
The bZIP gene family in watermelon:
genome-wide identification and expression
analysis under cold stress and root-knot
nematode infection
Youxin Yang1,2, Jingwen Li1,2, Hao Li3, Yingui Yang2, Yelan Guang1,2

and Yong Zhou1,4

1 Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education,
Jiangxi Agricultural University, Nanchang, Jiangxi, China

2 Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits &
Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety
of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang,
Jiangxi, China

3 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest
A & F University, Yangling, Shaanxi, China

4Department of Biochemistry and Molecular Biology, College of Bioscience and Bioengineering,
Jiangxi Agricultural University, Nanchang, Jiangxi, China

ABSTRACT
The basic leucine zipper (bZIP) family transcription factors play crucial roles in
regulating plant development and stress response. In this study, we identified 62
ClabZIP genes from watermelon genome, which were unevenly distributed across the
11 chromosomes. These ClabZIP proteins could be classified into 13 groups based on
the phylogenetic relationships, and members in the same group showed similar
compositions of conserved motifs and gene structures. Transcriptome analysis
revealed that a number of ClabZIP genes have important roles in the melatonin (MT)
induction of cold tolerance. In addition, some ClabZIP genes were induced or
repressed under red light (RL) or root-knot nematode infection according to the
transcriptome data, and the expression patterns of several ClabZIP genes were
further verified by quantitative real-time PCR, revealing their possible roles in RL
induction of watermelon defense against nematode infection. Our results provide
new insights into the functions of different ClabZIP genes in watermelon and their
roles in response to cold stress and nematode infection.
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INTRODUCTION
Plants have developed complex signaling transduction pathways to protect themselves
against a variety of biotic and abiotic environmental stimuli. Various transcription factors
(TFs) can bind to the cis-acting elements in the promoters of stress-responsive genes for
regulating their expression to control the signaling networks of plant development and
stress responses (Jin et al., 2017). Notably, the basic leucine zipper (bZIP) family is one of
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the largest TF families named after a shared highly conserved bZIP domain. The bZIP
domain is composed of 60–80 amino acids in length and possesses two functionally
distinct parts: a highly conserved basic region and a less conserved leucine zipper, which
are linked by a hinge region (Correa et al., 2008; Dröge-Laser et al., 2018; Wang et al.,
2018b). The basic region contains a characteristic motif (N-X7-R/K-X9) responsible for
DNA-binding and nuclear localization, while the leucine zipper forms an amphipathic
surface that mediates specific recognition and dimerization (Hu et al., 2016c; Li et al.,
2016b).

In plants, members of bZIPs have been reported to take part in various developmental
processes, such as pollen development (Gibalova et al., 2017; Iven et al., 2010; Li et al.,
2015b), seed maturation (Jain et al., 2017; Zinsmeister et al., 2016), floral transition and
initiation (Abe et al., 2005; Wang et al., 2013), and root development (Kim,
Yamaguchi-Shinozaki & Shinozaki, 2018;Ma et al., 2018). Besides, accumulating evidence
has suggested that plant bZIP genes act as key components that regulate responses to
various abiotic stresses, and the functions of bZIP genes in stress tolerance are usually
realized via abscisic acid (ABA)-dependent pathway. For example, a grapevine bZIP TF,
VlbZIP30, serves as a positive regulator of dehydration stress through ABA signaling
pathway (Tu et al., 2018). In rice, manyOsbZIP genes also contribute to stress resistance by
mediating ABA signaling, such as OsbZIP42 (Joo, Lee & Song, 2019), OsbZIP46/OsABF2
(Ma et al., 2019; Tang et al., 2012, 2016),OsbZIP66 (Yoon et al., 2017),OsbZIP71 (Liu et al.,
2014), and OsbZIP72 (Lu et al., 2009). In addition, a positive role of bZIPs in defense
against bacterial pathogens was also observed in some plants (Li et al., 2017c; Lim et al.,
2015), suggesting the importance of their immune functions. Abiotic/biotic stress can
increase the endogenous level of melatonin (MT), which may serve as a secondary
messenger for protecting plants against multiple abiotic and biotic stresses by increasing
the expression and activities of antioxidant enzymes, improving photosynthesis and redox
homeostasis, and regulating the expression of stress-responsive genes (Li et al., 2017a,
2018; Sharif et al., 2018; Shi et al., 2015b; Zhang et al., 2015). Some bZIP genes are
significantly regulated by exogenous MT treatment, suggesting that bZIP TFs may also be
involved in stress response through MT-mediated signaling pathway (Li et al., 2017b;
Liang et al., 2015; Shi et al., 2015a). Moreover, the studies on plant bZIP genes have
revealed their roles in the regulation of light response in recent years. For example,
Arabidopsis ELONGATED HYPOCOTYL5 (HY5) acts downstream of multiple
photoreceptors including phytochromes, cryptochromes and UV-B photoreceptor UV
RESISTANCE LOCUS8 (UVR8) and regulates photomorphogenesis, chloroplast
development, pigment accumulation, and defense response (Binkert et al., 2014;
Gangappa & Botto, 2016; Yang et al., 2018a). Low red/far-red ratio and cold stress can
induce the expression of SlHY5 in a PHYTOCHROME A-dependent manner, and SlHY5
can inhibit the growth and induce cold tolerance through integrating the temperature,
light, and hormone signaling pathways in tomato (Wang et al., 2018a, 2019). These
findings demonstrate that plant bZIPs play vital roles in regulating numerous
developmental processes and responses to various abiotic/biotic stresses.
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As one of many economically important crops consumed worldwide, watermelon is
particularly susceptible to different biotic and abiotic stresses during developmental
processes. Plant-parasitic nematodes can attack numerous economically important crops
and cause a global yield loss of up to 12.3% on average (Holbein, Grundler & Siddique,
2016). Root-knot nematodes (RKNs), Meloidogyne spp., are sedentary endoparasitic
nematodes that parasitize many agricultural crop plants including watermelon (Bebber,
Holmes & Gurr, 2014; Yang et al., 2018b).Meloidogyne incognita is considered as the most
devastating plant disease-causing agent, which may increase susceptibility to other
pathogenic diseases and finally significantly undermine agricultural productivity (Bebber,
Holmes & Gurr, 2014; Yang et al., 2015). Our previous studies have shown that light
(especially red light, RL) plays vital roles in the defense response of plants to the RKN
M. incognita (Yang et al., 2015, 2018b), which may contribute to environment-friendly
strategies to control RKNs in plants. A recent report has identified 59 bZIP genes in
watermelon, and found that some of them may be involved in drought stress response
(Unel et al., 2019). Although the chromosomal distributions, phylogenetic relationships,
conserved motifs, and gene structures of the 59 ClabZIPs have been analyzed in a previous
study (Unel et al., 2019), these analyses were insufficient to comprehensively reveal the
information of the bZIP family genes in watermelon. Moreover, there is still limited
information on the functional properties of ClabZIP genes during the growth and
development of watermelon, as well as in plant defense against different biotic and abiotic
stresses. In the present study, we performed comprehensive analyses of the bZIP family
genes in watermelon and a total of 62 ClabZIP genes were identified. These ClabZIPs
could be precisely classified into 13 groups based on the evolutionary relationships, and
members in the same group showed similar compositions of conserved motifs and gene
structures. To explore the functions of watermelon bZIP genes, we determined the
tissue-specific expression of selected ClabZIP genes and the global expression profiles of
ClabZIP genes in response to RL and nematode treatments and MT induction of cold
tolerance. Our results are expected to lay a foundation for functional analysis of
watermelon bZIP genes in the future, and provide clues for revealing their possible roles in
nematode infection and cold stress in watermelon.

