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Abstract: Attempts to relate sensory analysis data to specific chemicals such as volatile 

compounds have been frequent. Often these associations are difficult to interpret or are 

weak in nature. Although some difficulties may relate to the methods used, the difficulties 

also result from the complex nature of flavor. For example, there are multiple volatiles 

responsible for a flavor sensation, combinations of volatiles yield different flavors than 

those expected from individual compounds, and the differences in perception of volatiles in 

different matrices. This review identifies some of the reasons sensory analysis and 

instrumental measurements result in poor associations and suggests issues that need to be 

addressed in future research for better understanding of the relationships of flavor/aroma 

phenomena and chemical composition. 
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1. Introduction 

Flavor analysis using a variety of methods has been conducted for many years to help in the 

development of new products, to understand the nature of existing products, to study shelf-life, and to 

maintain quality of foods, beverages, products for oral care, and other products such as oral 

pharmaceuticals and tobacco [1,2]. Flavor analysis usually takes one of two forms, sensory or 

instrumental. Sensory descriptive methods used for testing have been developed that are highly reliable 

and consistent and obviously identify the human perception of flavor. Sensory analysis is the preferred 
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method for evaluation of odor [3]. However, sensory methods are sometimes expensive to implement, 

may be time consuming when used properly, and sometimes cannot be implemented “on-line” for 

immediate feedback. 

Instrumental methods for examining flavor also have developed that can provide feedback about the 

individual compounds associated with flavors. Those methods take many forms, but all are based on 

separation, identification, and quantification of compounds either in headspace or the actual product 

matrix [4]. These methods are particularly good at finding errant compounds, identification of 

compounds that may result in flavor changes, and when validated, some instrumental methods can be 

implemented to run continually in order to provide immediate or near immediate information  

about products. 

Many studies have been published to understand the chemical composition of products. For 

example, numerous studies on wine composition have been conducted [5–8] to understand 

composition and lead to understanding specific sensory aspects of wine. A number of studies have 

been published evaluating effects of varietal differences and agricultural practices on foods [9–11]. 

Similarly, flavor compounds in other new or traditional foods frequently are examined to help better 

understand the product [12–14]. In other cases authors have tracked composition during 

manufacturing, storage or shelf-life [15–18]. 

Several review papers have addressed sensory-instrumental relationships or sensory interactions. 

For example, Poinot et al. reviewed methods that have been used to analyze aroma-related 

interactions [19]; Ross reviewed the human-machine interface in sensory science examining texture, 

sound, aroma, and flavor [20]; Croissant et al. reviewed sensory and instrumental volatile analyses 

applications of dairy products [21], and Auvray and Spence reviewed multisensory interactions 

between taste, smell, and the trigeminal system [22]. This review addresses issues in associating 

instrumental and sensory measurements, especially those intended to “predict” flavor based on 

chemical composition. 

2. Flavor Measurement 

2.1. Sensory Analysis 

The primary measurement for the sensory aspects of flavor or aroma is descriptive sensory analysis, 

typically with trained sensory panels. Although there are many methods for conducting such analyses 

the methods typically examine the sensory perceived attributes and measure the intensities of those 

attributes [23]. Training of panels varies from a few hours for measurement of certain key attributes to 

months of training that may be needed to consistently measure nuances in flavor differences among 

products [24]. 

Of particular importance in measuring sensory aspects of flavor is the “naming” of attributes. This 

is important in order for multiple researchers to have a basis for understanding the product. Most 

techniques for developing attributes use some sort of definition or character referencing for individual 

attributes. A number of such sensory “lexicons” have been published recently, including ones for 

meat [25,26]; fruit and vegetable plants and products [27–30]; nuts and nut products [31–33]; 

beverages [34]; grain and grain products [35–37]; and dog food [38]. The use of carefully crafted 
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lexicons is important when trying to compare to chemical data because using a general language may 

create confusion. Imagine, for example, trying to relate specific compounds in butter to a general 

sensory term “butter-like”. There is no single compound that could possibly be used to mimic the 

flavor of butter. Rather, more specific sensory characteristics such as dairy, waxy, fatty, coconut-like, 

rancid, or papery (to name a few) are needed to sensorially describe butter character. 

