drug development and a path towards personalized

medicines. These advances are set against a backdrop

of globalization and anthropogenic change, which

have impacted the world-wide distribution of fungi

and antifungal resistance, as well as our built envi-

ronment. The current revolution in immunomodula-

tory therapies has led to a rapidly evolving population

at-risk for respiratory fungal disease. Whilst chal-

lenges are considerable, perhaps the tools we now

have to manage these infections are up to this

challenge. There has been a welcome acceleration of

the antifungal pipeline in recent years, with a number

of new drug classes in clinical or pre-clinical devel-

opment, as well as new focus on inhaled antifungal

drug delivery. The ‘‘post-genomic’’ revolution has

opened up metagenomic diagnostic approaches span-

ning host immunogenetics to the fungal mycobiome

that have allowed better characterization of respiratory

fungal disease endotypes. When these advances are

considered together the key challenge is clear: to

develop a personalized medicine framework to enable

a rational therapeutic approach.
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Introduction

Respiratory fungal diseases have risen in prominence

in recent years, as a consequence of improved

diagnostics, advocacy, research and greater awareness

[1–6]. However, our understanding of whether there

has been a genuine increase in the prevalence of

respiratory fungal diseases is less clear. Current

advances across a range of different areas, including

immunophenotyping, metagenomics, antifungal ther-

apies and immunotherapies have opened up exciting

opportunities to revolutionize our clinical approach to

these complex respiratory infections.Handling Editor: Sanjay Haresh Chotirmall
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Opportunistic Respiratory Mycoses

Fungal opportunism of the respiratory tract has been

dominated by the aspergilli, and in particular Asper-

gillus fumigatus [7]. Aspergillosis was first described

in humans by Dieulafoy in the 1890s as a primary

pulmonary infection, and as fungal rhinitis in 1915

[8, 9]. The ubiquitous global nature of this saprophytic

mould, with small, highly dispersible conidia which

are inhaled on a daily basis, and its thermophilic nature

make it ideally suited as a pulmonary pathogen [7, 10].

Other species within the genus have played a promi-

nent role as respiratory mycoses [11, 12]. Within the

broader context of allergic fungal airway disease,

fungal sensitization may be mediated by thermophilic

fungi such as Aspergillus spp., and Candida spp. as

well as thermo-intolerant fungi such as the Cladospo-

rium and Alternaria genera [13, 14]. In the immuno-

compromised host, a much broader range of

opportunistic fungi, such as Pneumocystis jirovecii,

the mucoromycotina, and Cryptococcus spp. may

cause invasive infection [15–17]. Fungi are also

prominent causative agents of hypersensitivity pneu-

monitis, implicated in farmer’s lung disease (Asper-

gillus fumigatus, Lichtheimia corymbifera), and peat

moss exposure (Penicillium spp.) amongst others

[18, 19]. Thus, fungi are remarkable in their ability

to induce both invasive infections as well as allergic

sensitization and hypersensitivity responses.

Endemic Respiratory Mycoses

Endemic respiratory mycoses are characterized as

primary pathogens that can also disseminate, often in

the context of immunocompromised [20]. Histoplas-

mosis, an endemic mycosis of the Americas and

opportunistic mycosis globally (var. duboisii), was

first described as a human pathogen by Darling

(Darling’s disease) in 1909 [21]. Talaromycosis, an

East Asian endemic mycosis due to Talaromyces

marneffei (formerly Penicillium marneffei),, was first

described in 1959 by Segretain [22], and coccid-

ioidomycosis, due to Coccidioides immitis, a mycoses

of the Americas, was first described in 1948 [23, 24].

Blastomycosis, an American endemic mycosis due to

Blastomyces dermatitidis was first described in 1914

[25]. Endemic mycosis gained increasing prominence,

mainly as a consequence of their association with the

AIDS epidemic, where they are major opportunistic

pathogens, from the 1980s onwards [26]. The current

revolution in immunomodulatory therapies has led to

new patient groups becoming at risk of endemic

mycoses [27].