MATERIALS AND METHODS
Identification and protein properties of ClabZIPs
Watermelon Citrullus lanatus subsp. vulgaris cv. 97103 genome and protein
sequences were downloaded from the cucurbit genomics database (CuGenDB;
http://cucurbitgenomics.org). To identify the watermelon bZIP family genes, the bZIP
domains (PF00170, PF07716, and PF03131) downloaded from Pfam (http://pfam.
sanger.ac.uk/) were used to search the watermelon protein sequences by HMMER
software with an e-value cutoff of 1e−5. BlastP search was also performed against
watermelon protein sequences by using the Arabidopsis and rice bZIP protein sequences
as queries with the cutoff e-value set at 1e−5. The AtbZIP protein sequences of
Arabidopsis thaliana were downloaded from the Arabidopsis Information Resource
database (http://www.arabidopsis.org/) according to the protein IDs in a previous report
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(Dröge-Laser et al., 2018). After removal of redundant sequences, these potential bZIP
proteins were further checked for the presence of a bZIP domain by the simple modular
architecture research tool (SMART) server (http://smart.embl-heidelberg.de/), and the
proteins without the bZIP domain were deleted. The amino acid sequences
of the watermelon bZIP proteins are listed in Table S1. The Protparam program
(http://web.expasy.org/protparam/) was employed to examine the theoretical protein
properties of ClabZIPs, including molecular weight (MW) and isoelectric point (pI).
The gene ontology (GO) annotations of watermelon bZIP family members were obtained
from the watermelon genome database (http://cucurbitgenomics.org/organism/1) and
visualized by using WEGO software (http://wego.genomics.org.cn/).

Multi-sequence alignment, phylogenesis, protein motif, and gene
structure analysis
The full-length sequences of bZIP proteins were used to analyze their phylogenetic
relationships. The amino acid sequences of ClabZIPs and AtbZIPs (Tables S1 and S2) were
aligned using MAFFT (https://www.ebi.ac.uk/Tools/msa/mafft/) with default parameters.
Then, an unrooted neighbour-joining (NJ) phylogenetic tree was constructed with
MEGA 7.0 based on the alignment results using bootstrap replications of 1,000. To identify
the conserved motifs in the ClabZIP proteins, motif search was performed by MEME
online software (http://meme-suite.org/tools/meme) and the results were visualized with
TBtools (Chen et al., 2018). The numbers of motifs were set at ten, and the motif widths
were set at 6 and 50. Other parameters were set as default parameters. To identify the
gene structure of the ClabZIP genes, their CDS sequences and corresponding genomic
DNA (gDNA) sequences (Tables S3 and S4) were aligned by the GSDS online software
(http://gsds.cbi.pku.edu.cn).

Chromosomal location and duplication analysis of ClabZIP genes
To determine the chromosomal locations of bZIP genes in watermelon genome, the
information of locus coordinates was downloaded from the watermelon genome database
(http://cucurbitgenomics.org/organism/1), and the distributions of ClabZIP genes on the
chromosomes were visualized using Map Chart 3.2. Before determining the chromosomal
locations of the ClabZIP genes, the alternative splicing forms from the same gene locus
were examined by using the watermelon genome annotation, and no alternative splicing
events in these genes were identified. Gene duplication analysis was performed based on a
previous study (Wang et al., 2018b).

In silico expression analysis of ClabZIP genes
The details of RKN infection experiment have been illustrated in our previous report (Yang
et al., 2018b). A total of 24 samples of leaves and roots from four different treatments,
including control (mock, white light, and water solution), RL (red light treatment and
water solution), RKN (white light and RKN M. incognita infection), and RL+RKN
(red light treatment and root-knot nematode M. incognita infection), were sequenced on
the Illumina HiSeq X Ten platform and paired-end reads were generated for transcriptome
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sequencing. The sequencing raw sequence data were deposited in the genome sequence
Archive in the BIG Data Center GSA database, Beijing institute of Genomics (BIG),
Chinese Academy of Sciences, under the accession numbers of CRA001311 and
CRA001312. The genome-wide transcriptome data of watermelon (Citrullus lanatus L.,
cv. Y134) treated with MT and cold were obtained under the accession numbers of
SRP078211 and SRA438977 (Li et al., 2017b). The gene expression levels were estimated
with fragments per kilobase of exon per million fragments mapped (FPKM) values
extracted from the above mentioned transcriptome data using the Top Hat/Cufflinks
pipeline according to previous reports (Li et al., 2017b; Yang et al., 2015), and presented in
Table S5. The log2-transformed FPKM values were used to create a heatmap to depict the
expression of each ClabZIP gene by using the OmicShare Tools (http://www.omicshare.
com/tools/Home/Index/index.html).