2.2. Instrumental Flavor Analysis 

In foods and beverages, headspace analysis is one of the options for instrumental determination of 

volatile compounds in a sample as the headspace contains all the volatiles that are responsible for the 

odor sensation. There are several options to isolate and concentrate the volatile compounds from the 

matrix, such as steam distillation/extraction or supercritical CO2 extraction [4] or the solid phase 

microextraction (SPME) [39]. Two common methods in instrumental volatile compound measurement 

are gas chromatograph-mass spectrometer (GC-MS) and a GC-MS coupled with an olfactometric port 

or a sniff port (GC-O) [1]. The GC-MS combines two techniques: a gas chromatograph to separate out 

the volatiles mixture in a sample and a mass-spectrometer to characterize each of the components 

individually. If this system is additionally equipped with a sniff port (GC-O) it is possible for a human 

to detect the compounds in the volatile compounds mixture that actually have an odor and therefore 

may be important in the sensory flavor of the sample. 

GC-O methods are classified as detection frequency, dilution to threshold, or direct intensity [21]. 

Croissant et al. [21] has reviewed common methods for GC-O include aroma extract dilution analysis 

(AEDA), postpeak sniffing, combined hedonic aroma response measurements (CHARM), Osme, and 

nasal impact frequency/surface nasal impact frequency (NIF/SNIF). These studies often are followed 

by reconstitution studies of key compounds detected using sensory analysis [40]. Other instrumental 

flavor research methods with a focus on MS methods have been reviewed by Careri et al. [41]. More 

recent methods include recombining selected single compounds after eluting from the column into a 

mixture for sensory analysis [42]. 

In addition, it is sometimes possible to use an “electronic nose” to assess the composition of the 

volatiles compounds of a sample [43,44] and determine whether those compounds match 

predetermined groupings to identify products that may meet certain criteria. An electronic nose is 

composed of a number of sensors that interact with the volatiles that result in a change in their 

properties that is recorded and afterwards analyzed [45]. Electronic noses do not attempt to identify 

individual compounds and thus are more of an additional tool to GC techniques and sensory analysis. 

3. Relating Sensory and Instrumental Methods—Why and How 

Often, partial or full comparison of sensory testing with instrumental measurements is considered. 

This may be done when sensory testing takes up a lot of time from the judges and thus proves 

expensive, but also when there is a sound relationship established with sensory characteristics and 

instrumental measurements. In addition for some samples, such as wine vinegar, or other foods that 

have intensive aroma and flavor characteristics, instrumental aroma analysis may prove more 

practical [46], especially when frequent testing is needed. According to Lawless and Heymann [1] 

machines could be used instead of human judges in the following scenarios: (a) a correlation between a 
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sensory characteristic and an instrumental measurement has been established, (b) there is a possibility 

that the sensory test is laborious and may damage the panelists’ health, and (c) the testing does not 

result in critical product-related decisions. The latter indicates that even if there is a proven 

relationship, sensory testing cannot completely be replaced by machines. 

3.1. Direct Relationships 

In a product development or benchmarking situation it may be that instrumental measurements are 

coupled with sensory analysis techniques to try and determine the exact volatile(s) responsible for 

some flavor sensations. This approach may prove helpful if certain aromatics in the product need to be 

enhanced or removed or there is a need to create further understanding of process-related aromatics. 