Epidemiology

The epidemiological drivers of respiratory fungal

disease are complex and contingent on a range of

factors, many of which may have an anthropogenic

basis [28]. For instance, global warming and the global

trade in plants may have rapidly accelerated the

propensity for new and ecologically invasive species,

as well as the rapid global emergence of triazole

resistance, recently characterized in A. fumigatus [29].

Changes in building construction and in particular

ventilation may have led to fundamental shifts in the

composition and diversity of the aerial mycobiota in

the built environment [30]. Susceptibility to fungal

infection is increasingly complex, where novel agents

such as ibrutinib and IL-5 modulators have been

shown to have potential to predispose individuals to

respiratory fungal infection [31]. The widespread use

of steroids is thought to have played a major role in the

apparent increasing incidence of chronic respiratory

fungal diseases in the context of chronic diseases of

the lung [32, 33].

How Can We Use Available and Emerging

Antifungals to Improve Outcomes

from Respiratory Fungal Disease?

Much of our current understanding around the optimal

use of antifungals for respiratory fungal diseases has

been driven by well-funded, commercial, randomized

controlled studies in the context of invasive pul-

monary aspergillosis in the immunocompromised host

[34, 35]. This has led to the licensing of voriconazole,

ambisome, posaconazole and isavuconazole in this

setting [34–37]. However, our understanding of how

these agents can be used in the context of chronic

respiratory fungal disease is less well defined [38, 39].

Most clinical trial data are centred around itracona-

zole, a historical azole with poor oral absorption,

major drug interactions and significant side effects

[40]. Furthermore, historical studies in invasive pul-

monary aspergillosis have already established that

itraconazole has poor efficacy for invasive
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aspergillosis, and therefore likely to be inferior to

newer mould-active triazoles [41]. It is therefore not

surprising that studies of itraconazole therapy in the

context of chronic pulmonary aspergillosis, allergic

bronchopulmonary aspergillosis and severe asthma

with fungal sensitization have by and large showed

modest or no effect. In addition, the importance of

triazole therapeutic drug monitoring, which has not

been addressed in clinical trials, but is now de facto

standard of care in the real world, is a major

confounder for these studies that requires further

exploration. It is notable that those studies that failed

did not undertake therapeutic drug monitoring, which

is not currently a requirement under the licensing of

any triazole antifungal [42]. The only study to address

voriconazole in the context of allergic fungal airway

disease, EVITA3, also did not involve therapeutic

drug monitoring [43]. Furthermore, whilst therapy was

stopped at 3 months, clinical endpoint measurements

were undertaken at 12 months, on the basis that any

antifungal effect would be long-lived. However,

unlike itraconazole, voriconazole is aquaphilic and

does not persist in tissues in the long-term. Thus,

further studies of newer triazoles such as voriconazole,

posaconazole and isavuconazole in the context of

chronic respiratory fungal disease are urgently needed.

There is currently a lack of clarity around the use of

antifungals for allergic fungal airway diseases such as

severe asthma with fungal sensitization and allergic

bronchopulmonary aspergillosis, where historically it

was thought that these fungal diseases are purely

driven by sensitization to the aerial mycobiota rather

than any element of airway infection. This theory

seems reasonable in the context of thermointolerant

fungi such as Alternaria spp.; however for allergic

bronchopulmonary aspergillosis the presence of

hyphae in the mucous and evidence of mucosal

inflammation with a positive Aspergillus IgG response

in serum are suggestive of airway mycosis [44].

Moreover, recent careful mycological studies suggest

the involvement of airway mycosis in allergic airway

disease could be much more extensive than is

currently believed [45]. Better understanding of these

relationships and the role that antifungals could play

are urgently needed.

We are currently in the midst of a revolution in the

antifungal armamentorium, with posaconazole and

isavuconazole representing a step change for triazole

usage clinically, as a consequence of their improved

side effect profiles, absorbance and spectrum of action

[34, 46–49]. A number of exciting new drug classes

are now in late phase clinical studies, and there has

been renewed interest in inhaled antifungal develop-

ment. Olorofim (F901318; F2G Ltd., Manchester, UK)

is the first of a new class of drugs, the orotomides, that

inhibit dihydroorotate dehydrogenase, a key enzyme

in pyrimidine synthesis [50]. The drug is available

orally and intravenously with wide tissue distribution.