Plant materials and treatments
Watermelon (C. lanatus L. cv. Xinong 8) seeds were sown in trays filled with
nutritional soil and placed in the greenhouse of the practice base of Jiangxi Agriculture
University, Nanchang, China. For tissue-specific analysis, the roots, stems, expanding
leaves, mature leaves, stem apexes, fruits, and flowers were separately sampled from
2-month-old watermelon plants. For cold treatment, watermelon seedlings were grown in
Hoagland solution under a photoperiod of 25 �C/19 �C (12 h/12 h), a photosynthetic
photon flux density of 200 µmol · m−2 · s−1 supplied from fluorescent tubes, and a relative
humidity of 70% in growth chambers. At four-leaf stage of watermelon plants,
low-temperature treatment was carried out at 4 �C under the same photoperiod and light
conditions. The leaves were sampled at 0 (as the control), 1, 3, 9, and 24 h after treatments
for analysis.

RNA extraction and quantitative real-time PCR
Total RNA was extracted from the above samples using the total RNA Miniprep Kit
(Axygen Biosciences, Union City, CA, USA) according to the manufacturer’s protocol, and
approximately one mg of purified total RNA was reverse-transcribed for the synthesis of
cDNA using the ReverTra Ace qPCR-RT Kit (Toyobo, Osaka, Japan) according to the
manufacturer’s instruction. To analyze the relative transcript levels of selected genes,
quantitative real-time PCR (qRT-PCR) was performed using the iCycler iQTM Real-time
PCR Detection System (Bio-Rad, Hercules, CA, USA). The PCR conditions were as
follows: denaturation at 95 �C for 3 min, followed by 40 cycles of denaturation at 95 �C
for 30 s, annealing at 58 �C for 30 s, and extension at 72 �C for 30 s. The software provided
with the PCR system was used to calculate the threshold cycle values and to quantify
the mRNA expression levels based on the 2−ΔΔCT method (Livak & Schmittgen, 2001).
Watermelon β-actin gene was selected as the internal control. The primers used for
qRT-PCR are listed in Table S6. The statistically significant differences of expression data
were determined when P-values were < 0.05 using one-way analysis of variance with
Tukey’s test.
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RESULTS
Genome-wide identification of bZIP family genes in watermelon
The watermelon genome database was used to perform genome-wide identification of
bZIP family genes by using HMMER and BlastP. A total of 62 genes were identified and
named as ClabZIP1 to ClabZIP62 (Table 1) according to their chromosomal distributions
and the nomenclature of a previous study (Unel et al., 2019). The identified ClabZIP
genes included the previously reported 59 bZIP genes in watermelon (Unel et al., 2019),
along with three new bZIP genes (ClabZIP60–ClabZIP62). The predicted ClabZIP proteins
ranged from 85 (ClabZIP44) to 936 (ClabZIP42) amino acids in length, and their
calculated MW ranged from 10.01 to 82.8 kDa and theoretical pI was from 4.49 to 11.1
(Table 1). SMART analysis showed that most of the ClabZIP proteins contained only one
bZIP domain, but there were 15 ClabZIP proteins possessing additional domains, such
as multifunctional mosaic region (MFMR) and DELAY OF GERMINATION (DOG)
(Table 1). The GO annotation results indicated that ClabZIP proteins may participate in
various biological processes (Table S5; Fig. S1).

Phylogenetic characterization of watermelon bZIP gene family
A previous study has shown that the ClabZIP proteins can be phylogenetically divided into
seven clusters (Unel et al., 2019). To further reveal the evolutionary relationships
among the ClabZIP genes, a NJ phylogenetic tree was generated with the amino acid
sequences of bZIP family proteins from watermelon and Arabidopsis. According to same
classification criteria as in Arabidopsis (Dröge-Laser et al., 2018), the 62 ClabZIP proteins
were classified into 13 different groups, namely A, B, C, D, E, F, G, H, I, J, K, M, and S
(Fig. 1; Table 1). It should be noted that the groups comprising ClabZIPs with high
sequence identity to AtbZIP60, AtbZIP62, and AtbZIP72 were named as U, V, and W in a
previous study (Zhou et al., 2017), whereas these groups were named as K, J, and M in
this study, respectively. These three groups in watermelon and Arabidopsis were the
smallest groups, and each group only contained one member, while group S was the largest
group with the maximum number of 17 ClabZIP members (Fig. 1; Table 1). In addition,
two members in group J (AtbZIP62 and ClabZIP52) were clustered with AtbZIP1 and
other group I members, and group S was separated by group F into S1 and S2 (Fig. 1).
According to the phylogenetic results, four ClabZIP proteins containing bZIP and bZIP_C
domains (ClabZIP12, ClabZIP17, ClabZIP36, and ClabZIP42) were clustered in group C.
Meanwhile, eight ClabZIP proteins sharing bZIP and DOG domains fell into group D,
and three ClabZIP proteins containing bZIP and MFMR domains (ClabZIP4, ClabZIP18,
and ClabZIP45) were clustered together with ClabZIP44 in group G (Fig. 1). Interestingly,
11 ClabZIP proteins possessing bZIP_2 domain were scattered in groups of E, F, S,
and I. In addition, five ClabZIPs were categorized into group E, including ClabZIP60,
which contained the bZIP_Maf domain (Fig. 1).

Conserved domain analysis of ClabZIP proteins
Identification of the conserved motifs of proteins could help to elucidate the protein
functions, and plant bZIP proteins usually possess additional conserved motifs that might
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Table 1 The information of bZIP family members identified from Citrullus lanatus genome.