It is possible to determine direct relationships between a sample odor and a chemical. Two common 

ways to do this are through either (1) comparative sensory analysis of the sample and the volatile 

compounds, using sensory analysis to detect aroma attributes and a GC-MS to detect the volatiles and 

find statistical associations, or (2) using humans sniffing at GC-MS ports to detect and identify and 

then sensors and computer programs to verify the compounds. In addition it is possible to calculate 

relationships, such as linear or non-linear correlations and multivariate regressions. 

Direct relationships may seem like the easiest way to identify an odor compound by comparing the 

sample odor to a number of volatile compounds that may have a similar odor based on literature. This 

method does not require any instruments, but requires some knowledge of odorous volatile 

compounds. However, this method may prove to be laborious and yield only approximate conclusions 

as several chemicals may have identical odor characteristics, but different characteristics of the odor 

may appear at different concentrations of the chemical. This suggests instrumental measurements may 

prove useful if exact compounds need to be determined. 

GC-MS may be used in combination with the sensory aromatic profile analysis to define the volatile 

compounds present in the sample. The main drawback of this method is that no information regarding 

actual aroma of a specific compound is acquired and thus false conclusions may be drawn when 

several chemicals change similarly to the associated sensory intensity. Additional literature research 

and attention to specific compound odor thresholds is also needed. 

GC-MS sniff ports may be used to identify volatile compounds that have an odor detectable by the 

human nose. These compounds can then be related to the sensory aromatic and the mass-spectral 

profile. There may be some issues with actual perceived aroma, as compounds that may be sensed 

through the sniff port may be overwhelmed by other volatile compounds in the actual aroma of the 

sample. In addition sniff port measurements need to be replicated and conducted by several panelists 

as is done in sensory analysis. The sniff ports however may result in contradictory results as the flow 

of the compounds does not take into account the breathing of the panelists. This potential loss in 

detection capability should be overcome by careful sampling as well as the chromatographic 

information provided by the GC. 

3.2. Calculated Relationships: Correlation and Regression 

In the case of independent variable correlation or a possible relationship between two variables, 

scatterplots may be used to determine linear, logarithmic, or other associations [2]. Most common 
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(X-matrix) and descriptive sensory data (Y-matrix) [52,53]. GPA has been used to relate electronic 

nose data and sensory analysis data as well as GC-MS data with sensory analysis data [44]. However, 

the various computer programs used with these methods may produce different maps suggesting 

different relationships and further analysis often is necessary to determine actual relationships [54]. 

4. Examples of Identified Relationships and Potential Problems 

4.1. Hexanal 

The presence of hexanal is related to fat oxidation reactions in processed foods, but it is also present 

in a foods such as fruits and vegetables. Hexanal has been found in a variety of food products 

including meats and processed meats, fruits, processed fruits, as well as dairy and grain products. More 

specifically, hexanal often has been associated with green/grassy aromatics in fruits and vegetables. 

For example, a moderate correlation (0.56) between hexanal and the green/grassy attribute in 

tomatoeswas found [55]. In addition positive correlations have been found between green aromatics 

and an aldehyde mixture that contained hexanal used to spike tomato puree [56]; beany and grassy 

aromatics and hexanal and trans-2-hexanal in blackberries [57]; hexanal and green and leaf aromatics 

in soy milk [58]; hexanal and green/grassy aromatics in tangerines [59]; hexanal and green odorin 

cheese [60]; hexanal and a “lawn” attribute in olive oils [61]; and hexanal and green aromatics in 

strawberries [62]. However, [63] found no associations between hexanal and green tomato or grassy 

attributes in tomatoes. 

In one study a negative correlation between hexanal and grass/sweet attribute was found, even 

though hexanal was used to train the sensory analysis panelists [44]. The authors suggested the 

panelists probably were not able to discriminate between aroma attributes for tomato cultivars. This 

indicates a need for well-trained panelists when correlations with volatile compounds are concerned.  