Notably the drug has a wide spectrum of activity

against Aspergillus spp., including triazole-resistant

strains, as well as more difficult to treat opportunistic

pulmonary fungal pathogens such as Lomentospora

prolificans and Scedosporium spp. as well as the

causative agents of endemic mycoses [51–54]. How-

ever, there is a lack of activity against Candida spp.,

mucoralean fungi, and Cryptococcus spp. There is an

open label study ongoing to evaluate the utility of

olorofim in individuals with limited treatment options

(FORMULA; NTC03583164).

Fosmanogepix (APX001; Amplyx, San Diego,

Ca.), is a prodrug metabolized to manogepix, its

active form [55]. It disrupts glycosylphosphatidyli-

nositol (GPI)-anchor biosynthesis by inhibiting the

enzyme Gwt1 and has good activity in vitro against

Aspergillus spp., Cryptococcus neoformans, Sce-

dosporium spp., and Fusarium spp. [56, 57]. There is

currently a phase 2, multicentre study to evaluate

Fosmanogepix for the treatment of invasive fungal

infections caused by Aspergillus spp. or rare moulds

(e.g. Scedosporium spp., Fusarium spp., and muco-

ralean fungi).

A number of other systemic agents are in various

stages of development that could be useful in the

setting of respiratory fungal disease such as orally

available amphotericin B Cochleate (CAMB/

MAT2203; Matinas Biopharma, Bedminster, NJ)

[58, 59], MGCD290 (Mirati Therapeutics, San Diego,

Ca.) [60, 61], tetrazoles (VT-1129, VT-1161, and VT-

1598; Viamet Pharmaceuticals, Durham, NC)

[62–67], VL-2397/ASP2397 (Vical inc.; San Diego,

Ca.) [68], and T-2307 (Toyama Chemical, Tokyo,

Japan) [69].

Inhaled antifungals represent a particularly inter-

esting area for development in the context of respira-

tory fungal disease, where there is potential to achieve

increased concentrations of drug in the respiratory

mucosa compared to the systemic route, and the

possibility for synergies with systemic agents.
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Historically amphotericin B has been used both as

deoxycholate as well as in lipid forms, primarily as

nebulized prophylaxis against pulmonary mould

infection in haematological malignancies, and lung

transplantation [70–73]. Another setting is as therapy

for allergic bronchopulmonary aspergillosis or Asper-

gillus tracheobronchitis [70, 74]. There have been case

reports around the use of nebulized triazoles for the

treatment of airway mycoses with varying success.

More recently there has been a concerted effort to

systematically develop specifically formulated nebu-

lized antifungals with good airway distribution and

retention. PC945 (Pulmocide Ltd.) is a novel triazole

specifically designed to achieve high concentrations in

the airway mucosa with limited systemic exposure

[75]. It has potent activity against Aspergillus and

accumulates in the lung on repeat dosing [76].

Interestingly animal studies indicate improved effi-

cacy when combined with systemic antifungals in

murine pulmonary aspergillosis [77, 78]. It was well

tolerated in healthy individuals and asthmatics. Initial

case reports for nebulized PC945 as salvage therapy in

refractory lung transplant Aspergillus tracheobronchi-

tis showed complete response [75, 79, 80]. Phase 2

study data in asthma and cystic fibrosis patients with

pulmonary aspergillosis are currently being evaluated.

Pulmazole (Pulmatrix Inc) is a new dry powder

itraconazole formulation that was being evaluated in

adult asthmatics with allergic bronchopulmonary

aspergillosis in Phase 2 studies (NCT03960606).

Pulmazole is engineered using propriety technology

that allows particles to be formulated as small, dense

and dispersible particles for deep lung penetration.

This allows for delivery as a dry powder by inhalation.

There are also two formulations of voriconazole in

development for inhalation, ZP-059 (Zambon Com-

pany S.P.A., Milano, Italy), and TFF-VORI (TFF

pharmaceuticals, Austin, TX) that have completed

Phase 1 of development.