Nomenclature CGD Protein
length (aa)

Chain Chromosome Group Domain Start End Molecular
weight (kDa)

Theoretical
pI

ClabZIP1 Cla005880 162 + 1 S bZIP (PF00170) 54 112 18.79 5.76

ClabZIP2 Cla000383 253 + 0 A bZIP (PF00170) 193 250 28.09 5.02

ClabZIP3 Cla014048 217 + 1 S bZIP (PF00170) 95 140 25.28. 7.07

ClabZIP4 Cla014195 367 + 1 G MFMR (PF07777)
bZIP (PF00170)

267 329 38.65 6.4

ClabZIP5 Cla014247 159 + 1 S bZIP (PF00170) 29 87 18.41 7.96

ClabZIP6 Cla015627 377 − 2 E bZIP_2 (PF07716) 188 236 36.92 5.67

ClabZIP7 Cla015828 267 − 2 F bZIP_2 (PF07716) 86 142 28.73 5.7

ClabZIP8 Cla015873 576 − 2 I bZIP_2 (PF07716) 419 471 61.71 5.89

ClabZIP9 Cla015874 513 − 2 I bZIP_2 (PF07716) 418 470 54.88 6.06

ClabZIP10 Cla016019 408 − 2 A bZIP (PF00170) 330 380 44.83 9.59

ClabZIP11 Cla020278 273 + 2 F bZIP_2 (PF07716) 87 140 29.48 5.93

ClabZIP12 Cla019809 428 + 2 C bZIP (PF00170)
bZIP_C (PF12498)

227
296

285
421

46.01 6.34

ClabZIP13 Cla013418 377 + 2 I bZIP (PF00170) 178 226 40.77 6.51

ClabZIP14 Cla008649 441 + 2 D DOG (PF14144)
bZIP (PF00170)

207
288

248
366

49.47 6.5

ClabZIP15 Cla008141 240 − 3 M bZIP (PF00170) 110 167 27.29 8.81

ClabZIP16 Cla011083 247 + 3 A bZIP (PF00170) 203 246 27.76 9.26

ClabZIP17 Cla011295 379 − 3 C bZIP (PF00170)
bZIP_C (PF12498)

200
269

255
370

41.42 8.92

ClabZIP18 Cla021184 417 + 5 G MFMR (PF07777)
bZIP (PF00170)

1
281

185
343

44.24 9.05

ClabZIP19 Cla021868 334 − 5 I bZIP (PF00170) 231 279 36.33 5.62

ClabZIP20 Cla021871 319 − 5 I bZIP (PF00170) 222 270 34.57 5.63

ClabZIP21 Cla004308 321 − 5 E bZIP (PF00170) 243 281 36.12 7.17

ClabZIP22 Cla020959 210 − 5 H bZIP (PF00170) 77 136 23.42 9.77

ClabZIP23 Cla020795 165 − 5 S bZIP (PF00170) 37 95 19.28 6.29

ClabZIP24 Cla020334 200 + 5 S bZIP (PF00170) 83 139 22.95 6.25

ClabZIP25 Cla009958 155 − 5 S bZIP (PF00170) 57 115 18.41 9.75

ClabZIP26 Cla007293 349 − 7 I bZIP_2 (PF07716) 140 191 38.05 5.97

ClabZIP27 Cla014572 151 + 7 S bZIP (PF00170) 25 83 17.24 5.41

ClabZIP28 Cla014501 362 − 7 D DOG (PF14144)
bZIP (PF00170)

77
163

118
241

41.26 7.07

ClabZIP29 Cla010797 109 − 7 S bZIP (PF00170) 26 75 13 6.42

ClabZIP30 Cla007950 146 + 8 S bZIP (PF00170) 62 120 17.59 7.82

ClabZIP31 Cla007982 467 + 8 D DOG (PF14144)
bZIP (PF00170)

180
264

221
342

51.57 5.83

ClabZIP32 Cla013824 352 − 8 I bZIP_2 (PF07716) 187 238 38.11 9.07

ClabZIP33 Cla013813 236 + 8 A bZIP (PF00170) 176 221 25.92 5.1

ClabZIP34 Cla013666 300 + 8 A bZIP (PF00170) 246 289 33.43 7.82

ClabZIP35 Cla022056 333 − 8 D DOG (PF14144)
bZIP (PF00170)

47
129

88
207

37.29 9.18

(Continued)
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be involved in activating the functions of bZIP proteins (Jin, Xu & Liu, 2014). MEME
online software was used to analyze the conserved motifs of ClabZIP proteins. As a result,
10 conserved motifs were identified (Fig. 2; Fig. S2). Amongst them, motifs 1, 2, and 7
were annotated as the bZIP domain, which was widely present in nearly all ClabZIP
proteins, except for ClabZIP55, which had no motif. The bZIPs in group D, including
ClabZIP28, -31, -35, -48, -53, and -62, which contained the bZIP and DOG domains,
possessed six conserved motifs (motifs 1, 7, 5, 3, 6, and 4), while ClabZIP14 and ClabZIP50

Table 1 (continued).

Nomenclature CGD Protein
length (aa)

Chain Chromosome Group Domain Start End Molecular
weight (kDa)

Theoretical
pI

ClabZIP36 Cla022235 327 − 8 C bZIP (PF00170)
bZIP_C (PF12498)

161
230

214
273

35.94 5.52

ClabZIP37 Cla022315 158 + 8 H bZIP (PF00170) 85 146 17.53 9.83

ClabZIP38 Cla022469 162 − 8 S bZIP (PF00170) 30 87 18.3 5.21

ClabZIP39 Cla022580 448 + 8 A bZIP (PF00170) 333 385 48.9 9.74

ClabZIP40 Cla022644 151 + 8 S bZIP_2 (PF07716) 62 111 17.32 6.44

ClabZIP41 Cla015138 127 − 9 S bZIP (PF00170) 1 42 15.01 11.1

ClabZIP42 Cla014803 936 + 9 C bZIP (PF00170)
bZIP_C (PF12498)

316
247

417
301

47.9 6.06

ClabZIP43 Cla015019 360 + 9 I bZIP_2 (PF07716) 185 236 38.92 7.19

ClabZIP44 Cla016247 85 + 9 G bZIP (PF00170) 14 76 10.01 9.79

ClabZIP45 Cla008839 405 − 10 G MFMR (PF07777)
bZIP (PF00170)

1
299

196
361

43.19 6.43

ClabZIP46 Cla008917 208 − 10 A bZIP (PF00170) 138 188 22.86 9.88

ClabZIP47 Cla017361 144 + 10 S bZIP_2 (PF07716) 21 73 15.89 9.42

ClabZIP48 Cla002873 467 + 10 D DOG (PF14144)
bZIP (PF00170)