Some studies stated that hexanal had a green/grassy odor, but did not calculate correlations: black 

tea [64], hazelnuts [65,66], olive oil [67,68], artichokes [69], strawberries [70], mandarin peel [71], 

barramundi [72]; corn tortillas [73], pear juice [74]. Rather those authors indicated that according to 

previous studies hexanal should be associated with green/grassy aromatics. Stating such relationships 

is problematic because hexanal also is associated with other aroma/flavor characteristics. 

In addition to green/grassy aromatics, in some foods hexanal often is associated with rancid and 

oxidized aromatics. For example Lee et al. found that hexanal is associated with rancid, acrid, and 

musty/earthy characteristics in black walnuts [52]. In addition Koppel et al. associated hexanal with 

oxidized oil aromatics in dry dog foods [53]. 

Other studies have found correlations between hexanal content and hay aromatics (0.58) and cheese 

aromatics (0.60) in honeys [75]. Whether these sensory attributes in fact could be related to hexanal by 

their description, is unclear, as attribute definitions or reference materials were not listed. Ercan et al. 

found hexanal in cheese to have woody aromatics, however, this was determined via GC-O sniffing 

port and not descriptive analysis [76]. Flores et al. associated hexanal with green/grassy aromatics 

from the literature, but with aromatics that contributed towards pork flavor in “Serrano” ham based on 

relationships in the study [77]. Forde et al. suggested hexanal in grapes is associated with peppery 

attribute in wines [78]. Krumbein et al. suggested hexanal is associated with moldy aromatics in 
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tomatoes [79], while Limpawattana et al. suggested hexanal in glutinous rice had green tomato 

aromatics [80]. Maul et al. found a positive correlation between hexanal concentration and ripe tomato 

aromatics, sweetness (0.59), and tomato flavor (0.46), but no associations were found with 

green/grassy aromatics [43]. Mitchell et al. found that hexanal content is correlated with attributes 

such as salt flavor (0.75), yellow color (0.83), carrot aroma (0.81), overall flavor (0.83), overall flavor 

complexity (0.69), and aftertaste (0.70) in vegetable soups [81]. Those results indicate hexanal may 

have different characteristics depending on the concentration found and/or the flavor characteristics are 

actually a combination of several volatile compounds. In fact, Hongsoongnern and Chambers analyzed 

hexanal at different concentrations from 10 through 100,000 ppm and found that hexanal odor at low 

concentrations is musty/earthy (10–100 ppm), and at higher concentrations (5,000–100,000 ppm) has 

green-grassy/leafy, green-viney, musty-earthy, and pungent characteristics [48]. Vara-Ubol et al. found 

hexanal to have green/peapod, rancid, sour aromatics, and chemical-like aromatics [49], and  

Whitson et al. described hexanal as fatty/grassy [82]. 

One difficulty with volatiles odor characteristics is that mixtures of compounds may change human 

perception in various situations [83,84]. In fact, Kurin et al. stated that interactions produce 

unpredictable chemical activity [85]. That fact can explain much of the problem in identifying a single 

relationship to hexanal or other compounds. Bott and Chambers studied hexanal as part of a larger 

study to examine potential “beany” compounds [50]. Those authors noted that trained sensory panelists 

did not find that beany character in either hexanal or trans-2-nonanal when tested as single compounds. 

However, when combined at low levels of 10 ppm each, the combination became “beany”. 

4.2. 3-Methyl-1-butanol 

Some compounds, such as 3-methyl-1-butanol seem to have a variety of aroma characteristics 

associated with them.3-Methyl-1-butanol commonly is found in a number of food products and 

generally is considered a result of Strecker degradation or associated with lipid oxidation processes. 

Heil et al. related 3-methyl-1-butanol content to the alcoholic fermentation process and ethanol content 

(R2 = 0.86) in apple juices, but no correlation with sensory attributes were reported [86].  