Taken together, the likely availability of novel

systemic antifungal drug classes as well as the option

for inhalational antifungals has the potential to

dramatically change the clinical landscape for thera-

peutic options for respiratory fungal diseases. A

particularly exciting challenge will be to work out if

combination therapies are superior and in particular

whether the combination of systemic and inhaled

antifungals is superior to conventional systemic ther-

apies that are currently prevalent. This is particularly

important in the context of airway mycoses where it

seems likely that current systemic antifungal treat-

ments are sup-optimal. Another unanswered question

is around what utility adjunctive inhaled antifungals

could have in the context of invasive pulmonary

mycoses such as invasive aspergillosis. Finally, there

are major unanswered questions around duration of

therapy, with most trials of invasive aspergillosis

using 6–12 weeks therapy but very little data to guide

where shorter courses may be appropriate.

HowCanWe Improve the Diagnosis of Respiratory

Fungal Infection?

Current diagnosis of respiratory fungal diseases

revolves around three central pillars, the mycological

evidence of infection, the clinical status of the host and

the evidence that there is an immune response to a

fungus in the host.

Detection of Fungal Infection

Classically mycological criteria have typically been

from fungal cultures from either the airway or on

tissue biopsy; however these would not necessarily be

diagnostic on their own (unless for an endemic

mycoses) as the airway has always been considered

non-sterile from a microbiological perspective and

fungi are ubiquitous components of the aerial micro-

biota [81]. Fungal polymerase chain reaction has been

available for several decades, has long been estab-

lished for the diagnosis of Pneumocystis pneumonia

and has recently been approved for the diagnosis of

invasive pulmonary aspergillosis [81]. There has been

limited work on the utility of fungal species multiplex

PCRs, which would be highly attractive for airway

samples across a range of settings such as haemato-

logical immunocompromised, lung transplantation

and cystic fibrosis where a specific, limited group of

fungal pathogens account for the vast majority of

infections [82, 83]. Further progress has been made

with respect to more systematic use of both b-1,3

glucan and galactomannan as markers of respiratory

fungal disease where b-1,3 glucan is used in serum

primarily as a screening assay and galactomannan has

utility both in serum and airway samples for specific

diagnosis of aspergillosis. There has been significant

advance in the availability of lateral flow device assays
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for point-of-care testing across aspergillosis as well as

endemic mycoses such as histoplasmosis [84, 85]. A

further area of ongoing development is whether

urinary antigens have utility for the diagnosis of

respiratory mycoses [86–88]. In general terms, it

seems clear that the combination of two different

assays such as PCR and antigen for identification of

fungal disease leads to a much more robust diagnostic

performance profile. The elephant in the room in terms

of mycological diagnosis of respiratory mycoses is the

airway mycobiome. There has been a significant body

of work to describe this across a range of settings from

the immunocompromised host, where it has been

shown the mycobiome or even the microbiome could

predict pulmonary fungal disease [89–91]. However,

this work is still at a very early phase [92]. Further

detailed studies have been undertaken in chronic

respiratory fungal diseases as well as in chronic

respiratory disease more generally, to determine either

the role that fungi play in the pathogenesis of diseases

such as asthma, COPD and bronchiectasis, or to

delineate the composition of the mycobiome and

microbiome underlying conditions such as allergic

bronchopulmonary aspergillosis or cystic fibrosis-

related aspergillosis [93–95]. Bigger multicentre

studies using the latest metagenomic approaches are

required, encompassing the interface between the

virome, bacteriome and mycobiome [96].

By extension, for fungal infections there is a critical

question around the broader environment and in

particular the aerial mycobiome as a driver for fungal

infection. This has high relevance whether it be in the

context of the neutropenic host with acute myeloid

leukaemia, where acquisition of A. fumigatus from the

hospital environment has been clearly documented to

cause infection [97–100], or allergic fungal airway

diseases where further work is required to understand

the relationship between population-level sensitiza-

tion to allergenic fungi and exposure to these fungi in

the environment [101, 102]. Groundbreaking metage-

nomic approaches have been developed to character-

ize the aerial mycobiome that hold great promise to

allow better understanding as well as prediction of the

environmental factors driving respiratory fungal dis-

ease [30].