180
263

222
341

51.57 8.41

ClabZIP49 Cla017444 767 + 10 B bZIP (PF00170) 272 332 82.8 6.64

ClabZIP50 Cla017522 393 − 10 D DOG (PF14144)
bZIP (PF00170)

223
313

260
389

44.26 6.96

ClabZIP51 Cla017696 464 − 10 A bZIP (PF00170) 358 410 50.01 8.98

ClabZIP52 Cla017709 525 − 10 J bZIP (PF00170) 171 233 58.43 7.51

ClabZIP53 Cla011901 356 + 11 D DOG (PF14144)
bZIP (PF00170)

73
159

104
237

40.98 7.23

ClabZIP54 Cla022943 367 − 11 E bZIP (PF00170) 238 284 41.29 8.77

ClabZIP55 Cla023140 156 − 11 S bZIP (PF00170) 133 155 17.49 6.92

ClabZIP56 Cla023348 305 − 11 E bZIP_2 (PF07716) 164 211 33.19 5.99

ClabZIP57 Cla023484 358 − 11 K bZIP (PF00170) 188 232 39.13 4.49

ClabZIP58 Cla016491 184 − 11 S bZIP (PF00170) 86 144 21.61 6.16

ClabZIP59 Cla016581 152 + 11 S bZIP (PF00170) 26 84 16.76 5.79

ClabZIP60 Cla013375 236 + 2 E bZIP_Maf
(PF03131)

83 147 26.64 9.32

ClabZIP61 Cla018535 151 + 4 S bZIP (PF00170) 113 141 17.6 7.09

ClabZIP62 Cla009927 385 + 5 D DOG (PF14144)
bZIP (PF00170)

98
181

140
259

43.54 8.97
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also possessed the bZIP and DOG domains, but ClabZIP14 was lack of motif 4, and
ClabZIP50 did not contain motif 6 and motif 4 (Fig. 2). Moreover, we found that though
bZIP proteins within the same group generally shared similar motif compositions, those
from different groups might possess specific conserved motifs, such as motif 9 in
group A, motif 10 in group F, motifs 3, 4, 5, and 6 in group D, and motif 8 in group I
(Fig. 2).

Gene structure analysis of ClabZIP genes
The exon-intron profiles of 59 watermelon bZIP genes have been determined in a previous
study (Unel et al., 2019). To gain further insights into the possible structural evolution
of ClabZIP genes, the intron-exon structural patterns were investigated according to their
phylogenetic relationships. The intron numbers of ClabZIP genes varied from 0 to 11, and
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Figure 1 Phylogenetic relationships of watermelon and Arabidopsis bZIP proteins. The protein
sequences of 62 watermelon ClabZIPs and 78 Arabidopsis AtbZIPs were aligned by MAFFT, and the
phylogenetic tree was constructed by MEGA 7.0 using the NJ method with 1,000 bootstrap replicates.

Full-size DOI: 10.7717/peerj.7878/fig-1

Yang et al. (2019), PeerJ, DOI 10.7717/peerj.7878 9/30

http://dx.doi.org/10.7717/peerj.7878/fig-1
http://dx.doi.org/10.7717/peerj.7878
https://peerj.com/


the largest number of introns was found in ClabZIP18 and ClabZIP45 (Fig. 3). Most genes
in the same group had conserved exon-intron structures. For example, with the exception
of ClabZIP5, members of group S and group F had no intron, and all members of
group C and group H contained 5 and 3 introns, respectively (Fig. 3). In addition, the
intron number of ClabZIP genes varied greatly among different groups. For example,
ClabZIP genes in groups A, B, E, K, M, H, and I contained 1–4 introns, whereas the
members in groups C, J, D, and G possessed 5, 5, 7–10, and 10–11 introns (with the
exception of ClabZIP44), respectively (Fig. 3), indicating that watermelon genome has
undergone significant divergence during the long evolutionary history.

Chromosomal locations and gene duplication of ClabZIP genes
The 62 ClabZIP genes were successfully mapped to 11 out of the 12 chromosomes in
watermelon genome, with the exception of ClabZIP2, which was located in chromosome 0
(Fig. 4). For example, there were 11 genes on chromosome 8, followed by 10 on
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chromosome 2, 9 on chromosome 5, 8 on chromosome 10, 7 on chromosome 11, 4 on
chromosomes 1, 7 and 9, and only 1 on chromosomes 0 and 4.

To further examine the evolution of ClabZIP genes, we investigated their genome
duplication events, including tandem and segmental duplications, which contribute to the
expansion of gene families throughout plant evolution (Cannon et al., 2004; Zhou et al.,
2018b). As a result, one pair of tandem duplication (ClabZIP8/ClabZIP9) was identified
on chromosome 2 (Fig. 4). In addition, 22 ClabZIP genes located on the duplicated
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segmental regions of watermelon chromosomes made up to 14 segmental duplication
events (Fig. 4).

Tissue-specific expression of selected ClabZIP genes in watermelon
To further understand the tissue-specific expression of ClabZIP genes in watermelon,
qRT-PCR analyses were carried out to examine the expression of 10 selected ClabZIP
genes from seven different groups (one from each of groups S, A, J, and D, and two from
each of groups C, G, and I) in various tissues, including mature leaves, expanding
leaves, roots, stems, stem apexes, tendrils, flowers, and fruits. As a result, ClabZIP genes
showed a broad spectrum of expression in the eight tested tissues. Among them, eight
ClabZIP genes (ClabZIP12, ClabZIP18, ClabZIP20, ClabZIP35, ClabZIP36, ClabZIP39,
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ClabZIP45, and ClabZIP52) exhibited the highest expression in fruits, and ClabZIP59 was
found to be highly and preferentially expressed in roots (Fig. 5). Besides fruits, ClabZIP35
had relatively high expression in expanding leaves; ClabZIP18, ClabZIP39, and ClabZIP52
displayed higher expression in flowers; while ClabZIP20 and ClabZIP36 exhibited
relatively higher expression in stem apexes than in other tissues. Notably, ClabZIP8 had
high transcript abundance in expanding leaves, roots, and stem apexes, moderate
transcription in mature leaves, and the lowest expression in stems (Fig. 5). These results
suggested that ClabZIP genes may be involved in diverse growth and development
processes of watermelon.

