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Cascading failures in coupled 
networks: The critical role of node-
coupling strength across networks
Run-Ran Liu1, Ming Li2 & Chun-Xiao Jia1

The robustness of coupled networks against node failure has been of interest in the past several years, 
while most of the researches have considered a very strong node-coupling method, i.e., once a node 
fails, its dependency partner in the other network will fail immediately. However, this scenario cannot 
cover all the dependency situations in real world, and in most cases, some nodes cannot go so far as to 
fail due to theirs self-sustaining ability in case of the failures of their dependency partners. In this paper, 
we use the percolation framework to study the robustness of interdependent networks with weak node-
coupling strength across networks analytically and numerically, where the node-coupling strength 
is controlled by an introduced parameter α. If a node fails, each link of its dependency partner will be 
removed with a probability 1−α. By tuning the fraction of initial preserved nodes p, we find a rich phase 
diagram in the plane p−α, with a crossover point at which a first-order percolation transition changes 
to a second-order percolation transition.

The infrastructures in modern life can be characterized by complex networks1–6, such as water, electricity and 
communication systems, the successful operations of which are ensured by the coupling between these networks. 
For instance, the operation of a power network requires water network for cooling power plant, transport network 
to supply fuel, and communication network for control, and these networks in turn require power networks to 
supply electricity. In order to explore the robustness of these interacting networks, the interdependent networks 
or multilayered networks7,8 have been studied by means of percolation9, which demonstrated that the interde-
pendency exhibited a first-order percolation transition when suffering attack and makes the coupled networks 
more vulnerable than a single network.

The importance of node-coupling method for the network robustness has been widely recognized. For 
instance, reducing the fraction of coupled nodes between networks leads to a change from a discontinuous to con-
tinuous percolation transition, and thus a more robust system10. For multiple coupled networks, the system will 
be even more vulnerable11–14. Further studies have also explored the robustness of interdependent networks under 
different coupling methods or network structures, such as inter-similarity15,16, multiple support-dependency rela-
tions17, assortativity18–20, clustering21,22, degree distribution23,24, and spatially embedded networks25–28. All these 
works demonstrate the fragility of the coupled networks in the presence of interdependency under different 
situations.

However, these theoretical findings somehow conflict with the real observation of the stable coupled system. 
In order to understand this puzzle, some research have explored the coupling structure of real networks, which 
reveal that interdependent networks sharing cores of “high quality” edges29 as well as interconnections between 
network hubs30 can prevent catastrophic failures and make the system of networks stable. In this paper, we attrib-
ute the cause of this puzzle to a very strong node coupling across networks in the previous models and try to give 
a possible explanation of the stability for real-world coupled networks. In the previous studies of interdependent 
networks, when one node fails, it will cause its dependent node in the other network to fail at once. However, 
this assumption may not always true in some real situations. Although some nodes cannot run very well if their 
dependency nodes fail, they can hold and survive by their self-sustaining abilities. For instance, in a trading 
network, some companies may shrink their business by reducing the number of their trade partners if their 
dependent investors go bankrupt. Although this situation is very common in real-world coupled systems, there 

1Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, 311121, People’s 
Republic of China. 2School of Engineering Science, University of Science and Technology of China, Hefei, 230026, 
People’s Republic of China. Correspondence and requests for materials should be addressed to R.-R.L. (email: 
runranliu@163.com)

Received: 04 August 2016

accepted: 28 September 2016

Published: 17 October 2016

OPEN

mailto:runranliu@163.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:35352 | DOI: 10.1038/srep35352

is still lack of study of this mechanism on the robustness of interdependent networks. Therefore, developing a 
method to analyze cases where weak node-coupling exist in the interdependent networks can help to understand 
the robustness of coupled complex systems in the real world as well as for designing robust infrastructures. In 
this paper, we will propose a model to study the robustness of interdependent networks with weak node-coupling 
strength between networks. By using the percolation theory31–34, we analytically calculate the discontinuous and 
continuous percolation transition points of our proposed model to validate the simulation results.