Within the context of the immunocompromised

host a key issue is around how to use diagnostics to

guide treatment. In this regard, the primary questions

revolve around whether universal prophylaxis (for

instance posaconazole in neutropenic acute myeloid

leukaemia) versus pre-emptive mycological biomar-

ker-driven therapy or directed therapy for confirmed

respiratory fungal disease is most appropriate [103].

Whilst universal prophylaxis appears an expedient

solution the rising incidence of fungal resistance to

antimicrobials argues against such an approach

[104, 105]. In contrast, directed therapy, which is

useful to minimize unnecessary antifungal usage, runs

the risk of late diagnosis and consequently poorer

outcomes. However, these approaches have rarely

been systematically compared in randomized con-

trolled trials [106, 107].

The emergence of antifungal resistance as a major

clinical issue is an area of great concern [29]. This has

been a huge problem for Candida spp. with replace-

ment of C. albicans as the dominant pathogen with

other species such as C. glabrata and C. krusei in high-

risk azole-exposed populations [108], as well as the

global emergence of C. auris as a high-transmission,

multidrug-resistant human opportunistic pathogen

[109–111]. More recently our understanding of emer-

gent triazole resistance in A. fumigatus as a conse-

quence of both in-host adaptation to selective drug

pressure as well as fungicide use in the environment

[104, 105], and the observation of in-host evolution of

fluconazole resistance in C. neoformans [112] means

that we urgently need clinically robust molecular and

phenotypic diagnostics to define the epidemiology and

extent of resistance in clinical settings for all three

major human fungal pathogens. Significant progress

has been made with population-level next generation

sequencing; integration of these approaches into

clinical laboratory workflows as soon as possible is

now a major goal.

Immunodiagnosis of Fungal Inflammation

Immunodiagnosis is a cornerstone for the diagnosis of

respiratory fungal disease such as chronic pulmonary

aspergillosis, allergic bronchopulmonary aspergillosis

and severe asthma with fungal sensitization, as well as

having utility for the identification of fungal drivers of

hypersensitivity pneumonitis [113]. The primary

modality is by detection of antibody responses to

immunodominant fungal antigens and allergens

[114–116]. However, the field is vastly complex,

because fungi have one of the highest numbers of

antigenic molecules when compared to other allergens
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[117, 118]. In the context of aspergillosis this is of

particular interest because whilst some antigens are

immunodominant and therefore have utility as com-

ponents of sensitive screening assays, other antigens

may have higher predictive value for disease severity

and progression [119–121]. For instance there are

currently 23 WHO-defined fungal allergens for A.

fumigatus (http://allergen.org). There has been some

recent progress in the development of multiplex assays

that can identify broad antigen repertoires for these

diseases [93, 122]. Such an approach is likely to have

utility for precision diagnostic medicine across

chronic respiratory fungal infection, allergic fungal

airway disease and hypersensitivity pneumonitis.

Further progress has been made through the develop-

ment of cellular response assays with a particular area

of focus being fungal-reactive T cells [123–125].

These have been shown to have utility as assays to

identify active infection both in the context of invasive

aspergillosis as well as cystic fibrosis-related

aspergillosis [126]. Large multicentre studies are

required to further validate their utility for the early

and accurate identification of individuals with respi-

ratory fungal diseases. Such T cell response assays

ought to be applicable to a wider range of respiratory

fungal pathogens; utility has been shown already for

Aspergillus spp. as well as Mucor spp [127]. Basophil

activation assays, which are used to confirm the

functional ability of allergens to induce effector cell

degranulation, have also been shown to be useful to

assess the response of patients with allergic fungal

airway disease to immunotherapies such as the IgE-

depleting monoclonal omalizumab [128].