Roles of ClabZIP genes in melatonin induction of cold tolerance
To examine the effects of cold stress on the expression of ClabZIP genes, we determined
the differentially expressed genes of ClabZIP genes under MT, cold, and melatonin-cold
(MT-C) treatments based on the transcriptome data from a previous study (Li et al.,
2016a), and the FPKM values of ClabZIP genes are presented in Table S5. As shown in
Fig. 6, a total of 50 ClabZIP genes (23 up-regulated, 27 down-regulated) were differentially
expressed in response to cold stress compared with the control (CK), suggesting that these
genes might be involved in regulating the response of watermelon to cold stress. In
addition, compared with cold treatment, MT-C treatment induced the expression levels of
31 ClabZIP genes, while significantly repressed the expression of 17 ClabZIP genes (Fig. 6),
suggesting that MT could influence the expression of ClabZIP genes to regulate the cold
response of watermelon.

To further study the roles of ClabZIP genes in response to cold stress, 10 selected
ClabZIP genes were examined by qRT-PCR to test the accuracy of the gene expression
determined from transcriptome data. As shown in Fig. 7, the expression of ClabZIP8,
ClabZIP12, and ClabZIP18 sharply increased at certain time points, and reached the
highest level at 3, 1, and 3 h, respectively. However, the transcript levels of ClabZIP35,
ClabZIP36, ClabZIP45, and ClabZIP59 were found to decrease at all-time points.
Additionally, the expression of ClabZIP39 was dramatically reduced at the early time point
(1 h), and sharply up-regulated at 3 h, followed by gradual decreases at 9 and 24 h (Fig. 7).
The changes in the expression of these genes were consistent with the transcriptome
results.

Roles of ClabZIP genes in red light-induced resistance against
root-knot nematodes
We also examined the expression of ClabZIP genes in the leaves and roots under the
treatments of CK, RKN, RL, and RR, and the FPKM values of ClabZIP genes are presented
in Table S5. In leaves, the expression of ClabZIP genes was significantly affected by RL,
M. incognita infection and their interaction (Fig. 8). A total of 34 ClabZIP genes (such as
ClabZIP6 and ClabZIP56) showed up-regulated expression, while 23 ClabZIP genes (such
as two HY5-like genes, ClabZIP22 and ClabZIP37) were down-regulated under RL
treatment compared with the control (CK) (Fig. 8). Compared with CK, a total of 34 and
23 ClabZIP genes were found to be up-regulated and down-regulated under RKN
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Figure 5 Tissue-specific expression patterns of 10 selected ClabZIP genes (A–J) in watermelon. ML,
mature leaves; EL, expanding leaves; R, roots; S, stems; SA, stem apexes; T, tendrils; F, flowers; Fr, fruits.
Three independent replicates were used, and error bars indicate standard deviation (SD). Different letters
represent statistically significant differences (P < 0.05) based on Tukey’s test.
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treatment, respectively. In addition, we also found that a total of 31 and 27 ClabZIP genes
were respectively up-regulated and down-regulated by RR treatment compared with RKN
treatment (Fig. 8).
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Figure 6 Cluster analysis of DEGs identified by transcriptome comparisons of melatonin (MT), cold,
melatonin-cold (MT-C) treatments and control (CK). The log2-transformed FPKM values were used to
create a heatmap depicting the expression of each ClabZIP gene.
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Figure 7 Relative transcript levels of 10 selected ClabZIP genes (A–J) in the leaves of watermelon
under cold stress by qRT-PCR. Error bars were SD of three biological replicates, and different letters
represent statistically significant differences (P < 0.05, Tukey’s test).
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Figure 8 Cluster analysis of DEGs identified by transcriptome comparisons with inoculation of M.
incognita under white light (RKN), red light and water control (RL), inoculation of M. incognita
under red light (RR) and white light and clean water (CK) treatments in the leaves. The log2-
transformed FPKM values were used to create a heatmap depicting the expression of each ClabZIP
gene. Full-size DOI: 10.7717/peerj.7878/fig-8
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We also determined the expression levels of the ClabZIP genes in roots under the
treatments of CK, RKN, RL, and RR (Table S5). As shown in Fig. 9, the expression of 60
ClabZIP genes (38 up-regulated and 22 down-regulated) was significantly altered by RL
treatment compared with CK. Compared with CK, a total of 31 and 29 ClabZIP genes
were respectively up-regulated and down-regulated by RKN treatment, respectively
(Fig. 9). In addition, compared with RKN treatment, a total of 33 and 27 ClabZIP genes
were found to be up-regulated and down-regulated under RR treatment, respectively.

We also randomly selected five each ClabZIP genes to examine their expression levels
in the leaves and roots under the treatments of CK, RKN, RL, and RR using qRT-PCR.
In leaves, ClabZIP6 and ClabZIP56 were strongly induced, while ClabZIP37 and
ClabZIP57 were significantly repressed by RL treatment when compared with CK.
In addition, ClabZIP37, ClabZIP53, and ClabZIP56were observably down-regulated by RR
treatment compared with RKN treatment in leaves, while ClabZIP57 was up-regulated
(Fig. 10A). In roots, ClabZIP36 was up-regulated by RL treatment, while the expression of
other four selected ClabZIP genes was decreased (Fig. 10B). Additionally, ClabZIP36 and
ClabZIP47 were up-regulated after RR treatment compared with RKN treatment in
roots, while ClabZIP52, ClabZIP53, and ClabZIP59 were suppressed. Furthermore, the
expression of nine selected ClabZIP genes was significantly altered by RKN treatment
(Fig. 10). In general, the qRT-PCR results were consistent with the transcriptome results.