Results
Model. For simplicity and without loss of generality we analyze the percolation process in a system of two fully 
interdependent networks A and B with the same number of nodes N, whose degree distributions follow pk

A and 
pk

B, respectively. Here, the full interdependence means that all the nodes in network A have a mutual dependence 
partner in network B. Assuming that ai from network A fails, each connectivity link of its dependency partner bi 
in network B will be broken with a probability 1− α, where the introduced parameter α controls the impacts of 
the failure of its dependency partner. Similarly, if a node in network B fails, the connections of its dependency 
partner in network A will be also cut off as the same way. When α → 1, the failures cannot spread across the net-
works. When α → 0, our model will reduce to the original model of interdependent networks proposed in ref. 9. 
Therefore, we can also define the link-removal probability 1− α as the node-coupling strength of two interde-
pendent nodes.

Following the mutual percolation model described in Buldyrev et al.9, we destroy a fraction 1− p of randomly 
selected nodes in network A. As a result, the failures of nodes or their connectivity links may cause the other 
nodes to disconnect from the largest cluster of network A. In the next stage, each connection of a node with a 
failed dependency partner will fail with a probability 1− α. Consequently, some nodes may disconnect from the 
largest cluster as a result of the destruction of links in network B. The iteration of this process, which alternates 
between the two networks, leads to a cascade of failures. The cascade ends until no further splitting and node 
removal can occur. In our study, the sizes of giant components SA and SB for the final networks A and B are con-
sidered as the key quantities as the previous works9.

General formalism. Here we solve this model by considering the final state after the cascades as the method 
of generating functions35,36. Let RA be the probability that a randomly chosen link in network A leads to the giant 
component. Similarly, RB is the probability that a randomly chosen link in network B leads to the giant compo-
nent. Here, we use = ∑G x P x( )A

k k
A k

0  and = ∑G x P x( )B
k k

B k
0  to denote the generating functions of the degree 

d is t r ibut ions  of  networks  A  and B ,  resp ec t ive ly.  S imi lar ly,  = ∑ −G x p kx k( ) /A
k k

A k A
1

1  and 
= ∑ −G x p kx k( ) /B

k k
B k B

1
1  are the corresponding generating functions of the underlying branching processes of 

networks A and B, respectively. Then, in the steady state, RA satisfies

α α= − − − − + − − − .R p G R G R p G R G R[1 (1 )][1 (1 )] [1 (1 )] (1 ) (1)A A A B B A A B B
1 0 1 0

In the first term on the right-hand side, − −p G R[1 (1 )]A
A1  denotes the probability that a randomly chosen link 

starting from a randomly chosen node leads to the giant component of network A, and − −G R1 (1 )B
B0  is the 

probability that the dependency partner of this chosen node is still functional. In the last term, 
α α− −p G R[1 (1 )]A

A1  denotes the probability that a randomly chosen link starting from a randomly chosen 
node in network A leads the giant component of network A, and −G R(1 )B

B0  is the probability that the depend-
ency partner of this chosen node fails. For the later case, each link of this chosen node is preserved with a proba-
bility α, and thus there is a coefficient α in this term.

Similarly, RB can be written as

α α= − − − − + − − − − − .R p G R G R G R p G R[1 (1 )][1 (1 )] [1 (1 )]{1 [1 (1 )]} (2)B B B A A B B A A
1 0 1 0

By using RA and RB, we can easily get the probability that a randomly chosen node belongs to the giant component 
of the final network A or B respectively, i.e., the size of the giant component of the final networks A or B:

α= − − − − + − − −S p G R G R p G R G R[1 (1 )][1 (1 )] [1 (1 )] (1 ); (3)A A A B B A A B B
0 0 0 0

α= − − − − + − − − − − .S p G R G R G R p G R[1 (1 )][1 (1 )] [1 (1 )]{1 [1 (1 )]} (4)B B B A A B B A A
0 0 0 0

The percolation transition points. Since the sizes of giant components SA and SB depend on the auxiliary 
parameters RA and RB directly, we discuss the phase transition of the system by using the parameters RA and RB. 
When α =  1, the failure caused by the initial node removal cannot spread to network B, and the percolation on 
network A will reduce to the standard site percolation, which is continuous. While α =  0, our model is equivalent 
to the original model of interdependent networks, and the percolation transition is discontinuous. Therefore, we 
can predict that the key parameter α plays an important role for the percolation transition types, and the percola-
tion transition can change from a discontinuous one to a continuous one at a crossover point αc between 0 and 1. 
In the following, we try to locate the position of the crossover point αc as well as the percolation transition points.

The solution of eqs (1) and (2) can be graphically presented on a RA, RB plane. Here we take two coupled ran-
dom networks with the same average degree as an example, the degree distribution of which follows a Poissonian 
distribution =

−

pk
e k

k !

k k
37. Figure 1 shows graphically solutions of RA and RB for random networks with 〈 k〉  =  4. 

We notice that there is a trivial solution at the point (RA =  0, RB =  0), which means that the two networks A and B 
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are completely fragmented. For α =  0.2, there is a tangent point of the two curves for eqs (1) and (2), the condition 
for which is =1dR R

dR
dR R

dR
( ) ( )A B

B

B A

A
. When the fraction of preserved nodes p go through the tangent point, RA(RB) 

jumps from zero to a finite size, which corresponds to the case of first-order percolation transition. While for 
α =  0.7, we can observe that the tangent point is in absent and there is only one solution. By reducing p, we 
observe that the solution decreases continually to 0, which corresponds to a situation of second-order percolation 
transition. We thus distinguish types of a percolation transition as well as the first-order phase transition point pc

I 
by checking the presence of the tangent point in the solution plane.

For the continuous percolation transition, we keep RB constant in eq. (1), and check the behaviours of the 
order parameter RA. At the second-order phase transition point pc

II, we have

α α= ′ − − − + ′ − − .p G R G R p G R G R1 [ (1 )][1 (1 )] (1 ) (1 ) (5)c
A

c
A B

c
B

c
A

c
A B

c
B

1 0
2

1 0

As →p pc
II, the critical value of RA, labeled as Rc

A, approaches to zero and the critical value of RB, labeled as Rc
B, 

reaches it minimum R B
0 . And thus we can get the continuous percolation transition point

α
=

− − − −
.p

k
k k G R( 1) [1 (1 ) (1 )] (6)c

II
B B2
0 0

When α → 1, this agrees with the results in ref. 38. The typical value of R B
0  can be obtained by letting RA =  0 in 

eq. (2), which satisfies

α α= − − .R G R[1 (1 )] (7)B B B
0 1 0

In this paper, we focus our research on the coupled random networks and scale-free networks. The random net-
work follows a Poissonian distribution, and the scale-free network follows a distribution P(k)˜k−λ(kmin ≤  k ≤  kmax), 
where kmin and kmax are the lower and upper bounds of the degree, respectively, and λ is the power law exponent. 
By plugging the degree distributions into the generating functions, we can explicitly get the second-order phase 
transition points pc

II by eq. (6) and the graphical solutions for the first-order phase transition point pc
I. By letting 

=p pc
I

c
II, we can find the boundary between the first- and second-order phase transitions, i.e., the crossover-point 

value αc at which there is a change from first-order to second-order percolation transition.