Identification of Fungal Immunogenetic Risk

Immunogenetic risk prediction for respiratory fungal

disease has great promise as a key diagnostic tool in

the at-risk host. Important work in this area has been

undertaken within the context of primary immunod-

eficiencies, for instance Dectin-1/Card-9/JakStat

mutations and risk of chronic mucocutaneous can-

didiasis [129–132]. However, there has been tremen-

dous progress in identifying immunogenetic alleles

that confer risk for invasive fungal disease in the

context of transplantation, where it has been shown

that either donor or recipient alleles may be impli-

cated. In the context of haematological stem cell

transplant, current data suggest that where the

recipient immunogenotype is predictive of risk, this

is due to defects of the recipient respiratory epithelial

deficiencies, whereas where the donor immunogeno-

type is predictive, this maps to the donor stem cell

myeloid compartment [133–136]. Extension of such

approaches to other at-risk groups for respiratory

fungal diseases would be of great interest, with some

studies already undertaken for allergic bronchopul-

monary aspergillosis for instance [137, 138]. Further-

more, most immunogenetic studies thus far have been

focused on selected groups of alleles. Large-scale and

multinational GWAS studies would give greater

resolution to which alleles are dominant and whether

they penetrate in all populations.

Personalized Medicine to Identify Clinically

Relevant Endotypes

The identification of specific clinically relevant

disease endotypes has been greatly accelerated in

respiratory medicine through the advent of systematic

immunophenotyping studies [95, 139–142]. Given the

current revolution in monoclonal antibody therapies in

clinical medicine, with many agents now licensed for

therapy of asthma and allergic rhinitis, repurposing of

these monoclonals for allergic fungal airway diseases

in particular, and better understanding of which may

be more efficacious in this setting, is a current high

priority [143, 144]. We are already using omalizumab

routinely for IgE depletion in allergic bronchopul-

monary aspergillosis and severe asthma with fungal

sensitization, with accumulating but mainly case

series-based clinical data to support this approach

[145–147]. Mepolizumab-based targeting of eosino-

philic responses is also now commonplace, although

there are some safety concerns more generally as

eosinophils may have a protective role against inva-

sive aspergillosis [148, 149]. Better understanding is

therefore required of which immune pathways are

most contributory to progressive decline in allergic

fungal airway diseases in order to enable the precise

targeting of monoclonal therapeutics. In order to do

this, large multicentre prospective immunoprofiling

studies are required adopting a systematic approach to

identify those targetable immune pathways that are

most predictive of severe endotypes of allergic fungal

airway disease. Optimal resolution of endotypes is

achieved when systemic immune signatures (i.e.

peripheral blood multiparameter flow sorting), local
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airway signatures (i.e. sputum transcriptome, sputum

mycobiome) data and clinical data (i.e. radiological

scoring, respiratory physiology and clinical question-

naires) are integrated to provide multidimensional

data linked to clinical longitudinal outcomes. Such an

approach has been used to identify new asthma

endotypes and would be of great utility for chronic

respiratory fungal diseases, where we still do not fully

understand for instance why only some patients with

allergic bronchopulmonary aspergillosis respond to

steroids, whereas others may show a response to

antifungals [150]. The emergence of artificial intelli-

gence, or at least machine learning, has opened the

door for novel approaches to identification of respi-

ratory disease radiological endotypes, where a range

of fungal-specific or at least predictive features such as

nodules or cavitation exist, but could be further refined

and automatically identified using non-partisan image

analysis approaches [151].

Conclusions

Over the last decade there has been greater awareness

of the prevalence of respiratory fungal diseases

globally. The advent of the 4th industrial revolution

leaves us poised to exploit molecular engineering and

post-genomic technologies and advances in combina-

tion with big data science and artificial intelligence to

revolution our understanding of the pathogenesis of

these complex infections. Substantial progress in drug

discovery and development, as well as the rational

design of novel immunotherapeutics, has greatly

broadened the therapeutic armamentarium with which

to combat respiratory fungal disease. The major

challenge we face to translate these advances for the

benefit of patients will be to ensure that these advances

in the understanding of disease pathogenesis and novel

therapeutic options are integrated within a personal-

ized medicine framework to ensure the right patient

gets the right treatment at the right time.
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