DISCUSSION
In this study, a total of 62 bZIP genes were obtained from watermelon genome, among
which three genes were novel (Table 1). The number is comparable to that of some dicot
plants, such as cucumber (64 members) (Baloglu et al., 2014), tomato (69 members)
(Li et al., 2015a), Arabidopsis (78 members) (Dröge-Laser et al., 2018), and cassava
(77 members) (Hu et al., 2016c), but smaller than that of monocot plants, such as rice
(89 members) (Nijhawan et al., 2008), barley (89 members) (Pourabed et al., 2015), and
Brachypodium distachyon (96 members) (Liu & Chu, 2015). Previous reports have also
shown that bZIP genes are associated with the evolution of plants, and eudicot bZIP genes
have a lower frequency of evolution than those of monocots after divergence (Li et al.,
2015b; Wang et al., 2011, 2017). In addition, 14 segmental duplication events were
detected in watermelon genome (Fig. 4), indicating that the expansion of bZIP family in
watermelon is mainly due to segmental duplication. Similar results have been reported in
various plant species, including rice (Nijhawan et al., 2008), sorghum (Wang et al.,
2011), maize (Wei et al., 2012), grape (Gao et al., 2014), tomato (Li et al., 2015a), and
sesame (Wang et al., 2018b). Moreover, most ClabZIP genes are located on the upper and
lower parts of watermelon chromosomes (Fig. 4), and similar results were also obtained
in Brassica oleracea (Hwang et al., 2016) and apple (Li et al., 2016b), implying conversed
locations of bZIP genes during the evolution of these plants.

The phylogenetic analysis results showed that the 62 ClabZIP proteins were clustered
into 13 groups, including A, B, C, D, E, F, G, H, I, J, K, M, and S, which comprised 8, 1, 4, 8,
5, 2, 4, 2, 8, 1, 1, 1, and 17 ClabZIPs, respectively (Fig. 1; Table 1). Each group
included at least one AtbZIP and one ClabZIP (Fig. 1), indicating that there is a similar
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Figure 9 Cluster analysis of DEGs identified by transcriptome comparisons with inoculation of M.
incognita under white light (RKN), red light and water control (RL), inoculation of M. incognita
under red light (RR) and white light and clean water (CK) in the roots. The log2-transformed
FPKM values were used to create a heatmap depicting the expression of each ClabZIP gene.
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evolutionary trajectory of bZIP genes in Arabidopsis and watermelon. Plant bZIP proteins
usually possess additional conserved motifs that may be involved in activating their
functions (Jin, Xu & Liu, 2014). In the present study, two types of additional domains,
namely DOG and MFMR domains, were present in eight and three ClabZIP proteins
(Table 1), which respectively fell into two groups (D and G) according to the phylogenetic
analysis (Fig. 1), and some groups possessed specific sequence motifs corresponding to
different protein domains (Fig. 2). These findings imply that different motifs outside the
bZIP domain region might play different roles in determining the functions of bZIP
proteins (Jin, Xu & Liu, 2014; Wang et al., 2018b). In addition, the bZIP members
from the same group often exhibit similar exon-intron compositions (Fig. 3). This
phenomenon is considered as an imprint of evolution in some gene families, resulting
in the generation of functionally distinct paralogs (Li et al., 2015b; Liu et al., 2017).
It is noteworthy that some ClabZIP genes, especially those in groups S and F, were
prevalently lack of introns (Fig. 3), which could shorten the posttranscriptional process for
immediate response to abiotic stresses (Zhou et al., 2018b). Similarly, a total of 25 GmbZIP
genes belonging to group S were found to be intronless in soybean (Zhang et al., 2018).
It is known that genes lacking introns would evolve faster than the rate of intron gain after
gene duplication, and most members in groups D and G possessed more introns than
those in other groups (Fig. 3). Therefore, it can be speculated that groups D and G might
contain the original genes compared with other groups (Hu et al., 2016c). Moreover, some
pairs of ClabZIP genes, such as ClabZIP8/ClabZIP9 and ClabZIP10/ClabZIP39, which
were distributed closely to each other based on the phylogenetic analysis results, shared
similar exon-intron arrangements but different intron numbers (Fig. 3), suggesting
that gain or loss of introns may occur in ClabZIP genes during the evolution of watermelon
genome.

The bZIP TFs were shown to play important roles in various developmental processes
throughout the plant life cycle (Wang et al., 2018b; Zhou et al., 2017). For example, there
is evidence showing that Arabidopsis seed maturation can be regulated by multiple
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Figure 10 qRT-PCR analysis of the expression of selected ClabZIP genes under the treatments with
inoculation ofM. incognita under white light (RKN), red light and water control (RL), inoculation of
M. incognita under red light (RR) and white light and clean water (CK) in the leaves (A) and roots (B)
of watermelon plants. Error bars represent SD of three biological replicates, and different letters indicate
statistically significant differences (P < 0.05, Tukey’s test). Full-size DOI: 10.7717/peerj.7878/fig-10
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bZIP TFs including bZIP53, bZIP10, and bZIP25 (Alonso et al., 2009; Jain et al., 2017).
In this study, all of the 10 selected ClabZIP genes were found to be highly and preferentially
expressed in fruits (Fig. 5), indicating that they may play vital roles in fruit development.
Similar findings were also obtained in other plant species, such as apple (Li et al.,
2016b) and banana (Hu et al., 2016b). In addition, ClabZIP8 and ClabZIP59 were highly
expressed in roots (Fig. 5), and ClabZIP8, ClabZIP20, ClabZIP35, and ClabZIP45 also had
relatively higher transcript abundance in expanding leaves, indicating their roles in
leaf and/or root development. In Arabidopsis, AtbZIP29 was found to participate in leaf
and root development through regulating the genes involved in cell cycle and cell wall
organization (Van Leene et al., 2016).