3-Methyl-1-butanol has been associated with sensory attributes such as dark chocolate, pungent, and 

sweet in Turkish hazelnuts [66]. Costello et al. related 3-methylbutanol to harsh, nail polish, and 

herbaceous aromatics in wines [87], while Genovese et al. reported this compound to have green odor 

characteristics in wines [88]. Torrens et al. found 3-methyl-1-butanol to have alcohol and cheese odor 

characteristics according of the GC-O analysis of wines [89]. Ferreira et al. associated this volatile 

with fruity and alcohol aromatics in cheeses [90], but Ercan et al. found it to have bitter aromatics in 

Sepet cheeses according to GC-O analysis [76] and Moio et al. reported the compound to have fresh 

cheese odor according to the GC-O analysis [91]. Flores et al. found 3-methyl-1-butanol to have a 

penetrating green aroma in a GC-O analysis of Serrano ham, but did not find associations with sensory 

analysis characteristics [77]. In addition, Fukami et al. found 3-methyl-1-butanol to have a burnt aroma 

in a GC-O analysis of fish sauces [92]. Gomez Garcia-Carpintero et al. reported 3-methyl-1-butanol to 

have burnt and alcohol odor characteristics, but these were not related back to sensory attributes [93]. 

Karahadian et al. suggested 3-methyl-1-butanol may have malty odor in corn tortillas [73], while 
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Garcia-Gonzales et al. reported this chemical to have spicy, malt, and burn odor according to GC-O 

analysis of olive paste [94]. 

3-Methyl-1-butanol has often been associated with other chemicals to contribute to a number of 

different aromatics. For example, this chemical in association with 2-methylpropanol was associated 

with balsamic-licorice sensory aromatics [95]. In addition 3-methyl-1-butanol has been associated with 

sunflower seed-like and nutty sensory attributes together with α-pinene and (E)-2-heptenal in 

sunflower seed oils [96]. Intentional mixing of 3-methyl-1-butanol and other chemicals resulted in 

beany, musty/earthy, musty/dusty, green/peapod, and nutty aromatics (hexanal), beany, musty/earthy, 

musty/dusty, green/peapod, nutty, and sour aromatics (1-octen-3-one), and beany, musty/earthy, 

musty/dusty, green/peapod, and floral aromatics (trans,trans-2,4-decadienal) [50]. Lee et al. reported 

that 3-methyl-1-butanol is one of the three major volatiles, together with 2-phenylethanol and diethyl 

succinate, that contribute to the base flavor of wines, but no correlations with the descriptive sensory 

analysis data were shown [97]. Niu et al. reported 3-methyl-1-butanol to have cheese odor according to 

GC-O, but associated this compound and furfural with the floral sensory attribute in cherry wines [98]. 

Guth reported that 3-methyl-1-butanol is an important odorant for white wine together with  

2-methylbutyrate, 2-phenylethanol, 3-ethylphenol, and wine lactone, however, the author did not 

mention the specific odor characteristics [99]. Vilanova et al. found 3-methyl-1-butanol to contribute 

to aroma intensity together with hexanoic acid, octanoic acid, and phenylethyl acetate [100].  

Jonsdottir et al. associated 3-methyl-1-butanol and 2-methylpropanal, 3-methylbutanal, and  

3-hydroxy-2-butanone with sweet, flowery, caramel, melt-like odors and suggested these volatiles 

influence the flavor of ripened roe [101]. 

According to Costello et al. 3-methyl-1-butanol is a major contributor and flavor enhancer in wines, 

however there are few actual correlations with sensory attributes mentioned in the literature [87]. 

Vallverdu-Queralt et al. found a positive correlation with 3-methyl-1-butanol and sensory off-flavors 

and sweetness according to multivariate analysis, but did not report any numeric correlations in tomato 

juices [102]. Abegaz et al. found that in a correlation between instrumental volatiles and sensory 

attributes 2- and 3-methylbutanol correlated with the green/grassy attribute (0.46) and correlated 

negatively with fruity characteristics (−0.63) in tomatoes [55]. Hansen et al. studied aromatics in rye 

sourdough bread crumb and found that isoalcohols, including 3-methyl-1-butanol are important in the 

flavor of rye bread made with homofermentative cultures [103]. 