Figure 1. Graphical solutions of RA and RB for coupled random networks with 〈k〉A = 〈k〉B = 4. (a–c), 
α =  0.2 <  αc, pc ≈  0.5807 with nonzero RA and RB. (d–f), α =  0.7 αc, pc ≈  0.2649.
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Simulation results. The varying of giant component sizes SA and SB in dependence on the fraction of initial 
preserved nodes p for coupled random networks are shown in Fig. 2 by both simulation and theory, from which 
we can find that the simulation results agree with the theory well. Moreover, we can find that there is a sharp tran-
sition of SA or SB from a nonzero value to zero for a small value of α, while for a larger value of α, the transition of 
SA or SB becomes continuous, which illustrates the existence of a crossover point of first-order and second-order 
percolation transitions as our theory predicted. Fig. 3 gives the percolation properties for coupled scale-free net-
works under different node-coupling strength. We can find the similar results as coupled random networks, but 
different percolation transition points.

Figure 4 gives the percolation transition points pc versus α for both pc
I and pc

II. The percolation transition point 
can be numerically identified by the maximum fluctuation for the size of the giant component, as they are 
expected to be large for both first- and second-order percolation transitions18. From Fig. 4, one can find that the 
simulation and theoretical results are consistent well, as well as the existence of a crossover point αc, which illus-
trates reducing the coupling strength between interdependent nodes leads the change from a first-order percola-
tion transition to a second-order percolation transition. Meanwhile, we can also find that a large value of α always 
leads to a small value of pc for both random networks and scale-free networks, which means a weak node-coupling 
strength between networks make a system composed with coupled networks robust. When the parameter α 
enters the second-order percolation transition area, we find that the percolation transition point pc

II is always 

Figure 2. The sizes of the giant components SA and SB vs. p for coupled random networks with 
〈k〉A = 〈k〉B = 4, respectively. The solid lines show the theoretical predictions, and the symbols represent 
simulation results from 20 time realizations on networks with 105 nodes.

Figure 3. The sizes of the giant components SA and SB vs. p for scale-free networks with kmin = 4, kmax = 316 
and λ = 2.7, respectively. The solid lines show the theoretical predictions, and the symbols represent simulation 
results from 20 time realizations on networks with 105 nodes.
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small and becomes insensitive to α, which means that when α exceeds the crossover point αc, the coupled system 
is always robust.

Conclusions
In summary, we have studied the cascading failures in coupled networks with different node-coupling strength 
for both random networks and scale-free networks. In the previous models of coupled networks, each pair of 
interdependent nodes with a complete coupling strength, i.e., one of them fails, the other one will fail immedi-
ately9,10,15,16,39,40,41. However in our model, all nodes in one network are coupled with their counterparts in the 
other network, and the node-coupling strength is controlled by the link-preserved probability of a node when 
its interdependent partner fail. Our model is also very different from that of partially coupled networks in refs 
10,40, where only a fraction of nodes that depend on the ones in the other network and the left nodes are the 
autonomous ones.

Our studies show rich phase transition phenomena when the model parameter α changes. The coupled sys-
tem is robust and is characterized by a second-order transition if α >  αc, while if α <  αc, the coupled system is 
fragile and the cascading failures suggest a first-order transition. We have used the generating function method to 
solve our model and get the first-order and second-order percolation transition points analytically, which agree 
with simulation results very well. Our results prove that reducing the coupling strength between interdependent 
nodes can also lead to a change from a first-order to second-order percolation transition for interdependent net-
works even with all coupled nodes. At the same time, we have find that the second-order percolation transition 
point is always small and insensitive to the model parameter α, which means that when α exceeds the critical 
point αc, the coupled system is always robust. Therefore, the crossover point αc that separating first-order and 
second-order phase transition areas has another implication, which is that αc is also a split point of fragile and 
robust areas. This result is very different with that in ref. 15 and may be of significance for the system design by 
tuning the node-couple strength across networks. Furthermore, our results for interdependent networks with a 
weak node-coupling strength also favour the observation that real coupled systems are stable. Since the weak node 
coupling may be widespread in real world, our study represents an important step for characterizing the robustness 
properties of real coupled networks and also provide a possible explanation for the stability of real networks.
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