Accumulating evidence shows that many bZIP TFs are also involved in response to cold
stress. For example, a large number of rice bZIP genes are regulated by cold stress, and
several genes including OsbZIP73 (Liu et al., 2018), OsbZIP52/RISBZ5 (Liu, Wu & Wang,
2012), OsbZIP38/LIP19 and OsbZIP87/OBF1 (Shimizu et al., 2005) were identified as
positive or negative regulators of response to cold stress. A previous study has shown that
four ClabZIP genes (ClabZIP3, ClabZIP6, ClabZIP23, and ClabZIP57) can be regulated
by cold stress (Li et al., 2017b). In this study, most of the ClabZIP genes were differentially
expressed (21 up-regulated, 27 down-regulated) under cold stress based on the
transcriptome data (Fig. 6), and qRT-PCR results revealed that the 10 selected ClabZIP
genes were highly responsive to cold stress, which is in accordance with the results
from the transcriptome data (Fig. 7). Similar results were also obtained in other plants.
In Chinese cabbage, 36 and 17 of 136 bZIP genes were up-regulated and down-regulated
after cold treatment, respectively (Hwang et al., 2014). Correspondingly, 12 and 28 of the
96 Brachypodium distachyon bZIP genes were found to be induced and suppressed
under cold stress, respectively (Liu & Chu, 2015). A number of studies have indicated that
cold stress can induce the endogenous MT level, and exogenous MT can enhance cold
tolerance of various plant species, including Arabidopsis (Bajwa et al., 2014; Shi et al.,
2015b), bermudagrass (Hu et al., 2016a; Shi et al., 2015a), rice (Han et al., 2017), melon
(Zhang et al., 2017), watermelon (Li et al., 2016a, 2017b), and tea plant (Li et al., 2018).
Besides, MT-induced enhancement of cold tolerance in plants is closely related to the
up-regulated transcripts of numerous stress-responsive genes (Li et al., 2017b; Shi & Chan,
2014; Shi et al., 2015a, 2015b). In this study, among the cold-responsive ClabZIP genes, 31
genes had higher expression levels under MT-C treatment compared with under cold
treatment (Fig. 6), implying the roles of them in the response of MT-pretreated plants
to cold stress. It should be noted that the transcript levels of ClabZIP6, ClabZIP13, and
ClabZIP56 were significantly decreased by cold stress in control plants, while their
expression was found to sharply increase in MT-pretreated plants under cold stress
(Fig. 6), revealing that they might play essential roles in response to MT induction of cold
tolerance of watermelon.

There has been increasing evidence suggesting that bZIP genes play important roles in
controlling photomorphogenesis and light-regulated gene expression (Abbas et al., 2014;
Banerjee & Roychoudhury, 2017; Nawkar et al., 2017). In this study, a number of ClabZIP
genes were regulated by RL in leaves (34 up-regulated, 23 down-regulated) and roots
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(38 up-regulated, 22 down-regulated), with 23 and four genes being both up-regulated and
down-regulated in leaves and roots, respectively (Figs. 8 and 9), revealing that RL could
regulate the expression of these ClabZIP genes in watermelon. It is noteworthy that
ClabZIP6 and ClabZIP56 were significantly up-regulated in leaves but down-regulated in
roots by RL treatment (Figs. 8 and 9), revealing that bZIP genes are likely to participate
in certain light-dependent biological processes in different tissues. In Arabidopsis,
AtbZIP56/AtHY5 acts as an evolutionarily conserved regulator that participates in the
concordance of light, environmental, hormonal, and developmental signaling pathways
(Dröge-Laser et al., 2018; Gangappa & Botto, 2016). In addition, compared with RL, blue
light stimulates much higher accumulations of AtHY5 and its closest homolog AtbZIP64/
AtHYH (HY5-HOMOLOG) at both transcriptional and post-transcriptional levels, and
thus regulates the pace of Arabidopsis circadian clock (Hajdu et al., 2018). AtHY5 could be
regulated by FR light transmission from the shoot into the root and thus mediate the lateral
root development (Van Gelderen et al., 2018). In apple, the expression of MdHY5 was
increased in response to light, and MdHY5 could promote anthocyanin accumulation in
response to light by regulating a number of TFs (An et al., 2017a; Liu et al., 2019). In this
study, a HY5-like gene ClabZIP37 was down-regulated by RL compared with the
control in both leaves and roots (Figs. 8 and 9), suggesting that it may negatively affect
the response to RL in watermelon. However, another HY5-like gene ClabZIP22 was
down-regulated in leaves but up-regulated in roots by RL compared with the control
(Figs. 8 and 9), suggesting that the two HY5-like genes play different roles in response to
RL in watermelon. Moreover, HY5 also plays important roles in regulating cold stress
response. For example, MdHY5 was shown to positively modulate plant cold tolerance
through CBF-dependent and -independent pathways (An et al., 2017b). Tomato SlHY5
can improve cold tolerance by integrating temperature, photoperiod and light quality
signals, as well as activate ABA biosynthesis and gibberellin (GA) deactivation (Wang
et al., 2019). In this study, ClabZIP22 was up-regulated but ClabZIP37 was down-regulated
by cold stress compared with CK (Fig. 6), implying their different roles in the crosstalk of
cold stress and light signal transductions.

It is known that bZIP genes can regulate plant defense against pathogen infection
(Noman et al., 2017). For example, a previous study has revealed that in potato, StbZIP61
functions together with StNPR3L to mediate the temporal activation of salicylic acid (SA)
biosynthesis, contributing to SA-mediated immunity against Phytophthora infestans
infection (Zhou et al., 2018a). Pepper CabZIP63 acts as a positive regulator of the defense
responses to Ralstonia solanacearum by making a positive feedback loop with CaWRKY40
(Noman et al., 2019; Shen et al., 2016). Our previous reports also revealed that RL
could influence the light-activated down-stream genes including SA and jasmonic acid
(JA) pathway genes to induce watermelon resistance against nematode infection (Yang
et al., 2015, 2018b). In the present study, some ClabZIP genes (such as ClabZIP4 and
ClabZIP31) were up-regulated, whereas ClabZIP8, ClabZIP20, and ClabZIP50 were
down-regulated under RR treatment compared with under RKN treatment in both leaves
and roots, revealing their important roles in watermelon resistance against nematode
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infection. In the near future, it should be interesting to further clarify the functions of these
bZIP genes in RL induction of plant defense against nematode infection.

CONCLUSIONS
In conclusion, we performed a genome-wide identification of putative ClabZIP genes in
watermelon, including their basic classification, phylogenetic relationship, conserved
motifs, gene structures, and tissue-specific expression. In addition, transcriptome analysis
revealed that some ClabZIP genes (such as ClabZIP4 and ClabZIP31) may play crucial
roles in protecting plants from nematode infection and cold stress. This comprehensive
study could lay a solid foundation for revealing the roles of bZIP family genes in
watermelon growth and stress response, which may contribute to the breeding of stress
tolerant cultivars.
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