These findings indicate that there may not be definite associations between a chemical and an odor 

characteristic. Rather, this association changes according to the product matrix and composition. 

5. Issues in Identifying Relationships 

5.1. Poor Measurement and Identification 

Ruth and O’Connor indicated that different GC-O methods do not necessarily yield a good 

correlation with sensory analysis methods [104]. This was demonstrated by the use of three GC-O 

methods, from which posterior intensity and detection frequency data correlated well with sensory 

analysis, while dilution analysis did not. In addition it was noticed that GC-O panel variation demands 

a panel size (n > 8) that may be unrealistic when using single sniff ports. 



Molecules 2013, 18 4895 

 

 

Although GC-MS techniques can be quite accurate, there are some issues. Heat labile compounds 

can be changed during the heating step of the GC. Also, it is also possible that the wrong compound is 

being identified during the analysis. When a number of compounds elute from the equipment at a 

similar time, it sometimes is difficult to conclusively identify a compound without further analysis. 

Any one of several compounds might be responsible for a particular odor note, but based on prior 

literature, a poorly trained technician chooses a particular compound as the “responsible” chemical 

without further checking. 

Sensory testing also can be an issue. Sensory studies require the same care and measurement as 

chemical studies. Staff who clearly understand how to conduct research on flavor chemicals with 

instruments may have a poor understanding of the necessary training and standards needed to conduct 

high quality, replicable sensory research. It is imperative that well trained panels with considerable 

ability at identifying, naming, and quantifying sensory attributes be used in studies where chemical 

data will be related to the sensory data. Similarly, it is essential that in GC-O studies, panelists who are 

able to quickly and accurately describe/name sensory phenomena are sitting at the sniff ports.A lag of 

just a few seconds in identifying a sensory trait can cause the wrong compound to be paired with the 

aroma characteristic. Chambers et al. [24] and Otremba et al. [105] clearly showed that more training 

of sensory panelists resulted in better identification of attributes, less variation, and more ability to find 

differences in sensory aspects of samples. In addition to panelist issues, it may be that the human nose 

detects some compounds that were not detected by the instrument. For example, until the advent of 

more sensitive instrumentation in the 1990s, the “skunkiness” in light-struck beer was only able to be 

measured reliably using sensory methods. 

5.2. “Noise” from Other Compounds and Attributes 

Information from several GC-O studies indicates the same compound may exhibit different 

qualities for the human nose. The reasons for this may lie in the basic mechanisms that are responsible 

for aromatic sensations, such as odor receptors, odor concentrations, and odor thresholds. Some 

compounds present in the product matrix may be detected by the same receptors, thus changing the 

odor quality; in other products compounds may be eluted in a GC shortly one after another, which may 

influence the odor quality as well. In addition sample matrix and sample preparation may affect 

odor quality. 

Another key aspect is that subthreshold levels of one or more compounds may influence the 

perceived properties of other compounds. For example, Ito and Kubota showed that a subthreshold 

addition of 4-hexanolide to subthreshold levels of (E)-2-hexenyl hexanoate, (Z)-3-hexenol, and  

indole changed solutions of those compounds from odorless to “astringent” or “heavy” smelling [106].  

Dalton et al. showed that this can occur even across modalities when taste compounds are combined 

with subthreshold levels of odorants, a perception can occur [107]. This cross-modal effect does not 

have to happen at the molecular level, it may actually occur physiologically in the brain [108]. 

The matrix effect may influence analysis of products. For some products the matrix may bind flavor 

or physically hold compounds while other matrices do not. Wilson and Brown showed that the strength 

of the food matrix had a profound impact on the perception of banana flavor [109]. When the matrix 

had increased strength and melting point there was a concomitant decrease in intensity and increase in 
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the time the flavor was perceived in the mouth. In addition there is an added compound-compound 

interaction possible that may influence flavor perception. Salles et al. reviews information on the 

physical and physiological breakdown or food and the impact on flavor perceptions [110]. 

Of importance also is the actual physicochemical interaction of the food matrix with flavor 

compounds. Voilley and Lubbers [111] discuss the interaction of the matrix compounds with flavor 

compounds in wine. They showed that the impact of yeast cells, proteins, ethanol, and other 

compounds can change the volatility of the aroma compounds, which changes the perceived wine 

aroma. A more comprehensive review by Guichard [112] discusses food ingredients more generally in 

a wider range of products. That author discussed a broad range of possible effects such as binding and 

forming complexes with various components such as proteins or amylose, differential effects on the 

solubility and flavor release of classes of aromatic compounds by fat, and the physical diffusion of the 

aromatics related to viscosity. Using model systems to represent actual food products to determine 

relationships between chemical compounds and sensory properties can result in spurious relationships 

that do not exist in actual food products. 

5.3. Overlap and Variable Naming of Sensory Terminology 

Sensory terminology also can impact finding relationships. Many sensory terms appear to overlap 

each other and may not represent a single specific sensory phenomenon. For example, Miller et al. 

found multiple sensory terms associated with “nutty”, a common term in sensory description of 

products [31]. Similarly, “green” aroma is not the same across products and different chemical 

compounds relate to different aspects of “green” [48]. Thus, it is essential that the sensory staff and 

panel clearly define the sensory aspect being described by the “attribute” used in the description. In 

addition, that attribute should be as specific as possible to describe the sensory characteristic. If the 

sample is simply green, then a wider array of chemicals could be responsible than if it is possible to 

more specifically define the characteristic as “green-peapod” or “green-grassy”. 

Clear definition and proper training of sensory panels also can reduce misunderstanding from the 

use of different terms to describe the same sensory phenomenon. Although it is unlikely that two 

different panels would use widely disparate terms to describe the same sensory impact, it is reasonable, 

for example, that the use of terms such as rancid butter, sweaty, vomit, aged, etc. might be used to 

describe the “butyric” character of some cheeses. Those terms may have been ones used by the 

researchers previously or determined by the panel, but in any case they may or may not mean the same 

thing. Good definition of sensory terms used in describing products will help identify those terms that 

are used similarly or when they mean different things. In the example of “butyric” character with 

cheese, a highly trained panel would discriminate those terms easily. However, aless trained panel or a 

group of consumers might use those or a variety of other terms to describe the particular flavor in aged 

cheese. Unfortunately, the use of inexact terminology is a serious problem when trying to identify 

relationships between sensory attributes and chemical compounds. The use of “consumer-style” 

terminology (i.e., strong, smells like cheese, ripe, old, aged, etc.) may seem desirable at first glance as 

“real-life”, but such terminology is imprecise, can mean a variety of different things to different 

people, likely will not be highly related to any specific chemical compound, and often may not provide 

researchers or developers with the kind of data needed to solve a particular flavor issue. 
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5.4. Unexpected Relationships 

One of the more difficult aspects of relating sensory characteristics to chemical compounds is when 

the compound is not “known” for having a particular character. Hexanal is “green” as most people 

describe it. However, some authors, as noted previously, describe it differently. These unexpected 

relationships may be real or anomalies of the analysis or may becaused by poor sensory panel training, 

but they always raise questions from scientists about the validity of the relationship. This is 

appropriate, but should not necessarily result in a flat dismissal of results. Certainly, more work is 

needed to determine if the relationship is real and the result of interactions with other aroma 

compounds, other matrix compounds, or is a hear-to-fore unidentified actual aroma/flavor resulting 

from that compound.  

5.5. Statistical Issues 

One of the most important reasons that the relationship between chemical compounds and sensory 

perceived aromas and flavors is still difficult is the lack of direct linear relationships between the two. 

Most statistical applications, such as regression or even multivariate techniques such as principal 

components analysis use “linear” (including curvilinear) models to define relationships. This does not 

account for the fact that thresholds (detection, recognition, difference, and terminal) (see Figure 1) 

exist both for the chemical and sensory methods. This means that a chemical may need to reach a 

certain level before it can be measured or perceived and that at some point the sensory phenomenon 

may “max out” and no longer track with the physical intensity. 

Statistics also rarely are able to examine multiple impacts and effects simultaneously in “real” 

systems without extensive testing. Conducting a multivariate analysis may point out possible 

relationships among multiple chemicals and multiple sensory attributes, but cannot predict cause and 

effect relationships without much more testing than usually is conducted in a single study. The advent 

of public databases will help with providing additional data for meta-analysis at some point in the 

future, but it is critical that the chemical and sensory analysis is conducted in the soundest way 

possible. Also, the composition matrix must be clearly defined in those databases because of the 

impact of various matrices on chemical interactions. 

In addition, new statistical methods that rely less on linear assumptions and move into non-linear or 

so-called neural network processing are essential for better understanding of the relationships we want 

to understand. Possibilities include analyses such as logistic regression, which often is used to predict 

the presence or absence or some item, behavior, or action [113] and could be used to “predict” the 

likelihood that some sensory characteristics would be present given the presence of one or more 

compounds. However, this method does not provide a predictive equation of intensity to concentration. 

Furthermore, new statistical methods will be needed to account for alternative food matrices or to help 

explain and examine covariate relationships that may or may not impact the “structure-function” 

relationships that researchers want to discover related to chemical composition and the sensory 

perception of flavor. 

One challenge in working with “predictive” or “associative” modeling is that the number of 

samples typically used in many studies is small. Particularly when multiple variables can be related, 
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this small number of samples often makes it difficult to associate a single compound with a single 

sensory attribute, even if a relationship is known. Outliers (samples with a particularly different 

makeup or perception than other samples) create particular problems with small data sets because they 

can control what relationships are found or not [114]. At the same time, very large data sets may have 

so many “unique” products, chemicals, or attributes or too much “noise” in the data that it is 

impossible to determine associations because the sensory/chemical relationships were overwhelmed by 

other aspects. 

Co-linear variables (ones that change similarly) also create problems in determining associations 

and these often occur in small data sets. Co-linear variables seem a though they are related even when 

they are not. For example, assume that both phenylethyl alcohol and hexanal change similarly among a 

small group of products—they are co-linear. We want to relate some compound to “rose” odor. The 

statistical modeling could actually show that hexanal is a better potential “predictor” of rose odor 

simply based on the similarity of the data. Of course in this case we know that phenylethyl alcohol is 

much more likely to be responsible for rose odor. However, in many cases when we begin to look for 

associations we often do not know what compound(s) may be responsible for various sensory properties. 

6. Conclusions 

This review identifies some of the reasons sensory analysis and instrumental measurements result in 

poor associations. Attempts to relate sensory data to volatile compounds have been frequent. 

Frequently, those associations have not been shown to be conclusive. The relationships often are 

difficult to interpret or are weak in nature. Occasionally, the methods used may not be as robust as 

needed to make the association, but difficulties also result from the complex nature of flavor. Multiple 

volatiles are responsible for a flavor sensation and although it is possible to pair some volatile 

compounds with some aroma or flavor sensations, this is not always the case. In complex products 

with complex flavors, combinations of volatiles may yield different flavors than those expected from 

individual compounds. The perception of volatiles in different matrices also may vary and rarely is 

accounted for when relating compounds with sensory phenomena over a range of products. We have 

suggested issues that need to be addressed in future research, for example improved analysis of data 

and meta-analyses, for better understanding of the relationships of flavor/aroma phenomena and 

chemical composition. 
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